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ABsTRACT. Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of an
interacting particles of diffusions are studied. For the Bayes estimator, observations are taken on a
fixed time interval [0, T] and asymptotics are studied in the mean-field limit as the number of inter-
acting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence in
the mean-field limit of the posterior distribution, for smooth prior distribution and loss function, to

normal distribution is proved.

1. INTRODUCTION

Finite dimensional parameter estimation in one-dimensional stochastic differential equations from
continuous and discrete observations by maximum likelihood and Bayes methods are extensively
studied in Bishwal (2008). Parameter estimation for partially observed SDE system which is a
factor model of multiple correlated SDEs is studied in Bishwal (2022). Interacting particle systems
of diffusions which are generalizations of these factor models, are important for modeling many
complex phenomena, see Dawson (1983) and Ligget (1985). Interacting particle systems are useful
in constructing particle filter algorithms for finance and computation of credit portfolio losses, see
Carmona et al. (2009).

McKean (1966) studied a class of Markov processes associated with nonlinear parabolic equa-
tions and introduced stochastic systems of interacting particles and the associated non-linaer
Markov processes starting from statistical physics to model the dynamics of plasma. McKean
(1967) studied propagation of chaos for a class of non-linear parabolic equations. Lot of proba-
bilistic tools have been developed in this context. However, statistics for interacting particle models
has not received much attention. Maximum likelihood estimation in interacting particle system of

stochastic differential equations was studied in Kasonga (1990) in the mean-field limit where the

Received: 11 Jan 2023.
Key words and phrases. stochastic differential equations; mean-field model; large interacting systems; diffusion

process; maximum likelihood estimation; Bayes estimation; Bernstein-von Mises theorem; social network.
1


https://adac.ee
https://doi.org/10.28924/ada/stat.3.11

Eur. J. Stat.

particles n — oco. This is in a sense infinite factor models where the factors are correlated. Amor-
ino et al. (2022) studied minimum contrast estimation for discretely observed interacting particle
systems of McKean-Vlasov type where the particles n — oo and the number of discrete time points
of observations N — oco. Sharrock et al. (2021) studied parameter estimation for the McKean-
Vlasov stochastic differential equation. Della Maestra(2022a) studied nonparametric estimation for
McKean-Vlasov models of interacting particle systems. Belomestny et al. (2021) studied semi-
parametric estimation of McKean-Vlasov SDEs. Geisecke et al. (2020) studied inference for large
financial systems. Gomes et al. (2019) studied parameter estimation for macroscopic pedestrian
dynamics models from microscopic data. Baladron et al. (2012) studied mean-field description of
propagation of chaos in networks of Hugkin-Huxley and FitzHugh-Nagumo neurons. Cardaliaguet
and Lehalle (2019) studied mean field game of controls and application to trade crowding. Chazelle
(2015a) studied diffusive influence systems. Chazelle (2015b) studied an algorithmic approach
to collective behavior. Garnier et al. (2017) studied consensus convergence with stochastic ef-
fects. Hegselmann and Krause (2002) studied analysis and simulation opinion dynamics models
and bounded confidence. Liu and Qiao (2022) studied parameter estimation of path dependent
McKean-Vlasov stochastic differential equations. Mahato et al. (2018) studied particle method for
multi-group pedestrian flow. Molginer and Edelstein-Keshet (1999) studied a non-local model for
a swarm. Motsch and Tadmor (2014) showed that heterophilious dynamics enhances concensus.
Pavliotis and Zanoni (2022) studied eigenfunction martingale estimators for interacting particle
systems and their mean field limit. Suzuki(2005a) studied free energy and self-interacting par-
ticles. Suzuki (2005b) studied chemotaxis, reaction and network as models for self-organization.
Sznitman (1991) studied propagation of chaos. Toscani (2006) studied kinematic models of opinion
formation Wen et al.(2016) studied maximum likelihood estimation of McKean-Vlasov stochastic
differential equations. Yao et al. (2022) studied mean-field nonparametric estimation of interacting
particle systems. Benachour et al. (1998a, 1998b) studied existence, convergence to invariant
probability and propagation of chaos of nonlinear self-stabilizing processes.

In this paper we study Bayes estimation in interacting particle system of stochastic differential
equations. Consider the model of n interacting particles of diffusions satisfying the 1t6 stochastic

differential equations

P
dXi(0) = 3 6i(X(1) + o (X(D)dWi(t), =12, .n (1.1)
=1

where X(t) = (X1(t), Xa(t), -, Xp(t)) and (W;(t);t > 0), j = 1,2,---,n are independent
Wiener processes. Here 6,(:) € L?([0,T],dt),/=1,..., p are unknown functions to be estimated
based on observation of the process X in the time interval [0, T]. Let 6 = (61,0>,..., 6,) and
wi(x) = (uj1(x), ja(x), ..., Ljp(x))'. The processes X;(t),j =1,2,---,n are observed on [0, T].

The functions uj,0j; j=1,2,---,nare assumed to be known such that the system has a unique

solution.
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We need the following assumption and results to prove the main results.

(A1) Suppose that bj; := uj,(s)afl(s);j =1,2,---,n;/=1,2...,p are measurable and adapted

processes satisfying
1 !
. Z/O Bii(5)bim(5)ds = im(t) s as 1 — 00
j=1

I,m=1,2...,p where ¢,(t) are finite and continuous nonrandom functions of t € [0, T]. The

and /(0) = 0.

In the exchangeable case, (A1) follows from McKean-Vlasov Law of Large Numbers. In particular,
(A1) will be satisfied when pj;(X) = 1 X; and 0;(X) = o(X;) which corresponds to the independent
replicated sampling on [0, T]. See Oelschlager (1984).

We also need the following version of Rebolledo’s Central Limit Theorem for Martingales, see
Rebolledo (1980):

Let My, n € Z4 be a sequence of locally square integrable martingales with M,(0) = 0. Suppose
the following condition holds: } ., E{|AM,(s)]2I(|]AM(s)| > €)} — 0 forall t € [0, T], € > 0;
and (Mp)(t) — c(t) as. for all t € [0, T], where c(t) is a continuous increasing function with
c(0) = 0. Then M, —P M, a continuous Gaussian martingale with zero mean and covariance
function K(s,t) = c(sAt),s, t € [0, T] where AMs = Ms — Ms_ denotes the jump of M at the

point s.

2. MAXIMUM LIKELIHOOD ESTIMATION

The model is given by

P
dXi(0) = 3 6i(X(1) + o (X(D)dWi(t), j=1,2,--.n (2.1)
=1

where X(t) = (X1(t), Xo(t), -+, Xn(t)) and (Wj(t);t > 0), j = 1,2,---,n are independent
Wiener processes. Here 6 = (01,6>, ..., 6,) is the unknown parameter. The functions Wjj, O, ] =
1,..., nl=1,..., p are assumed to be known such that there exists a unique solution X(t) to
the above SDE.

Our aim is to estimate the parameter 6 based on n particles X1(-), Xa(+), -+, Xp(+) of X(t) on
[0, T]. We denote this data by X"

The Radon-Nikodym derivative (likelihood) is given by

ZBXMT) = GR(XnT) = exp { 0 0 11 g min(X(£)7 2(X ()X (1)
Y Y180 Y Jo (X ()0 2(X () (X (1))t}

The consistency and asymptotic normality of the approximate maximum likelihood estimator are

(2.2)

given below from Kasonga (1990):
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Theorem 2.1 (Consistency) Under (A1), we have
6" —F 6 as n — oco.
Theorem 2.2 (Asymptotic Normality) Under (A1), we have

V/n(6" —8) =P N(0,171(T)) as n — oo where I(T) is the Fisher information.

3. THE BERNSTEIN-VON MISES THEOREM

Suppose that 1 is a prior probability measure on (©, D), where D is the o-algebra of Borel subsets
of ©. Assume that 1 has a density 7(-) w.r.t. the Lebesque measure and the density is continuous
and positive in an open neighbourhood of 6.

The posterior density of 8 given in X" is given by

. ZEX"T)m(6)
POIXT) = T8 (xnT)n(6)d"

Let 7 := n'/2(§ — 6"). Then the posterior density of n'/2(8 — ") is given by
pr(rIX"T) = 728" + iy 2T X T,

Let

AP, oo /APE AP o /oo
1 n -—

._ A ~1/2
Un(T) = dPg /dPéé = d'Dgnn Un(T)T(0" 4+ n / T)dT.

n —00

Clearly
p*(T|X™T) = Cn_ll/n('r)w(én + n_1/2'r).

Let K(-) be a non-negative measurable function satisfying the following two conditions :

(K1) There exists a number 1, 0 < n < 1, for which

& 1
/ K(T) exp{—§7'2(1 —n)}dT < 0.
(K2) For everye >0and 6 >0
e_E”[ K(Tn'?)m(8" + 7)dT — 0 as. [Py,] as n — .
|T|>6

We need the following Lemma to prove the Bernstein-von Mises theorem.

Lemma 3.1 Under the assumptions (A1) and (K1) - (K2),
(i) There exists a o > 0 such that

~ 1
lim / K(T) |un(T)T(8" + n~27) — 1(8p) exp(—=T2) | dT = 0 a.s. [Py,].
10 Jir|<gont/ 2
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(it) For every 6 > 0,

lim / K(T)
n—o0 \7\25n1/2

Proof. From (2.2), it is easy to check that

1% p n T
> ) Z/O wir(X(1))a; (X (1)) uim(X (1)) dt.

=1 m=1 j=1

~ 1
Ua(T)m(0" 4+ n~Y21) — m(6o) exp(~§’r2) dT =0 as. [Py,].

NI =

log vs(T) = —

Now (i) follows by an application of the dominated convergence theorem.

For every 0 > 0, there exists € > 0 depending on § and 3 such that

" 1
/ K(7) |n()m(6" + n=Y/27) — m(80) exp(—272)| T
fr[>6m1/2 2
o 1
< / K(T)wn(T)m(@" + n~27)dT +/ 7(6) exp(—=72)dT
[ >8n1/2 [T >8n1/2 2
~ 1
< e_e”/ K(T)m(6" + n_1/27)d'r + m(6o) / exp(—=72)dT
|T|>69n/? |T|>6n1/2 2
=: F,+ G,.

By condition (K2), it follows that F, — 0 a.s. [P, as n — oo for every § > 0. Condition K(1)
implies that G, — 0 as n — oco. This completes the proof of the Lemma. 0O

Now we are ready to prove the generalized version of the Bernstein-von Mises theorem for IPS

of diffusions.
Theorem 3.1 Under the assumptions (A1) and (K1) — (K2), we have

im [ k)

—0o0

* 1 1
p (T|X”'T) - (%)1/2 exp(—§7'2) dT =0 as. [Py,].

Proof From Lemma 3.1, we have

nIi_}moo /oo K(T)

—0o0

dT =0 as. [Py,]. (3.1)

vn(T)T(0" + n_l/zT) —m(6p) exp(—%Tz)

Putting K(7) = 1 which trivially satisfies (K1) and (K2), we have

Co= [ unlrym(@ 4 0 eyar s n(e) [ ep(-5rdr as (Al (32)

—00

Therefore, by (3.1) and (3.2), we have

| ko

1 1
* noy 1/2 -2
p(rIX™) = ()2 exp(—572)| dr

~ A 1
< [ K@|etunnm@ + i - ¢ e e 37 ar
+/OO K(T) |G m(60) exp(—272) — ()2 exp(—272)| d
—o0 " 2 2T 2

— 0 as. [Py] as n— 00,
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Theorem 3.2 Suppose (A1) and [*_|6]"7(6)d6 < oo for some non-negative integer r hold. Then

o0
Iim/ |T|"
n—oo J_

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from Theorem
3.1. Suppose r > 1. Let K(1) = |7|",§ > 0 and € > 0. Using |a+ b|" < 2"71(|a|” +|b|"), we have

§ 1 1
p(TIX™) = (5) 2 exp(=57%)| dT =0 as. [Py).

e_e”/ K(tn'?)m(8" + T)dT

I7|>6

< nr/ze_e”/ 7(T)|T —8"|"dT
|[T—6n|>6

< 2r_1nr/2e_€”[ w(T)|T|"dT + / 7(7)]6"|" dT]
|T—67>6 |T—8|>5

< 2r1nr/266”[/ m(7)|7|"dT +16"|"]

— 0O as. [Py,] as n — o0

from the strong consistency of " and hypothesis of the theorem. Thus the theorem follows from

Theorem 3.1. 0

Remark 3.1 For r =0 in Theorem 3.2, we have

o0
[im /
n—oo J_

This is the classical form of Bernstein-von Mises theorem for interacting SDEs in its simplest form.

1 1
%)1/2 exp(—*7'2) dr=0 a.s. [Peo]-

p(rIX™) — ( :

As a special case of Theorem 3.2, we obtain
Eg,[n'/2(8" — 60)]" — E[£"] as n — oo where & ~ (0, 1).

4. BAaYEs EsTiMATION

As an application of Theorem 3.1, we obtain the asymptotic properties of a reqgular Bayes estimator
of 6. Suppose /(0, ¢) is a loss function defined on © x ©. Assume that /(6,¢) = /(|6 —¢|) > 0
and /(-) is non decreasing. Suppose that J is a non-negative function on N and K(-) and G(-) are
functions on R such that

(B1) J(n)I(Tn=Y2) < G(7) for all n,

(B2) J(n)I(Tn~Y2) — K(T) as n — oo uniformly on bounded subsets of R.

(B3) [*° K(T + s) exp{—372}dT has a strict minimum at s = 0.

(B4) G(+) satisfies (K1) and (K2).
Let

Ba(¢) = /6 16, )p(61X™)d.
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A regular Bayes estimator 6" based on X™7 is defined as

6" = arg (;21(; Bn(®).
Assume that such an estimator exists.
The following Theorem shows that MLE and Bayes estimators are asymptotically equivalent as
n— oo.
Theorem 4.1 Assume that (A1), (K1) — (K2) and (B1) — (B4) hold. Then we have
(i) n*/2(6" — 6") = 0 a.s-[Ps,] as n — oo,

(it) n'LmooJ(”)B"(én) = nImeJ(n)Bn(én) = (%)1/2 /OO K(T) exp(—%7’2)d7' as. [Py,).

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We omit the details.

Corollary 4.2 Under the assumptions of Theorem 4.1, we have
(i) 6" — 6o a.s. [Pa,] as n — oo.
(i) nY/2(8" — 60) SN0, 1) as n — oo.

Proof. (i) and (ii) follow easily by combining Theorem 4.1 and the strong consistency and asymptotic
normality results of the MLE in Kasonga (1990). 0O
The following theorem shows that Bayes estimators are locally asymptotically minimax (LAM)

in the Hajek-Le Cam sense, i.e., equality is achieved in the Hajek-Le Cam inequality.

Theorem 4.3 Under the assumptions of Theorem 4.1, we have

lim lim  sup Ew(/%/2(é"—eo)):5w(g), L(€) = N(0,1),

6—00 100 |9_gy|<§

where w(-) is a loss function as defined in Theorem earlier and /, is the Fisher information.

Proof. The Theorem follows from Theorem II1.2.1 in Ibragimov-Has'minskii (1981) since here con-
ditions (N1) - (N4) of the said theorem are satisfied using Lemma 3.1-3.3 and local asymptotic
normality (LAN) property obtained in Della Maestra and Hoffmann (2022). 0O

5. PrAcTIicAL EXAMPLES

Example 1: Mean-Field Model

Let us consider maximum likelihood estimator (MLE) for the simple mean-field model
dX;(t) = aX;(t)dt — B(X;(t) — Xn(t))dt + dW(t), X;(0)=x;(0), j=1,2,---,n (51)

where X,(t)) = n~! Zle Xi(t), B # a, and o # 0. The middle term on the right side of (5.1)
can be viewed as an interaction among the subsystems which create a tendency for the subsystems

to relax towards the center of gravity of the ensemble. Thus the system provides a simple example
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of a cooperative interaction. Mean-field type models have applications in physics, biology and
economics, see Dawson (1983). The case 3 = 0 corresponds to sampling independent replications
of Ornstein-Uhlenbeck processes on [0, T]. Our parameter here is 6 = (o, B).

Suppose 1 Zf:l x;(0) = v almost surely and 1 Zle XJ-2(0) — y2+12 almost surely as n — oo.
Then the estimator 8" —F 6 as n — oo and /n(8" — ) =2 N(0, /71(T)) as n — oo

where

- [ AT BT
—-B(T) B(T)
with
e2@=Pp)T _ q T B (e2 =BT — 1)

2
AT) = 5o (T =D+ B(T), BT =4~ 55 s =5)

Example 2: Independent Sampling

The case 3 = 0 corresponds to sampling independent replications of the same process given

below:
dX(t) = aX(t)dt + X;(t)dW;(t), j=1,2,---,n (5.2)

In the classical case when B = 0, the MLE is given by

an _] 1]0 t)dX )
Yy (Xj(f))zdt

Sampling n independent Ornstein-Uhlenbeck processes on [0, T] and letting n — oo give weak

consistency and asymptotic normality of the MLE: &" —" a and /n(a@"—a) —P N(0, e§+1))

as n — o<.

See also Bishwal (2010) for independent sampling case.
Example 3: Kuramoto Model (Chazelle et al. (2017))

This is the most classical model for synchronization phenomenon in large populations of coupled
oscillators such as clapping crowd, a population of fireflies or a system of neurons). The n oscillators

are defined by n angles
1 n
dX;(t) = a Zsin(X,-(t) — X;(t)))dt + X;(t)dW;(t), j=1,2,---,n (5.3)
j=1

The minimum contrast estimator is consistent as n — oo and N — oo, see Amorino et al. (2022).

If nAp — O, then the minimum contrast estimator is asymptotically normal, see Amorino et al.
(2022). Here Ay = T/N is the length of the observation time interval. If T is fixed, we need
n/N — 0.
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Example 4: Opinion Dynamics (Toscani (2006))

dX;(t) = a% > oXi(t) = X;(N(Xi(t) = X;())dt + X(£)aW(t), j=1,2,---,n. (5.4)
j=1

The influence function ¢ acts on the "difference of opinions" between agents.

Example 5: Pearson System (Forman and Sgrensen (2008))

dX;(t) = a% i(xj(t) —BXi()dt + /1 + X2()dW(t), j=1,2,---,n (5.5)

j=1
Other examples of IPS are Crowd Dynamics (Chazelle et al. (2017)), Urban Modeling (Chazelle
et al. (2017)), Chemotaxis (Suzuki (2005)), Pedestrian Dynamics (Gomes et al. (2019)), Collective
Behavior (Chazelle (2015)), Molginer Swarm Model (Molgiener and Edelstein-Keshet (1999)),
Consensus Dynamics (Hegselmann and Krause (2002)) and Curie-Wiess Model (Dawson (1983)).

Curie-Wiess model has quadratic Interaction. The limit of this model is the mean-field model.
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