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Abstract. When ordinary regression analysis is performed using time-series variables, it is commonfor the errors (residuals) to have a time-series structure. This violates the usual assumption ofindependent errors in ordinary least squares (OLS) regressions. Consequently, the estimates of thecoefficients and their standard errors are incorrect if the time-series structure of the errors is ignored.In this study, an investigation of a regression model with time-series variables, particularly a simplecase, was conducted using the conventional method. The ‘AirPassengers Dataset ’ was downloadedfrom the R repository used for the analysis. Ordinary least squares and Cochrane-Orcutt procedureswere used as methodologies. The results show that the adjusted regression model with autoregressiveerrors outperformed the ordinary regression model.

1. Introduction
Time-series regression is a technique for modeling time-series data or variables using a regres-sion model. This technique is an extension of the existing classical ordinary regression model whenthe variable structure is a time-series. Similar to the regression model, this method is used to pre-dict a future response based on autoregressive dynamics or response history [1]. The common useof time-series regression includes the modeling and forecasting of economic, financial, biological,and engineering systems [2].A regression model represented using a functional relationship between the dependent andindependent variables is given by

yi = β0 +

p∑
i=1

βixi + εi , for i = 1, 2, · · · , p and εi ∼ i .i .d N (0, σ2), (1)
where y is the dependent variable, x the independent variable, β0 the intercept, and βi the gradientor slope. The model presented in Equation (1) is a general linear regression of dependent variable
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y on independent variable x . Similarly, a general linear regression model with time-series variablesis represented as
yt = β0 +

q∑
i=1

βixt + εt , for i = 1, 2, · · · , q and ωt ∼ i .i .d N (0, σ2). (2)
where time-dependent and independent variables are yt and xt , respectively; β0 is the intercept, and
βi is the gradient or slope. The model presented in Equation (2) is a general linear regression witha time-series dependent variable yt on the independent variable xt . Time series regression can helpunderstand and predict the behavior of dynamic systems from experimental or observational data [3].Several studies (e.g., [4–7]) utilized ordinary regression and built a predictive model from time-seriesvariables. Running a linear regression model with time series data results in an incorrect estimateof the parameters of interest, together with an inflated standard error term [8–10]. Furthermore,the method of least squares eliminates the error term, which violates the assumption that the error(i.e., εt ∼ i .i .d N (0, σ2)) in the time-series model is structured as either the autoregressive (AR)or moving average (MA) model. Consequently, the estimates of coefficients and their standarderrors will be incorrect if the time-series structure of the errors is ignored. In this study, aninvestigation into a regression model with time-series variables, and particularly a simple case,will be used against the ordinary least squares method. This study helps explain how to handletime-series variables applied to a linear regression model in statistical analysis. Furthermore, thisstudy also guides researchers in choosing the appropriate technique when both the dependent andindependent variables appear to be time series. The scope of this study is to apply time-seriesvariables to investigate a linear regression model. Hence, the analysis is limited to the simple caseof linear regression and will be investigated on the "AirPassengers" dataset, which can be foundin the R software repository. To build up the literature, materials, and methods of this study, wereviewed some related works.Several studies have been conducted to investigate the linear regression model applied to time-series variables. For instance, a study by [11] presented data analytics of the influence of climatefactors on the impact of malaria incidence using a regression model with autoregressive errorstructure AR(1). They found that the relative humidity was the most influential climatic predictor ofmalaria incidence in the study area. Similarly, a novel regression method for harmonic analysis oftime series and the results show that Harmonic Adaptive Penalty Operator (HAPO) exhibits a highlyaccurate model result, and HAPO has consistently smaller bias than ridge was investigated by [12].Furthermore, a passion autoregressive model to understand COVID-19 contagion dynamics usinga statistical model that can be employed to understand the contagion dynamics of COVID-19 waspresented by [13]. The results show that the model can be applied to any country, region, or period.A spatial regression model analyzed by [14] to investigate Pulmonary TB cases In North SumatraProvince using ArcGIS in the processing data and Geo-Data was used in the regression analysis,
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Eur. J. Stat. 10.28924/ada/stat.3.13 3which showed a positive spatial autocorrelation. Linear Regression Analysis To Predict the Numberof Death In India Due To SARS-COV-2 At 6 Weeks From Day (100 cases march 14th 2020) usinga validated database, multiple regression, and linear regression analysis, the results showed thatthe current measured for containment of COVID-19 must be strengthened or supplemented [15].Mental health related investigation was carried out by [16] to study conversations on social mediaand crisis episodes: a time series regression analysis using time analysis of retroactively collecteddata from Twitter and two London mental health providers, and the result showed that SLAMcrisis episodes were 15% higher (p-value<0.001) on higher volume schizophrenia tweet days 9%higher (p-value<0.001) on higher volume supportive depression tweet. However, [17] modeled non-stationary emotion dynamics in dyads, and the results showed that the time-varying and standardvalue model indicated that all the parameters pertaining to the males were statistically significant.In addition, [18] studied time series regression with a unit root, and the results showed that themethod outlined in the section for the refinement of first-order asymptotic theory may be applied ingeneral time series models with unit roots. Furthermore, [19] investigated a time-series regressionanalysis to evaluate the economic impact of COVID-19 cases in Indonesia using the transfer functionmodel and vector autoregressive moving average with exogenous regressors (VARMAX) model. Theresults show that an increase in the number of COVID-19 cases in Indonesia significantly affectedthe USD/IDR exchange rate. However, discretize-optimize vs. optimize-discrete for time seriesregression and continuous normalizing flows using ordinary differential equations (ODEs), andthe results showed the improved convergence of Disc-Opt over the Opt-Disc approach on imageclassification tasks investigated by [20].The remainder of this paper is organized as follows. In Section 2, we describe the proposedmethod. Section 3 presents the results of this study. The conclusions and future work are summa-rized in Section 4.
2. Materials and Methods

This section presents the methodology for solving regression analysis with time-series variablesor data, focusing only on the simple case of the regression model.
2.1. Source of Data. Monthly time-series data on international airline passengers recorded be-tween 1949 and 1960 were retrieved from the R repository [21]. The data were named the classicBox and Jenkins airline data [22]. The R code data() is used to open all datasets in the repositoryand then selected to open the "AirPassengers" for this study.
2.2. Ordinary Regression Model. Consider a simple linear regression (SLR) model given by

yi = β0 + β1xi + εi , for i = 1, 2, . . . , n. (3)
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Eur. J. Stat. 10.28924/ada/stat.3.13 4where yi is the dependent variable, xi is the time-series independent variable, and εi is the erroror residual term. To estimate the parameters β0 and β1 (i.e., the intercept and slope, respectively),the ordinary least squares (OLS) method is used to obtain the following estimates:
β̂0 = ȳ − β1x̄ and β̂1 =

n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
n=1 yi

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2
. (4)

The detail proving of the estimates (β0 and β1) could be found in many statistical textbooks [23].As stated earlier, when ordinary regression analysis is performed using time-series variables, it iscommon for the errors (residuals) to have a time-series structure [24–27]. This violates the usualassumption of independent errors made in ordinary least squares regression. The consequence isthat the estimates of coefficients and their standard errors will be wrong if the time series structureof the errors is ignored. However, it is possible to adjust the estimated regression coefficients andstandard errors when the errors have an AR structure. More generally, we can make adjustmentswhen errors have a general ARIMA structure.
2.3. Time-Series Regression Model. Consider a simple linear regression model with time seriesvariables given by

yt = β0 + β1xt + εt . (5)
where yt is the time-series of the dependent variable, xt is the time- of the independent variable,and εt is the time-series structured error term. Suppose that εt has AR structure given by

εt = φ1εt−1 + φ2εt−2 + φ3εt−3 + · · ·+ ωt , where ωt ∼ i .i .d N (0, σ2). (6)
Using the backshift operator B to evaluate Equation (6) we obtain

εt = φ1Bεt + φ2B2εt + φ3B3εt + · · ·+ ωt . (7)
Taking the L.H.S of Equation (7) except ωt to the R.H.S, and obtaining

εt − φ1Bεt − φ2B2εt − φ3B3εt − · · · = ωt . (8)
By factoring εt in the L.H.S of Equation (8), we obtain

(1− φ1B − φ2B2 − φ3B3 − · · · )εt = ωt . (9)
Let Φ(B) = 1−φ1B−φ2B2−φ3B3−· · · is a polynomial. By substituting Φ(B) into the polynomialin Equation (9) we obtain

Φ(B)εt = ωt . (10)
Suppose the inverse Φ(B)−1 exists, which means that the det|Φ(B)| 6= 0; then, Equation (10)reduces to

εt = Φ(B)−1ωt , where εt ∼ i .i .d N (0, σ2). (11)
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Eur. J. Stat. 10.28924/ada/stat.3.13 5Now, substituting Equation 11 into Equation (5), becomes
yt = β0 + β1xt + Φ(B)−1ωt . (12)

2.4. Cochrane-Orcutt. The Cochrane-Orcutt procedure is a method for estimating the parametersof a linear regression model that has a first-order serial correlation in the errors. First-orderserial correlation occurs when the error terms in a regression model correlate with the error termsin the immediately preceding observations. This can occur when there is some type of temporaldependence in the data [30], such as time-series data.The Cochrane-Orcutt procedure can be implemented in statistical software packages, such asStata, SAS, and R [28]. It is important to note that the Cochrane-Orcutt procedure assumes thatthe error terms in the model follow an AR(1) process, which may not be appropriate for all datatypes. Additionally, the procedure can be sensitive to the choice of starting values and number ofiterations [29]; therefore, it is important to conduct sensitivity analyses to assess the robustness ofthe results.
2.4.1. Cochrane-Orcutt Procedure. The Cochrane-Orcutt procedure involves the following steps:

• Step 1: Estimate the model using ordinary least squares (OLS) regression.
• Step 2: Estimate the autocorrelation coefficient (ρ) using the residuals from the OLSregression.
• Step 3: Use the estimated ρ to transform the data by differencing each variable and takingthe lagged values of the transformed variables.
• Step 4: Estimate the transformed model using OLS regression.
• Step 5: Iterate steps 2 to 4 until the estimated value of ρ converges to a stable value.

2.4.2. Parameter Estimation. The estimation of parameters in the simple regression time-seriesmodel presented in Equation (12) is solved using the Cochrane-Orcutt theory [31], and the solutionis explained accordingly. We start by multiplying Equation (12) with Φ(B) to obtain
Φ(B)yt = Φ(B)β0 + Φ(B)β1xt + ωt . (13)

Then, let
y∗t = Φ(B)yt = yt −Φ1yt−1 −Φ2yt−2 − · · · −Φpyt−p.

x∗t = Φ(B)xt = xt −Φ1xt−1 −Φ2xt−2 − · · · −Φpxt−p.

β∗0 = Φ(B)β0 = (1−Φ1 −Φ2 − · · · −Φp)β0.

(14)
where β0 is an unknown constant that does not move over time or is independent of time (t). Bysubstituting Equation (15) into Equation (14), we obtain the reduced form as:

y∗t = β∗0 + β1x
∗
t + ωt , where ωt ∼ i .i .d N (0, σ2). (15)
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Eur. J. Stat. 10.28924/ada/stat.3.13 6Therefore, Equation (15) is a simple linear regression model based on a transformation. By making
β0 the subject of the formula in Equation (14), we obtain

β̂0 =
β̂∗0

(1− Φ̂1 − Φ̂2 − · · · − Φ̂p)
. (16)

Similarly, the standard error for β̂0 is given by
s.e(β̂0) =

s.e(β̂∗0)

(1− Φ̂1 − Φ̂2 − · · · − Φ̂p)
. (17)

3. Results and Discussion
The time-series plot presented in Figure 1 was produced using the AirPassengersdataset dis-played in [21].

Figure 1. Time-series plot
The pattern of airline passengers, as depicted in the plot, shows an upward increase in the trendwith seasonality over time.

3.1. Ordinary Least Squares. The results presented in Table 1 show the analysis of variance(ANOVA) for the simple linear regression model built from the air passenger dataset. The constant
β̂0 = 87.6528 (p− value = 0.0000) contributed significantly to the model. Similarly, the slope β̂1= 2.6572 (p − value = 0.0000) also contributes significantly to the model of air passengers. Themodel is mathematically represented by

ŷ = 87.6528 + 2.6572x̂ . (18)
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Eur. J. Stat. 10.28924/ada/stat.3.13 7Since the p-value = 0.0000 for both the parameters, thus indicating a strong evidence for rejectingHo at 5% level of significance. Following this decision rule, the estimated parameters (β̂0 and β̂1)have a greater impact to development of the model and prediction of the passengers. Subsequently,the model is adequately yields a strong coefficient of determination, R2 = 85%. However, the
Table 1. Test of Significance on Parameters Estimated using OLS.

Variable Coefficient Std. Error t-statistic P -value 95% CIConst 87.6528 5.6203 15.6000 0.0000∗∗∗ 76.5426, 98.7630Months 2.6572 0.1041 25.5200 0.0000∗∗∗ 2.4513, 2.8630
∗∗∗ is indicating significant at α = 5%, F (1, 142) = 651.0966, CI = confidence interval and R2 = 85%

overall results of the analysis of variance of the estimated parameters in Table 1 (Fcal(1, 142) =651.0966 >> Ftab(1, 142) = 3.908) show that the ordinary regression model is also significantfor p − value = 0.0000 when compared with α = 0.05. The value of Ftab(1, 142) is not readilyavailable in F table therefore, Ftab(1, 142) can be found between Ftab(1, 140) and Ftab(1, 180).An interpolation technique is used to obtain the value of Ftab(1, 142). As a result, Ftab(1, 142) =3.908 and the t − statistic corresponding to β0 = 87.6528 (15.6000) and β1 = 2.6572 (25.5200)are significant compared with the tabulated value. The regression coefficients are robust estimatesas they take no zero value in the spectrum of the 95% confidence interval.
3.2. Cochrane-Orcutt Results. The estimated relationship between yt and xt is given by

yt = 86.8847 + 2.65021xt + 0.731812εt−1 + ωt , (19)
where the errors are εt = 0.731812εt−1 + ωt and ωt ∼ i .i .d N (0, σ2). The predicted yt isa linear function of xt at this time and the residual at the previous time. The accuracy of thetime-series regression model with an autoregressive error is 93%, which is better than that of themodel presented in Equation (18) with R2 = 85%. Cohrane-Orcutt procedure does not minimizethe residual sum of squares, as it does in OLS [32]. The overall results of the analysis of variance

Table 2. Test of Significance on Parameters Estimated using Cochrane-Orcutt.
Variable Coefficient Std. Error t-statistic P -value 95% CIConst 86.8847 20.5453 4.2290 0.0000∗∗∗ 46.2679, 127.5010Months 2.6502 0.2382 11.1300 0.0000∗∗∗ 2.1793, 3.1211
∗∗∗ is indicating significant at α = 5%, F (1, 142) = 123.7768, CI = confidence interval and R2 = 93%

of the estimated parameters in Table 2 show that the time series regression model developed usingthe Cochrane-Orcutt technique is significant, p − value = 0.0000 (Fcal(1, 142) = 123.7768 >>
Ftab(1, 142) = 3.908). A diagnostic test is performed to test the adequacy of the model presentedin Equation (19). The residuals of the model (Equation (19)) are assumed to be normal, and the
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Eur. J. Stat. 10.28924/ada/stat.3.13 8test statistic is χ2(2) = 3.8983 with p − value = 0.1424, where Ho is rejected as the p − valueis greater than α = 0.05. Table 3 presents the iteration procedure for ρ convergence in estimatingthe Cochrane-Orcutt parameters of the model presented in Equation (19).
Table 3. Performing iterative calculation of ρ.
Iteration ρ ESS1 0.73175 1402252 0.73181 1402253 0.73181 140225

Figure 2. Residual plots of the OLS and Cochrane-Orcutt method.
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Eur. J. Stat. 10.28924/ada/stat.3.13 93.3. Performance Accuracy. Table 4 presents the model performance for various measures; how-ever, the most commonly used measure is the coefficient of determination (R2). Using the ordinaryleast squares method, R2 = 85%, and Cochrane-Orcutt produced R2 = 93%, which accuratelyexplained the variation in the air passenger model.

Figure 3. AirPassengers prediction plot.
Table 4. Model Evaluation.

Performance Measures Ordinary Least Squares (OLS) Cochrane-OrcuttMean dependent var 280.2986 281.4755Sum squared residual 140225.3 301219.1
R2 0.853638 0.930907Adjusted R2 0.852607 0.930417
F (1, 142) 651.0966 (p − value = 0.0000) 123.7768 (p−value = 0.0000)

4. Conclusion
Regression modeling with time-series variables results in an incorrect estimate of the parametersand inflated standard errors. In this study, a simple linear regression model with time-seriesvariables was investigated. Cochrane-Orcutt procedure was used to estimate the precise coefficientsof the adjusted time-series regression model through iteration, and the results were comparedwith OLS. The results showed that the errors exhibit an AR(1) pattern, and the Cochrane-Orcuttprocedure outperformed OLS, affirmed by R2 and other accuracy measures. However, the higher-order AR model fit the residuals well. This study provides an approach for adjusting estimatedregression coefficients and their corresponding standard errors. This study will be extended toinvestigate multiple regression cases with ARIMA errors.
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