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Abstract. Consistency and asymptotic normality of the Bayes estimator of the drift coefficient of aninteracting particles of diffusions are studied. For the Bayes estimator, observations are taken on afixed time interval [0, T ] and asymptotics are studied in the mean-field limit as the number of inter-acting particles increases. Interalia, the Bernstein-von Mises theorem concerning the convergence inthe mean-field limit of the posterior distribution, for smooth prior distribution and loss function, tonormal distribution is proved.

1. Introduction
Finite dimensional parameter estimation in one-dimensional stochastic differential equations fromcontinuous and discrete observations by maximum likelihood and Bayes methods are extensivelystudied in Bishwal (2008). Parameter estimation for partially observed SDE system which is afactor model of multiple correlated SDEs is studied in Bishwal (2022). Interacting particle systemsof diffusions which are generalizations of these factor models, are important for modeling manycomplex phenomena, see Dawson (1983) and Ligget (1985). Interacting particle systems are usefulin constructing particle filter algorithms for finance and computation of credit portfolio losses, seeCarmona et al. (2009).McKean (1966) studied a class of Markov processes associated with nonlinear parabolic equa-tions and introduced stochastic systems of interacting particles and the associated non-linaerMarkov processes starting from statistical physics to model the dynamics of plasma. McKean(1967) studied propagation of chaos for a class of non-linear parabolic equations. Lot of proba-bilistic tools have been developed in this context. However, statistics for interacting particle modelshas not received much attention. Maximum likelihood estimation in interacting particle system ofstochastic differential equations was studied in Kasonga (1990) in the mean-field limit where the
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Eur. J. Stat. 10.28924/ada/stat.3.11 2particles n →∞. This is in a sense infinite factor models where the factors are correlated. Amor-ino et al. (2022) studied minimum contrast estimation for discretely observed interacting particlesystems of McKean-Vlasov type where the particles n →∞ and the number of discrete time pointsof observations N → ∞. Sharrock et al. (2021) studied parameter estimation for the McKean-Vlasov stochastic differential equation. Della Maestra(2022a) studied nonparametric estimation forMcKean-Vlasov models of interacting particle systems. Belomestny et al. (2021) studied semi-parametric estimation of McKean-Vlasov SDEs. Geisecke et al. (2020) studied inference for largefinancial systems. Gomes et al. (2019) studied parameter estimation for macroscopic pedestriandynamics models from microscopic data. Baladron et al. (2012) studied mean-field description ofpropagation of chaos in networks of Hugkin-Huxley and FitzHugh-Nagumo neurons. Cardaliaguetand Lehalle (2019) studied mean field game of controls and application to trade crowding. Chazelle(2015a) studied diffusive influence systems. Chazelle (2015b) studied an algorithmic approachto collective behavior. Garnier et al. (2017) studied consensus convergence with stochastic ef-fects. Hegselmann and Krause (2002) studied analysis and simulation opinion dynamics modelsand bounded confidence. Liu and Qiao (2022) studied parameter estimation of path dependentMcKean-Vlasov stochastic differential equations. Mahato et al. (2018) studied particle method formulti-group pedestrian flow. Molginer and Edelstein-Keshet (1999) studied a non-local model fora swarm. Motsch and Tadmor (2014) showed that heterophilious dynamics enhances concensus.Pavliotis and Zanoni (2022) studied eigenfunction martingale estimators for interacting particlesystems and their mean field limit. Suzuki(2005a) studied free energy and self-interacting par-ticles. Suzuki (2005b) studied chemotaxis, reaction and network as models for self-organization.Sznitman (1991) studied propagation of chaos. Toscani (2006) studied kinematic models of opinionformation Wen et al.(2016) studied maximum likelihood estimation of McKean-Vlasov stochasticdifferential equations. Yao et al. (2022) studied mean-field nonparametric estimation of interactingparticle systems. Benachour et al. (1998a, 1998b) studied existence, convergence to invariantprobability and propagation of chaos of nonlinear self-stabilizing processes.In this paper we study Bayes estimation in interacting particle system of stochastic differentialequations. Consider the model of n interacting particles of diffusions satisfying the Itô stochasticdifferential equations
dXj(t) =

p∑
l=1

θlµj l(X(t)) + σj(X(t))dWj(t), j = 1, 2, · · · , n (1.1)

where X(t) = (X1(t), X2(t), · · · , Xn(t))′ and (Wj(t); t ≥ 0), j = 1, 2, · · · , n are independentWiener processes. Here θl(·) ∈ L2([0, T ], dt), l = 1, . . . , p are unknown functions to be estimatedbased on observation of the process X in the time interval [0, T ]. Let θ = (θ1, θ2, . . . , θp) and
µj(x) = (µj1(x), µj2(x), . . . , µjp(x))′. The processes Xj(t), j = 1, 2, · · · , n are observed on [0, T ].The functions µj , σj ; j = 1, 2, · · · , n are assumed to be known such that the system has a uniquesolution.
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Eur. J. Stat. 10.28924/ada/stat.3.11 3We need the following assumption and results to prove the main results.
(A1) Suppose that bj l := µj l(s)σ−1

j (s); j = 1, 2, · · · , n; l = 1, 2 . . . , p are measurable and adaptedprocesses satisfying
1

n

n∑
j=1

∫ t

0

bj l(s)bjm(s)ds → clm(t) a.s. as n →∞
l , m = 1, 2 . . . , p where clm(t) are finite and continuous nonrandom functions of t ∈ [0, T ]. Thelimiting matrix I(t) = (clm(t))l ,m=1,2...,p is positive definite, δ′I(t)δ is increasing for all δ ∈ Rpand I(0) = 0.In the exchangeable case, (A1) follows from McKean-Vlasov Law of Large Numbers. In particular,(A1) will be satisfied when µj l(X) = µlXj and σj(X) = σ(Xj) which corresponds to the independentreplicated sampling on [0, T ]. See Oelschlager (1984).We also need the following version of Rebolledo’s Central Limit Theorem for Martingales, seeRebolledo (1980):

LetMn, n ∈ Z+ be a sequence of locally square integrable martingales withMn(0) = 0. Suppose
the following condition holds:

∑
s≤t E{|∆Mn(s)|2I(|∆Mn(s)| > ε)} → 0 for all t ∈ [0, T ], ε > 0;

and 〈Mn〉(t) → c(t) a.s. for all t ∈ [0, T ], where c(t) is a continuous increasing function with
c(0) = 0. Then Mn →D M , a continuous Gaussian martingale with zero mean and covariance
function K(s, t) = c(s ∧ t), s, t ∈ [0, T ] where ∆Ms = Ms −Ms− denotes the jump of M at the
point s.

2. Maximum Likelihood Estimation
The model is given by

dXj(t) =

p∑
l=1

θlµj l(X(t)) + σj(X(t))dWj(t), j = 1, 2, · · · , n (2.1)

where X(t) = (X1(t), X2(t), · · · , Xn(t))′ and (Wj(t); t ≥ 0), j = 1, 2, · · · , n are independentWiener processes. Here θ = (θ1, θ2, . . . , θp) is the unknown parameter. The functions µj l , σj , j =

1, . . . , n; l = 1, . . . , p are assumed to be known such that there exists a unique solution X(t) tothe above SDE.Our aim is to estimate the parameter θ based on n particles X1(·), X2(·), · · · , Xn(·) of X(t) on
[0, T ]. We denote this data by Xn,TThe Radon-Nikodym derivative (likelihood) is given by

Zθn(Xn,T ) := dPθ
dP0

(Xn,T ) = exp
{∑p

l=1 θl
∑n
j=1

∫ T
0 µj l(X(t))σ−2

j (X(t))dXj(t)

−1
2

∑p
l=1

∑p
m=1 θlθm

∑n
j=1

∫ T
0 µj l(X(t))σ−2

j (X(t))µjm(X(t))dt
}
.

(2.2)

The consistency and asymptotic normality of the approximate maximum likelihood estimator aregiven below from Kasonga (1990):
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Theorem 2.1 (Consistency) Under (A1), we have
θ̂n →P θ as n →∞.

Theorem 2.2 (Asymptotic Normality) Under (A1), we have
√
n(θ̂n − θ)→D N (0, I−1(T )) as n →∞ where I(T ) is the Fisher information.

3. The Bernstein-von Mises Theorem
Suppose that Π is a prior probability measure on (Θ,D), where D is the σ-algebra of Borel subsetsof Θ. Assume that Π has a density π(·) w.r.t. the Lebesgue measure and the density is continuousand positive in an open neighbourhood of θ0.The posterior density of θ given in Xn,T is given by

p(θ|Xn) :=
Zθn(Xn,T )π(θ)∫

Θ Z
θ
n(Xn,T )π(θ)dθ

.

Let τ := n1/2(θ − θ̂n). Then the posterior density of n1/2(θ − θ̂n) is given by
p∗(τ |Xn,T ) := n−1/2p(θ̂n + ψ

−1/2
n τ |Xn,T ).

Let
νn(τ) :=

dP n
θ̂n+n−1/2τ

/dP nθ0

dP n
θ̂n
/dP nθ0

=
dP n

θ̂n+n−1/2τ

dP n
θ̂n

, Cn :=

∫ ∞
−∞

νn(τ)π(θ̂n + n−1/2τ)dτ.

Clearly
p∗(τ |Xn,T ) = C−1

n νn(τ)π(θ̂n + n−1/2τ).Let K(·) be a non-negative measurable function satisfying the following two conditions :
(K1) There exists a number η, 0 < η < 1, for which∫ ∞

−∞
K(τ) exp{−

1

2
τ2(1− η)}dτ <∞.

(K2) For every ε > 0 and δ > 0

e−εn
∫
|τ |>δ

K(τn1/2)π(θ̂n + τ)dτ → 0 a.s. [Pθ0
] as n →∞.

We need the following Lemma to prove the Bernstein-von Mises theorem.
Lemma 3.1 Under the assumptions (A1) and (K1) - (K2),(i) There exists a δ0 > 0 such that

lim
n→∞

∫
|τ |≤δ0n1/2

K(τ)

∣∣∣∣νn(τ)π(θ̂n + n−1/2τ)− π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].
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lim
n→∞

∫
|τ |≥δn1/2

K(τ)

∣∣∣∣νn(τ)π(θ̂n + n−1/2τ)− π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof. From (2.2), it is easy to check that
log νn(τ) = −

1

2

p∑
l=1

p∑
m=1

n∑
j=1

∫ T

0

µj l(X(t))σ−2
j (X(t))µjm(X(t))dt.

Now (i) follows by an application of the dominated convergence theorem.For every δ > 0, there exists ε > 0 depending on δ and β such that∫
|τ |≥δn1/2

K(τ)

∣∣∣∣νn(τ)π(θ̂n + n−1/2τ)− π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ
≤

∫
|τ |≥δn1/2

K(τ)νn(τ)π(θ̂n + n−1/2τ)dτ +

∫
|τ |≥δn1/2

π(θ0) exp(−
1

2
τ2)dτ

≤ e−εn
∫
|τ |≥δψ1/2

n

K(τ)π(θ̂n + n−1/2τ)dτ + π(θ0)

∫
|τ |≥δn1/2

exp(−
1

2
τ2)dτ

=: Fn + Gn.By condition (K2), it follows that Fn → 0 a.s. [Pθ0] as n →∞ for every δ > 0. Condition K(1)implies that Gn → 0 as n →∞. This completes the proof of the Lemma.
Now we are ready to prove the generalized version of the Bernstein-von Mises theorem for IPSof diffusions.

Theorem 3.1 Under the assumptions (A1) and (K1) – (K2), we have
lim
n→∞

∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |Xn,T )− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof From Lemma 3.1, we have
lim
n→∞

∫ ∞
−∞

K(τ)

∣∣∣∣νn(τ)π(θ̂n + n−1/2τ)− π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
]. (3.1)

Putting K(τ) = 1 which trivially satisfies (K1) and (K2), we have
Cn =

∫ ∞
−∞

νn(τ)π(θ̂n + n−1/2τ)dτ → π(θ0)

∫ ∞
−∞

exp(−
1

2
τ2)dτ a.s. [Pθ0

]. (3.2)

Therefore, by (3.1) and (3.2), we have∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |Xn,θ)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ
≤

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
n νn(τ)π(θ̂n + n−1/2τ)− C−1

n π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ
+

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
n π(θ0) exp(−

1

2
τ2)− (

1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ
−→ 0 a.s. [Pθ0

] as n →∞.
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Theorem 3.2 Suppose (A1) and ∫∞−∞ |θ|rπ(θ)dθ <∞ for some non-negative integer r hold. Then
lim
n→∞

∫ ∞
−∞
|τ |r

∣∣∣∣p∗(τ |Xn)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from Theorem3.1. Suppose r ≥ 1. Let K(τ) = |τ |r , δ > 0 and ε > 0. Using |a+ b|r ≤ 2r−1(|a|r + |b|r ), we have
e−εn

∫
|τ |>δ

K(τn1/2)π(θ̂n + τ)dτ

≤ nr/2e−εn
∫
|τ−θ̂n|>δ

π(τ)|τ − θ̂n|rdτ

≤ 2r−1nr/2e−εn[

∫
|τ−θ̂n|>δ

π(τ)|τ |rdτ +

∫
|τ−θ̂n|>δ

π(τ)|θ̂n|rdτ ]

≤ 2r−1nr/2e−εn[

∫ ∞
−∞

π(τ)|τ |rdτ + |θ̂n|r ]

−→ 0 a.s. [Pθ0
] as n →∞

from the strong consistency of θ̂n and hypothesis of the theorem. Thus the theorem follows fromTheorem 3.1.
Remark 3.1 For r = 0 in Theorem 3.2, we have

lim
n→∞

∫ ∞
−∞

∣∣∣∣p∗(τ |Xn)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

This is the classical form of Bernstein-von Mises theorem for interacting SDEs in its simplest form.As a special case of Theorem 3.2, we obtain
Eθ0

[n1/2(θ̂n − θ0)]r → E[ξr ] as n →∞ where ξ ∼ N (0, 1).

4. Bayes Estimation
As an application of Theorem 3.1, we obtain the asymptotic properties of a regular Bayes estimatorof θ. Suppose l(θ, φ) is a loss function defined on Θ × Θ. Assume that l(θ, φ) = l(|θ − φ|) ≥ 0and l(·) is non decreasing. Suppose that J is a non-negative function on N and K(·) and G(·) arefunctions on R such that

(B1) J(n)l(τn−1/2) ≤ G(τ) for all n,
(B2) J(n)l(τn−1/2)→ K(τ) as n →∞ uniformly on bounded subsets of R.
(B3)

∫∞
−∞K(τ + s) exp{−1

2τ
2}dτ has a strict minimum at s = 0.

(B4) G(·) satisfies (K1) and (K2).Let
Bn(φ) =

∫
θ

l(θ, φ)p(θ|Xn)dθ.
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A regular Bayes estimator θ̃n based on Xn,T is defined as
θ̃n := arg inf

φ∈Θ
Bn(φ).

Assume that such an estimator exists.The following Theorem shows that MLE and Bayes estimators are asymptotically equivalent as
n →∞.
Theorem 4.1 Assume that (A1), (K1) – (K2) and (B1) – (B4) hold. Then we have(i) n1/2(θ̃n − θ̂n)→ 0 a.s.-[Pθ0

] as n →∞,
(ii) lim

n→∞
J(n)Bn(θ̃n) = lim

n→∞
J(n)Bn(θ̂n) = (

1

2π
)1/2

∫ ∞
−∞

K(τ) exp(−
1

2
τ2)dτ a.s. [Pθ0

].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We omit the details.
Corollary 4.2 Under the assumptions of Theorem 4.1, we have(i) θ̃n → θ0 a.s. [Pθ0

] as n →∞.(ii) n1/2(θ̃n − θ0)
L→N (0, 1) as n →∞.

Proof. (i) and (ii) follow easily by combining Theorem 4.1 and the strong consistency and asymptoticnormality results of the MLE in Kasonga (1990).The following theorem shows that Bayes estimators are locally asymptotically minimax (LAM)in the Hajek-Le Cam sense, i.e., equality is achieved in the Hajek-Le Cam inequality.
Theorem 4.3 Under the assumptions of Theorem 4.1, we have

lim
δ→∞

lim
n→∞

sup
|θ−θ0|<δ

Eω
(
I

1/2
n (θ̃n − θ0)

)
= Eω(ξ), L(ξ) = N (0, 1),

where ω(·) is a loss function as defined in Theorem earlier and In is the Fisher information.
Proof. The Theorem follows from Theorem III.2.1 in Ibragimov-Has’minskii (1981) since here con-ditions (N1) - (N4) of the said theorem are satisfied using Lemma 3.1-3.3 and local asymptoticnormality (LAN) property obtained in Della Maestra and Hoffmann (2022).

5. Practical Examples
Example 1: Mean-Field Model

Let us consider maximum likelihood estimator (MLE) for the simple mean-field model
dXj(t) = αXj(t)dt − β(Xj(t)− X̄n(t))dt + dWj(t), Xj(0) = xj(0), j = 1, 2, · · · , n (5.1)

where X̄n(t)) = n−1
∑n
j=1Xj(t), β 6= α, and α 6= 0. The middle term on the right side of (5.1)can be viewed as an interaction among the subsystems which create a tendency for the subsystemsto relax towards the center of gravity of the ensemble. Thus the system provides a simple example
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Eur. J. Stat. 10.28924/ada/stat.3.11 8of a cooperative interaction. Mean-field type models have applications in physics, biology andeconomics, see Dawson (1983). The case β = 0 corresponds to sampling independent replicationsof Ornstein-Uhlenbeck processes on [0, T ]. Our parameter here is θ = (α, β).Suppose 1
n

∑n
j=1 xj(0)→ ν0 almost surely and 1

n

∑n
j=1 x

2
j (0)→ γ2

0 +ν2
0 almost surely as n →∞.Then the estimator θ̂n →P θ as n →∞ and √n(θ̂n − θ)→D N (0, I−1(T )) as n →∞where

I(T ) =

(
A(T ) −B(T )

−B(T ) B(T )

)
with
A(T ) :=

ν2
0

2α
(e2αT − 1) + B(T ), B(T ) :=

e2(α−β)T − 1

4(α− β)2
−

T

2(α− β)
+
γ2

0 (e2(α−β)T − 1)

2(α− β)
.

Example 2: Independent Sampling

The case β = 0 corresponds to sampling independent replications of the same process givenbelow:
dXj(t) = αXj(t)dt +Xj(t)dWj(t), j = 1, 2, · · · , n (5.2)

In the classical case when β = 0, the MLE is given by
α̂n =

∑n
j=1

∫ T
0 Xj(t)dXj(t)∑n

j=1

∫ T
0 (Xj(t))2dt

.

Sampling n independent Ornstein-Uhlenbeck processes on [0, T ] and letting n → ∞ give weakconsistency and asymptotic normality of the MLE: α̂n →P α and √n(α̂n−α)→D N (0, 2α
ν2

0 (e2αT−1)
)as n →∞.See also Bishwal (2010) for independent sampling case.

Example 3: Kuramoto Model (Chazelle et al. (2017))
This is the most classical model for synchronization phenomenon in large populations of coupledoscillators such as clapping crowd, a population of fireflies or a system of neurons). The n oscillatorsare defined by n angles

dXj(t) = α
1

n

n∑
j=1

sin(Xi(t)−Xj(t)))dt +Xj(t)dWj(t), j = 1, 2, · · · , n (5.3)

The minimum contrast estimator is consistent as n →∞ and N →∞, see Amorino et al. (2022).If n∆N → 0, then the minimum contrast estimator is asymptotically normal, see Amorino et al.(2022). Here ∆N = T/N is the length of the observation time interval. If T is fixed, we need
n/N → 0.
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Example 4: Opinion Dynamics (Toscani (2006))
dXj(t) = α

1

n

n∑
j=1

φ(|Xi(t)−Xj(t)|)(Xi(t)−Xj(t))dt +Xj(t)dWj(t), j = 1, 2, · · · , n. (5.4)

The influence function φ acts on the "difference of opinions" between agents.
Example 5: Pearson System (Forman and Sørensen (2008))

dXj(t) = α
1

n

n∑
j=1

(Xj(t)− βXi(t))dt + γ
√

1 + X2
j (t)dWj(t), j = 1, 2, · · · , n (5.5)

Other examples of IPS are Crowd Dynamics (Chazelle et al. (2017)), Urban Modeling (Chazelle
et al. (2017)), Chemotaxis (Suzuki (2005)), Pedestrian Dynamics (Gomes et al. (2019)), CollectiveBehavior (Chazelle (2015)), Molginer Swarm Model (Molgiener and Edelstein-Keshet (1999)),Consensus Dynamics (Hegselmann and Krause (2002)) and Curie-Wiess Model (Dawson (1983)).Curie-Wiess model has quadratic Interaction. The limit of this model is the mean-field model.
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