Bernstein-von Mises Theorem and Bayes Estimation in Interacting Particle Systems of Diffusions

Jaya P. N. Bishwal

Department of Mathematics and Statistics, University of North Carolina at Charlotte, 376 Fretwell Bldg., 9201 University City Blvd. Charlotte, NC 28223, USA

Correspondence: J.Bishwal@uncc.edu

ABSTRACT. Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of an interacting particles of diffusions are studied. For the Bayes estimator, observations are taken on a fixed time interval $[0, T]$ and asymptotics are studied in the mean-field limit as the number of interacting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence in the mean-field limit of the posterior distribution, for smooth prior distribution and loss function, to normal distribution is proved.

1. Introduction

Finite dimensional parameter estimation in one-dimensional stochastic differential equations from continuous and discrete observations by maximum likelihood and Bayes methods are extensively studied in Bishwal (2008). Parameter estimation for partially observed SDE system which is a factor model of multiple correlated SDEs is studied in Bishwal (2022). Interacting particle systems of diffusions which are generalizations of these factor models, are important for modeling many complex phenomena, see Dawson (1983) and Ligget (1985). Interacting particle systems are useful in constructing particle filter algorithms for finance and computation of credit portfolio losses, see Carmona et al. (2009).

McKean (1966) studied a class of Markov processes associated with nonlinear parabolic equations and introduced stochastic systems of interacting particles and the associated non-linear Markov processes starting from statistical physics to model the dynamics of plasma. McKean (1967) studied propagation of chaos for a class of non-linear parabolic equations. Lot of probabilistic tools have been developed in this context. However, statistics for interacting particle models has not received much attention. Maximum likelihood estimation in interacting particle system of stochastic differential equations was studied in Kasonga (1990) in the mean-field limit where the

In this paper we study Bayes estimation in interacting particle system of stochastic differential equations. Consider the model of \( n \) interacting particles of diffusions satisfying the Itô stochastic differential equations

\[
dX_j(t) = \sum_{l=1}^{p} \theta_{jl}\mu_{jl}(X(t)) + \sigma_{j}(X(t))dW_j(t), \quad j = 1, 2, \ldots, n
\]

where \( X(t) = (X_1(t), X_2(t), \ldots, X_n(t))^\prime \) and \( (W_j(t); t \geq 0), \quad j = 1, 2, \ldots, n \) are independent Wiener processes. Here \( \theta_{jl}(\cdot) \in L^2([0, T], dt), l = 1, \ldots, p \) are unknown functions to be estimated based on observation of the process \( X \) in the time interval \( [0, T] \). Let \( \theta = (\theta_1, \theta_2, \ldots, \theta_p) \) and \( \mu_{j}(x) = (\mu_{j1}(x), \mu_{j2}(x), \ldots, \mu_{jp}(x))^\prime \). The processes \( X_j(t), j = 1, 2, \ldots, n \) are observed on \( [0, T] \).

The functions \( \mu_j, \sigma_j; \quad j = 1, 2, \ldots, n \) are assumed to be known such that the system has a unique solution.
We need the following assumption and results to prove the main results.

(A1) Suppose that \( b_{jl} := \mu_{jl}(s)\sigma_j^{-1}(s); j = 1, 2, \cdots, n; l = 1, 2, \cdots, p \) are measurable and adapted processes satisfying
\[
\frac{1}{n} \sum_{j=1}^{n} \int_0^t b_{jl}(s)b_{jm}(s)ds \to c_{lm}(t) \text{ a.s. as } n \to \infty
\]
l, m = 1, 2, \ldots, p where \( c_{lm}(t) \) are finite and continuous nonrandom functions of \( t \in [0, T] \). The limiting matrix \( I(t) = (c_{lm}(t))_{l,m=1,2,\ldots,p} \) is positive definite, \( \delta I(t)\delta \) is increasing for all \( \delta \in \mathbb{R}^p \) and \( I(0) = 0 \).

In the exchangeable case, (A1) follows from McKean-Vlasov Law of Large Numbers. In particular, (A1) will be satisfied when \( \mu_{jl}(X) = \mu_jX_j \) and \( \sigma_j(X) = \sigma_j(X_j) \) which corresponds to the independent replicated sampling on \([0, T]\). See Oelschlager (1984).

We also need the following version of Rebolledo’s Central Limit Theorem for Martingales, see Rebolledo (1980):

Let \( M_n, n \in \mathbb{Z}_+ \) be a sequence of locally square integrable martingales with \( M_n(0) = 0 \). Suppose the following condition holds:
\[
\sum_{s\leq t} E\{|\Delta M_n(s)|^2 I(|\Delta M_n(s)| > \epsilon)\} \to 0 \text{ for all } t \in [0, T], \epsilon > 0; \text{ and } (M_n(t)) \to c(t) \text{ a.s. for all } t \in [0, T], \text{ where } c(t) \text{ is a continuous increasing function with } c(0) = 0.
\]
Then \( M_n \to^D M \), a continuous Gaussian martingale with zero mean and covariance function \( \Delta(s,t) = c(s \land t), s, t \in [0, T] \) where \( \Delta M_s = M_s - M_{s-} \) denotes the jump of \( M \) at the point \( s \).

2. Maximum Likelihood Estimation

The model is given by
\[
\frac{dX_j(t)}{dt} = \sum_{l=1}^{p} \theta_{jl}\mu_{jl}(X(t)) + \sigma_j(X(t))dW_j(t), \quad j = 1, 2, \cdots, n
\]
where \( X(t) = (X_1(t), X_2(t), \cdots, X_n(t))^\prime \) and \( (W_j(t); t \geq 0), j = 1, 2, \cdots, n \) are independent Wiener processes. Here \( \theta = (\theta_1, \theta_2, \ldots, \theta_p) \) is the unknown parameter. The functions \( \mu_{jl}, \sigma_j, j = 1, \cdots, n; l = 1, \cdots, p \) are assumed to be known such that there exists a unique solution \( X(t) \) to the above SDE.

Our aim is to estimate the parameter \( \theta \) based on \( n \) particles \( X_1(\cdot), X_2(\cdot), \cdots, X_n(\cdot) \) of \( X(t) \) on \([0, T]\). We denote this data by \( X^{n,T} \).

The Radon-Nikodym derivative (likelihood) is given by
\[
Z_{n}^{\theta}(X^{n,T}) := \frac{dP_{\theta}}{dP_{\theta_0}}(X^{n,T}) = \exp \left\{ \sum_{l=1}^{p} \theta_l \sum_{j=1}^{n} \int_0^T \mu_{jl}(X(t))\sigma_j^{-2}(X(t))dX_j(t) - \frac{1}{2} \sum_{l=1}^{p} \sum_{m=1}^{p} \theta_l\theta_m \sum_{j=1}^{n} \int_0^T \mu_{jl}(X(t))\sigma_j^{-2}(X(t))\mu_{jm}(X(t))dt \right\}
\]
(2.2)
The consistency and asymptotic normality of the approximate maximum likelihood estimator are given below from Kasonga (1990):
Theorem 2.1 (Consistency) Under (A1), we have
\[ \hat{\theta}^n \rightarrow^P \theta \text{ as } n \rightarrow \infty. \]

Theorem 2.2 (Asymptotic Normality) Under (A1), we have
\[ \sqrt{n}(\hat{\theta}^n - \theta) \rightarrow^D N(0, I^{-1}(T)) \text{ as } n \rightarrow \infty \] where \( I(T) \) is the Fisher information.

3. The Bernstein–von Mises Theorem

Suppose that \( \Pi \) is a prior probability measure on \((\Theta, D)\), where \( D \) is the \( \sigma \)-algebra of Borel subsets of \( \Theta \). Assume that \( \Pi \) has a density \( \pi(\cdot) \) w.r.t. the Lebesgue measure and the density is continuous and positive in an open neighbourhood of \( \theta_0 \).

The posterior density of \( \theta \) given in \( X^n,T \) is given by
\[ p(\theta|X^n) := \frac{Z^n_\theta(X^n,T)\pi(\theta)}{\int_\Theta Z^n_\theta(X^n,T)\pi(\theta)d\theta}. \]

Let \( \tau := n^{1/2}(\theta - \hat{\theta}^n) \). Then the posterior density of \( n^{1/2}(\theta - \hat{\theta}^n) \) is given by
\[ p^*(\tau|X^n,T) := n^{-1/2}p(\hat{\theta}^n + \psi_{n^{-1/2}}\tau|X^n,T). \]

Let
\[ \nu_n(\tau) := \frac{dP^n_{\hat{\theta}^n+\tau \theta_0} / dP^n_{\theta_0}}{dP^n_{\theta_0} / dP^n_{\theta_0}} = \frac{dP^n_{\hat{\theta}^n+\nu_n^{-1/2}\tau}}{dP^n_{\hat{\theta}^n}} \quad C_n := \int_{-\infty}^{\infty} \nu_n(\tau)\pi(\hat{\theta}^n + n^{-1/2}\tau)d\tau. \]

Clearly
\[ p^*(\tau|X^n,T) = C_n^{-1}\nu_n(\tau)\pi(\hat{\theta}^n + n^{-1/2}\tau). \]

Let \( K(\cdot) \) be a non-negative measurable function satisfying the following two conditions:

(K1) There exists a number \( \eta, \quad 0 < \eta < 1 \), for which
\[ \int_{-\infty}^{\infty} K(\tau)\exp\left\{-\frac{1}{2}\tau^2(1-\eta)\right\}d\tau < \infty. \]

(K2) For every \( \epsilon > 0 \) and \( \delta > 0 \)
\[ e^{-\epsilon n}\int_{|\tau|>\delta} K(\tau n^{1/2})\pi(\hat{\theta}^n + \tau)d\tau \rightarrow 0 \quad \text{a.s. \([P_{\theta_0}]\) as } n \rightarrow \infty. \]

We need the following Lemma to prove the Bernstein–von Mises theorem.

Lemma 3.1 Under the assumptions (A1) and (K1) - (K2),
(i) There exists a \( \delta_0 > 0 \) such that
\[ \lim_{n \rightarrow \infty} \int_{|\tau| \leq \delta_0 n^{1/2}} K(\tau)\left|\nu_n(\tau)\pi(\hat{\theta}^n + n^{-1/2}\tau) - \pi(\theta_0)\exp\left(-\frac{1}{2}\tau^2\right)\right|d\tau = 0 \quad \text{a.s. \([P_{\theta_0}]\).} \]
(ii) For every \( \delta > 0 \),
\[
\lim_{n \to \infty} \int_{|\tau| \geq \delta n^{1/2}} K(\tau) \left| \nu_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) - \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau = 0 \quad \text{a.s.} \quad [P_{\theta_0}].
\]

**Proof.** From (2.2), it is easy to check that
\[
\log \nu_n(\tau) = -\frac{1}{2} \sum_{l=1}^p \sum_{m=1}^p \sum_{j=1}^n \int_0^T \mu_{lj}(X(t)) \sigma_{lj}(X(t)) \mu_{jm}(X(t)) dt.
\]

Now (i) follows by an application of the dominated convergence theorem.

For every \( \delta > 0 \), there exists \( \epsilon > 0 \) depending on \( \delta \) and \( \beta \) such that
\[
\|
u_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) - \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right)\| \leq e^{-\epsilon n} \int_{|\tau| \geq \delta n^{1/2}} K(\tau) \nu_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) d\tau + \int_{|\tau| \geq \delta n^{1/2}} \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right) d\tau
\]
\[
\leq e^{-\epsilon n} \int_{|\tau| \geq \delta n^{1/2}} K(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) d\tau + \pi(\theta_0) \int_{|\tau| \geq \delta n^{1/2}} \exp\left(-\frac{1}{2} \tau^2\right) d\tau
\]
\[
=: F_n + G_n.
\]

By condition (K2), it follows that \( F_n \to 0 \) a.s. \( [P_{\theta_0}] \) as \( n \to \infty \) for every \( \delta > 0 \). Condition K(1) implies that \( G_n \to 0 \) a.s. as \( n \to \infty \). This completes the proof of the Lemma. \( \square \)

Now we are ready to prove the generalized version of the Bernstein-von Mises theorem for IPS of diffusions.

**Theorem 3.1** Under the assumptions (A1) and (K1) – (K2), we have
\[
\lim_{n \to \infty} \int_{-\infty}^\infty K(\tau) \left| \rho^*(\tau|X^{n,T}) - (\frac{1}{2\pi})^{1/2} \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau = 0 \quad \text{a.s.} \quad [P_{\theta_0}].
\]

**Proof** From Lemma 3.1, we have
\[
\lim_{n \to \infty} \int_{-\infty}^\infty K(\tau) \left| \nu_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) - \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau = 0 \quad \text{a.s.} \quad [P_{\theta_0}]. \tag{3.1}
\]

Putting \( K(\tau) = 1 \) which trivially satisfies (K1) and (K2), we have
\[
C_n = \int_{-\infty}^\infty \nu_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) d\tau \to \pi(\theta_0) \int_{-\infty}^\infty \exp\left(-\frac{1}{2} \tau^2\right) d\tau \quad \text{a.s.} \quad [P_{\theta_0}]. \tag{3.2}
\]

Therefore, by (3.1) and (3.2), we have
\[
\int_{-\infty}^\infty K(\tau) \left| \rho^*(\tau|X^{n,\theta}) - (\frac{1}{2\pi})^{1/2} \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau
\]
\[
\leq \int_{-\infty}^\infty K(\tau) \left| C_n^{-1} \nu_n(\tau) \pi(\hat{\theta}^n + n^{-1/2} \tau) - C_n^{-1} \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau
\]
\[
+ \int_{-\infty}^\infty K(\tau) \left| C_n^{-1} \pi(\theta_0) \exp\left(-\frac{1}{2} \tau^2\right) - (\frac{1}{2\pi})^{1/2} \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau
\]
\[
\to 0 \quad \text{a.s.} \quad [P_{\theta_0}] \quad \text{as} \quad n \to \infty. \quad \square
\]
Theorem 3.1. Suppose (A1) and $\int_{-\infty}^{\infty} |\theta|^r \pi(\theta) d\theta < \infty$ for some non-negative integer $r$ hold. Then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |\hat{\tau}|^r \left| p^*(\tau|X^n) - \left(\frac{1}{2\pi}\right)^{1/2} \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau = 0 \quad \text{a.s.} \ [P_{\theta_0}].$$

\textbf{Proof.} For $r = 0$, the verification of (K1) and (K2) is easy and the theorem follows from Theorem 3.1. Suppose $r \geq 1$. Let $K(\tau) = |\tau|^r$, $\delta > 0$ and $\epsilon > 0$. Using $|a + b|^r \leq 2^{r-1}(|a|^r + |b|^r)$, we have

\begin{align*}
e^{-\epsilon n} \int_{|\tau| > \delta} K(\tau n^{1/2}) \pi(\hat{\theta}^n + \tau) d\tau \\
\leq \ n^{r/2} e^{-\epsilon n} \int_{|\tau - \hat{\theta}^n|^r > \delta} \pi(\tau)|\tau - \hat{\theta}^n|^r d\tau \\
\leq \ 2^{r-1} n^{r/2} e^{-\epsilon n} \left[ \int_{|\tau - \hat{\theta}^n|^r > \delta} \pi(\tau)|\tau|^r d\tau + \int_{|\tau - \hat{\theta}^n|^r > \delta} \pi(\tau)|\hat{\theta}^n|^r d\tau \right] \\
\leq \ 2^{r-1} n^{r/2} e^{-\epsilon n} \left[ \int_{-\infty}^{\infty} \pi(\tau)|\tau|^r d\tau + |\hat{\theta}^n|^r \right] \\
\to \ 0 \quad \text{a.s.} \ [P_{\theta_0}] \quad \text{as} \ n \to \infty
\end{align*}

from the strong consistency of $\hat{\theta}^n$ and hypothesis of the theorem. Thus the theorem follows from Theorem 3.1. \qed

Remark 3.1 For $r = 0$ in Theorem 3.2, we have

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left| p^*(\tau|X^n) - \left(\frac{1}{2\pi}\right)^{1/2} \exp\left(-\frac{1}{2} \tau^2\right) \right| d\tau = 0 \quad \text{a.s.} \ [P_{\theta_0}].$$

This is the classical form of Bernstein–von Mises theorem for interacting SDEs in its simplest form.

As a special case of Theorem 3.2, we obtain

$$E_{\theta_0}[n^{1/2}(\hat{\theta}^n - \theta_0)]^r \to E[\xi]^r \quad \text{as} \ n \to \infty \quad \text{where} \ \xi \sim \mathcal{N}(0, 1).$$

4. Bayes Estimation

As an application of Theorem 3.1, we obtain the asymptotic properties of a regular Bayes estimator of $\theta$. Suppose $l(\theta, \phi)$ is a loss function defined on $\Theta \times \Theta$. Assume that $l(\theta, \phi) = l(|\theta - \phi|) \geq 0$ and $l(\cdot)$ is non decreasing. Suppose that $J$ is a non-negative function on $\mathbb{N}$ and $K(\cdot)$ and $G(\cdot)$ are functions on $\mathbb{R}$ such that

(B1) $J(n)l(\tau n^{-1/2}) \leq G(\tau)$ for all $n$,

(B2) $J(n)l(\tau n^{-1/2}) \to K(\tau)$ as $n \to \infty$ uniformly on bounded subsets of $\mathbb{R}$.

(B3) $\int_{-\infty}^{\infty} K(\tau + s) \exp\left(-\frac{1}{2} \tau^2\right) d\tau$ has a strict minimum at $s = 0$.

(B4) $G(\cdot)$ satisfies (K1) and (K2).

Let

$$B_n(\phi) = \int_{\Theta} l(\theta, \phi) \rho(\theta|X^n) d\theta.$$
A regular Bayes estimator $\tilde{\theta}^n$ based on $X^{n,T}$ is defined as

$$\tilde{\theta}^n := \arg \inf_{\phi \in \Theta} B_n(\phi).$$

Assume that such an estimator exists.

The following Theorem shows that MLE and Bayes estimators are asymptotically equivalent as $n \to \infty$.

**Theorem 4.1** Assume that (A1), (K1) – (K2) and (B1) – (B4) hold. Then we have

(i) $n^{1/2}(\tilde{\theta}^n - \hat{\theta}^n) \to 0$ a.s.-$[P_{\theta_0}]$ as $n \to \infty$,

(ii) $\lim_{n \to \infty} J(n) B_n(\tilde{\theta}^n) = \lim_{n \to \infty} J(n) B_n(\hat{\theta}^n) = \left( \frac{1}{2\pi} \right)^{1/2} \int_{-\infty}^{\infty} K(\tau) \exp\left(-\frac{1}{2}\tau^2\right) d\tau$ a.s. $[P_{\theta_0}]$.

**Proof.** The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We omit the details.

**Corollary 4.2** Under the assumptions of Theorem 4.1, we have

(i) $\tilde{\theta}^n \to \theta_0$ a.s. $[P_{\theta_0}]$ as $n \to \infty$.

(ii) $n^{1/2}(\tilde{\theta}^n - \theta_0) \xrightarrow{d} \mathcal{N}(0, 1)$ as $n \to \infty$.

**Proof.** (i) and (ii) follow easily by combining Theorem 4.1 and the strong consistency and asymptotic normality results of the MLE in Kasonga (1990).

The following theorem shows that Bayes estimators are *locally asymptotically minimax* (LAM) in the Hajek-Le Cam sense, i.e., equality is achieved in the Hajek-Le Cam inequality.

**Theorem 4.3** Under the assumptions of Theorem 4.1, we have

$$\lim_{\delta \to \infty} \lim_{n \to \infty} \sup_{|\theta - \theta_0| < \delta} E\omega\left(l_n^{1/2}(\tilde{\theta}^n - \theta_0)\right) = E\omega(\xi), \quad \mathcal{L}(\xi) = \mathcal{N}(0, 1),$$

where $\omega(\cdot)$ is a loss function as defined in Theorem earlier and $I_n$ is the Fisher information.

**Proof.** The Theorem follows from Theorem III.2.1 in Ibragimov-Has’minskii (1981) since here conditions (N1) – (N4) of the said theorem are satisfied using Lemma 3.1-3.3 and local asymptotic normality (LAN) property obtained in Della Maestra and Hoffmann (2022).

5. **Practical Examples**

**Example 1: Mean-Field Model**

Let us consider maximum likelihood estimator (MLE) for the simple mean-field model

$$dX_j(t) = \alpha X_j(t) dt - \beta(X_j(t) - \bar{X}_n(t)) dt + dW_j(t), \quad X_j(0) = x_j(0), \quad j = 1, 2, \cdots, n \quad (5.1)$$

where $\bar{X}_n(t) = n^{-1} \sum_{j=1}^n X_j(t)$, $\beta \neq \alpha$, and $\alpha \neq 0$. The middle term on the right side of (5.1) can be viewed as an interaction among the subsystems which create a tendency for the subsystems to relax towards the center of gravity of the ensemble. Thus the system provides a simple example
of a cooperative interaction. Mean-field type models have applications in physics, biology and economics, see Dawson (1983). The case \( \beta = 0 \) corresponds to sampling independent replications of Ornstein-Uhlenbeck processes on \([0, T]\). Our parameter here is \( \theta = (\alpha, \beta) \).

Suppose \( \frac{1}{n} \sum_{j=1}^{n} x_j(0) \to \nu_0 \) almost surely and \( \frac{1}{n} \sum_{j=1}^{n} x_j^2(0) \to \gamma_0^2 + \nu_0^2 \) almost surely as \( n \to \infty \). Then the estimator \( \hat{\theta}^n \to^P \theta \) as \( n \to \infty \) and \( \sqrt{n}(\hat{\theta}^n - \theta) \to^D \mathcal{N}(0, I^{-1}(T)) \) as \( n \to \infty \)

where
\[
I(T) = \begin{pmatrix}
A(T) & -B(T) \\
-B(T) & B(T)
\end{pmatrix}
\]

with
\[
A(T) := \frac{\nu_0^2}{2\alpha}(e^{2\alpha T} - 1) + B(T), \quad B(T) := \frac{e^{2(\alpha - \beta)T} - 1}{4(\alpha - \beta)^2} - \frac{T}{2(\alpha - \beta)} + \frac{\gamma_0^2(e^{2(\alpha - \beta)T} - 1)}{2(\alpha - \beta)}.
\]

**Example 2: Independent Sampling**

The case \( \beta = 0 \) corresponds to sampling independent replications of the same process given below:
\[
dX_j(t) = \alpha X_j(t)dt + X_j(t)dW_j(t), \quad j = 1, 2, \cdots, n
\]

In the classical case when \( \beta = 0 \), the MLE is given by
\[
\hat{\alpha}^n = \frac{\sum_{j=1}^{n} \int_{0}^{T} X_j(t)dX_j(t)}{\sum_{j=1}^{n} \int_{0}^{T} (X_j(t))^2dt}.
\]

Sampling \( n \) independent Ornstein-Uhlenbeck processes on \([0, T]\) and letting \( n \to \infty \) give weak consistency and asymptotic normality of the MLE: \( \hat{\alpha}^n \to^P \alpha \) and \( \sqrt{n}(\hat{\alpha}^n - \alpha) \to^D \mathcal{N}(0, \frac{2\alpha}{\nu_0^2(e^{2\alpha T} - 1)}) \) as \( n \to \infty \).

See also Bishwal (2010) for independent sampling case.

**Example 3: Kuramoto Model** (Chazelle et al. (2017))

This is the most classical model for synchronization phenomenon in large populations of coupled oscillators such as clapping crowd, a population of fireflies or a system of neurons. The \( n \) oscillators are defined by \( n \) angles
\[
dX_j(t) = \alpha \frac{1}{n} \sum_{j=1}^{n} \sin(X_i(t) - X_j(t))dt + X_j(t)dW_j(t), \quad j = 1, 2, \cdots, n
\]

The minimum contrast estimator is consistent as \( n \to \infty \) and \( N \to \infty \), see Amorino et al. (2022).

If \( n\Delta_N \to 0 \), then the minimum contrast estimator is asymptotically normal, see Amorino et al. (2022). Here \( \Delta_N = T/N \) is the length of the observation time interval. If \( T \) is fixed, we need \( n/N \to 0 \).
Example 4: Opinion Dynamics (Toscani (2006))

\[ dX_j(t) = \alpha \frac{1}{n} \sum_{i=1}^{n} \phi(|X_i(t) - X_j(t)|)(X_i(t) - X_j(t)) dt + X_j(t)dW_j(t), \ j = 1, 2, \cdots, n. \tag{5.4} \]

The influence function \( \phi \) acts on the "difference of opinions" between agents.

Example 5: Pearson System (Forman and Sørensen (2008))

\[ dX_j(t) = \alpha \frac{1}{n} \sum_{i=1}^{n} (X_j(t) - \beta X_i(t)) dt + \gamma \sqrt{1 + X_j^2(t)} dW_j(t), \ j = 1, 2, \cdots, n \tag{5.5} \]

Other examples of IPS are Crowd Dynamics (Chazelle et al. (2017)), Urban Modeling (Chazelle et al. (2017)), Chemotaxis (Suzuki (2005)), Pedestrian Dynamics (Gomes et al. (2019)), Collective Behavior (Chazelle (2015)), Molginer Swarm Model (Molgiener and Edelstein-Keshet (1999)), Consensus Dynamics (Hegselmann and Krause (2002)) and Curie-Wiess Model (Dawson (1983)). Curie-Wiess model has quadratic Interaction. The limit of this model is the mean-field model.

References


