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Abstract. In this paper a consensus has been constructed in a social network which is modeled by astochastic differential game played by agents of that network. Each agent independently minimizes acost function which represents their motives. A conditionally expected integral cost function has beenconsidered under an agent’s opinion filtration. The dynamic cost functional is minimized subject toa stochastic differential opinion dynamics. As opinion dynamics represents an agent’s differences ofopinion from the others as well as from their previous opinions, random influences and stubbornnessmake it more volatile. An agent uses their rate of change of opinion at certain time point as a controlinput. This turns out to be a non-cooperative stochastic differential game which have a feedbackNash equilibrium. A Feynman-type path integral approach has been used to determine an optimalfeedback opinion and control. This is a new approach in this literature. Later in this paper an explicitsolution of a feedback Nash equilibrium opinion is determined.

1. Introduction
Social networks influence a lot of behavioral activities including educational achievements [1],employment [2], technology adoption [3], consumption [4] and smoking [5,6]. As social networks arethe result of individual decisions, consensus takes an important role to understand the formationof networks. Although a lot of theoretical works on social networks have been done [6–8], work onconsensus as a Nash equilibrium under a stochastic network is very insignificant [9]. [6] formalizesnetwork as simultaneous-move game, where social links based on decisions are based on utilityexternalities from indirect friends. [6] proposes a computationally feasible partial identification ap-proach for large social networks. The statistical analysis of network formation dates back to theseminal work by [10] where a random graph is based on independent links with a fixed probabil-ity [6]. Beyond Erdös-Rényi model, many methods have been designed to simulate graphs withcharacteristics like degree distributions, small world, and Markov type properties [11]. A modelbased method is useful if this model can be fit successfully and if it is a relatively simple to simulate
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Eur. J. Stat. 10.28924/ada/stat.3.10 2realizations [11]. The most frequently used general model for random graphs is the exponentialrandom graph model (ERGM) [11–13] because, this model fits well with the observed networkstatistics [6]. This ERGM model lacks microfoundations which are important for counterfactualanalyses and furthermore, economists view network analysis as the optimal choices of agents whomaximizes their utilities [6]. Network evolves as the result of a stochastic process is another popularframework where network may be observed, but it is the parameters of the stochastic process thatare of interest, and the observed network is a single realization of the stochastic process [11,14].At birth, humans already posses different types of skills like breathing, digest foods and motoractions which make a human body to behave like an automaton [15]. Furthermore, like other animalshumans acquire skills through learning. Different person has different abilities to acquire a newinformation in order to get an idea about pleasure, danger or food [15]. Humans are the mostcomplicated species on earth because, their decisions are not linear and they can learn difficultskills through transitional signals of their complex constellations of sensory patterns. For example,if food is kept in front of a hamster, it would eat immediately. On the other hand, if a plate offood is kept in front of a human, they might not eat because, variety of factors such as the texture,smell, amount of it, their sociocultural background, religion and ethnicity take place before eventhey think about to tastes it. In order to make this decision, a lot of complex neural activities takeplace inside a person’s brain. Action of two main parts of a human brain, frontal and occipitallobes, makes them decide what they should do after seeing an object. In this case the occipitallobe sends information of an object through the synaptic systems to frontal lobe, which is knownby their previous experiences and knowledge. As for humans one has to consider so many otherpossibilities compared to a hamster, such that they can choose any of the all available informationwith some probabilities and make decisions based on it.This type of human behavior is a feedback circuit where the learning algorithm is determinedby a synaptic motor command, more time with an object not only leads to get more informationbut also the knowledge to adapt with it in the long run and get more intelligence. For example,as humans grow older, more intelligent they become and reflects their genotype closely. On theother hand, environment influences a certain type of decision more with older ages which comesthrough a process called Hebbian learning [15, 16]. Ancestors gather more information about anobject or circumstance and transfer it to their off-springs in order to help them survive easily andmake decisions rationally [15]. For example, without having a prior knowledge one does not knowhow to get a certain type restaurant and which lead them explore their surroundings. If that personfinds out a restaurant, they survive for that day. On the next day, they might not be completely sureabout full availability of food in that restaurant because of sudden environmental degradation afterhis previous visit such as flash flood, tornado, an avalanche, landslide, earthquake, other activitieslike closure due to burglary, fire or some gun related activities so on. Even if that person is sure
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Eur. J. Stat. 10.28924/ada/stat.3.10 3about the availability of food, they might not go because of other socioeconomic behaviors at theback of their mind. Hence, more information might not lead them react rationally. These types ofactivities occurs when an event is more uncertain. Consider person A is selling their 1 million-dollar car to another person B by just $50, 000. The rationality assumption suggests person B togo for this offer but, B might think why A is giving this offer and might be suspicious about thequality of that car and rejects it.Therefore, subjective probabilities take an important role to make these types of decisions basedon individual judgments such as success in a new job, outcome of an election, state of an economy,difference in learning a new complex topic among students, spreading gossips in small communities[9,17,18]. People follow representativeness in judging the likelihood of uncertain events where theprobability is defined by the similarities in essential properties to its parent population and reflectthe salient features of the process by which it is generated [17], which makes opinion dynamicsof a person to follow a stochastic differential equation. Furthermore, an individual minimizes itscost of foraging for food where finding food can be termed as a reward to them and they want tofind their reward with minimal cost. Assume an agent discounts more to the recent future thanfarther future represented as feedback motor control reinforcement learning problem [15]. In anenvironment of very complex opinion dynamics each agent minimizes their integral cost functionsubject to a stochastic differential opinion dynamics based on all above cases. This paper considerstwo environments first, all the agents have same opinion power and second, agents with a leader,where the leader has more power in opinion than others and determines their opinion first basedon their own cost minimization mechanism. A feedback Nash equilibrium of opinion is determinedby a Feynman-type path integral approach which so far from my knowledge is new [19,20].Since each agent’s opinion in a society is assumed to be a quantum particle, I introduce analternative method based on Feynman-type path integral to solve this stochastic opinion dynamicsproblem based on Feynman-type path integrals instead of traditional Pontryagin Maximum Prin-ciple. If the objective function is quadratic and the differential equations are linear, then solutionis given in terms of a number of Ricatti equations which can be solved efficiently [21]. But theopinion dynamics is more complicated than just an ordinary linear differential equation and non-linear stochastic feature gives the optimal solution a weighted mixture of suboptimal solutions,unlikely in the cases of deterministic or linear optimal control where a unique global optimal so-lution exists [21]. In the presence of Wiener noise, Pontryagin Maximum Principle, a variationalprinciple, that leads to a coupled system of stochastic differential equations with initial and ter-minal conditions, gives a generalized solution [21, 22]. Although incorporate randomness with itsHamiltonian-Jacobi-Bellman (HJB) equation is straight forward but difficulties come due to dimen-sionality when a numerical solution is calculated for both of deterministic or stochastic HJB [21].
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Eur. J. Stat. 10.28924/ada/stat.3.10 4General stochastic control problem is intractable to solve computationally as it requires an expo-nential amount of memory and computational time because, the state space needs to be discretizedand hence, becomes exponentially large in the number of dimensions [23–25]. Therefore, in orderto calculate the expected values it is necessary to visit all states which leads to the summations ofexponentially large sums [21,25]. [26] and [27] say that a class of continuous non-linear stochasticfinite time horizon control problems can be solved more efficiently than Pontryagin’s MaximumPrinciple. These control problems reduce to computation of path integrals interpreted as free en-ergy because, of their various statistical mechanics forms such as Laplace approximations, MonteCarlo sampling, mean field approximations or belief propagation [21,26–28]. According to [21] theseapproximate computations are really fast.Furthermore, one can transform a class of non-linear HJB equations into linear equations bydoing a logarithmic transformation. This transformation stems back to the early days of quantummechanics which was first used by Schrödinger to relate HJB equation to the Schrödinger equation[21]. Because of this linear feature, backward integration of HJB equation over time can be replacedby computing expectation values under a forward diffusion process which requires a stochasticintegration over trajectories that can be described by a path integral [21]. Furthermore, in moregeneralized case like Merton-Garman-Hamiltonian system, getting a solution through PontryaginMaximum principle is impossible and Feynman path integral method gives a solution [29–31].Previous works using Feynman path integral method has been done in motor control theory by[27], [23] and [24]. Applications of Feynman path integral in finance has been discussed rigorouslyin [32]. In [30] a Feynman-type path integral has been introduced to determine a feedback stochasticcontrol. This methods works in both linear and non-linear stochastic differential equations anda Fourier transformation has been used to find out solution of Wick-rotated Schrödinger typeequation [30, 31, 33, 34]. A more generalized Nash equilibrium on tensor field has been discussedin [35].
2. A Stochastic Differential Game of Opinion Dynamics

Following [9] consider a social network of n agents by a weighted directed graph G = (N,E,wi j),where N = {1, ..., n} is the set of all agents. Suppose, E ⊆ N × N is the set of all ordered pairsof all connected agents and, wi j is the influence of agent j on agent i for all (i , j) ∈ E. Thereare usually two types of connections, one sided or two sided. For the principle-agent problemthe connection is one sided (i.e. Stackelberg model) and agent-agent problem it is two sided (i.e.Cournot model). Suppose x i(s) ∈ [0, 1] be the opinion of agent i th at time s ∈ [0, t] with their initialopinion x i(0) = x i0 ∈ [0, 1]. Then x i(s) has been normalized into [0, 1] where x i(s) = 0 standsfor a strong disagreement and x i(s) = 1 represents strong agreement and all other agreementsstays in between. Consider x(s) =
[
x1(s), x2(s), ..., xn(s)

]′ ∈ [0, 1]n be the opinion profile vectorof n-agents at time s where ‘prime’ represents the transpose. Following [9] consider a cost function
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Eur. J. Stat. 10.28924/ada/stat.3.10 5of agent i as
Li(s, x, x i0, u

i) =

∫ t

0

1
2

{∑
j∈ηi

wi j
[
x i(s)− x j(s)

]2
+ ki

[
x i(s)− x i0

]2
+
[
ui(s)

]2}
ds, (2.1)

where wi j ∈ [0,∞) is a parameter which weighs the susceptibility of agent j to influence agent
i , ki ∈ [0,∞) is agent i ’s stubbornness, ui(s) is the control variable of agent i and set of allagents with whom i interacts is ηi and defined as ηi := {j ∈ N : (i , j) ∈ E}. The cost function
Li(s, x, x i0, u

i) is twice differentiable with respect to time in order to satisfy Wick rotation, iscontinuously differentiable with respect to i th agent’s control ui(s), non-decreasing in opinion
x i(s), non-increasing in ui(s), and convex and continuous in all opinions and controls [34,36]. Theopinion dynamics of agent i follows a stochastic differential equation

dx i(s) = µi [s, x i(s), ui(s)]ds + σi [s, x i(s), ui(s)]dBi(s), (2.2)
with the initial condition x i0, where µi and σi are the drift and diffusion component of agent iwith Bi(s) is the Brownian motion. The reason behind incorporating Brownian motion in agent
i ’s opinion dynamics is because of Hebbian Learning which states that, neurons increase thesynaptic connection strength between them when they are active together simultaneously and thisbehavior in probabilistic in the sense that, resource availability from a particular place is random( [16], [15]). For example, for a given stubbornness, and influence from agent j , agent i ’s opiniondynamics has some randomness in opinion. Suppose, from other resources agent i knows that, theinformation provided by agent j ’s influence is misleading. Apart from that after considering humansas automatons, motor control and foraging for food becomes a big examples of minimization ofcosts (or the expected return) [15]. As control problems like motor controls are stochastic in naturebecause there is a noise in the relation between the muscle contraction and the actual displacementwith joints with the change of the information environment over time, we consider Feynman pathintegral approach to calculate the stochastic control after assuming the opinion dynamics Equation(2.2) [19, 37–39]. The coefficient of the control term in Equation (2.1) is normalized to 1, withoutloss of generality. The cost functional represented in the Equation (2.1) is viewed as a model of themotive of agent i towards a prevailing social issue [9]. In this dynamic social network problem agent
i ’s objective is to minui{Es(Li)|Fx0 } subject to the Equation (2.2), where E0(Li)|Fx0 represents theexpectation on Li at time 0 subject to agent i ’s opinion filtration Fx0 starting at the initial time 0. Asolution of this problem is a feedback Nash equilibrium as the control of agent i is updated basedon the opinion at the same time s .

3. Definitions and Assumptions
Assumption 1. For t > 0 and i = 1, ..., n, let µi(s, x i , ui) : [0, t] × R2 → R and σi(s, x i , ui) :

[0, t] × R2 → R be some measurable function and, for some constant M i
1 > 0 and, for opinion
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x i ∈ R the linear growth of agent i ’s control ui as

|µi(s, x i , ui)|+ |σi(s, x i , ui)| ≤ M i
1(1 + |x i |),

such that, there exists another constant M i
2 > 0 and for a different x̃ i ∈ R such that the Lipschitz

conditions,

|µi(s, x i , ui)− µi(s, x̃ i , ui)|+ |σi(s, x i , ui)− σi(s, u, x̃)| ≤ M i
2|x i − x̃ i |,

and
|µi(s, x i , ui)|2 + |σi(s, x i , ui)|2 ≤ (M i

2)2(1 + |x̃ i |2),

hold.

Assumption 2. Agent i faces a probability space (Ω,Fxs ,P) with sample space Ω, ui-adaptive
filtration at time s of opinion x i as {Fxs } ⊂ Fs , a probability measure P and n-dimensional
{Fs} Brownian motion Bi where the control of i th agent ui is an {Fxs } adapted process such
that Assumption 1 holds, for the feedback control measure of agents in a society there exists a
measurable function hi such that hi : [0, t] × C([0, t]) : Rn → ui for which ui(s) = hi [x i(s, ui)]

such that Equation (2.2) has a strong unique solution.

Assumption 3. (i). Z ⊂ Rn such that agent i cannot go beyond set Zi ⊂ Z because of their
limitations of acquiring knowledge from their society at a given time. This immediately implies set
Zi is different for different agents. If the agent is young , they would have less limitation to acquire
new information and make opinions on it.
(ii). The function hi0 : [0, t]× Rn → R. Therefore, all agents in a society at the beginning of [0, t]

have the cost function h0 : [0, t]×Rn → R such that hi0 ⊂ h0 in functional spaces and both of them
are concave which is equivalent to Slater condition [40]. Possibility of giving a partial opinion has
been omitted in this paper.
(iii). There exists an ε > 0 with ε ↓ 0 for all (x i , ui) and i = 1, 2, ..., n such that

E0

∫ t

0

1
2

{∑
j∈ηi

wi j
[
x i(s)− x j(s)

]2
+ ki

[
x i(s)− x i0

]2
+
[
ui(s)

]2}∣∣∣∣Fx0
 ds ≥ ε.

The opinion dynamics of i th agent is continuous and it is mapped from an interval to a spaceof continuous functions with initial and terminal time points. Suppose, at time s , g(s) : [p, q] →
C represents an opinion dynamics of i th agent with initial and terminal points g(p) and g(q)respectively, such that, the line path integral is ∫C f (γ)ds =

∫ q
p f (g(s))|g′(s)|ds , where g′(s) isderivative with respect to s . In this paper I consider functional path integrals where the domain ofthe integral is the space of functions [30]. Functional path integrals are very popular in probabilitytheory and quantum mechanics. In [41] theoretical physicist Richard Feynman introduced Feynman

path integral and popularized it in quantum mechanics. Furthermore, mathematicians develop the
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Eur. J. Stat. 10.28924/ada/stat.3.10 7measurability of this functional integral and in recent years it has become popular in probabilitytheory [37]. In quantum mechanics, when a particle moves from one point to another, between thosepoints it chooses the shortest path out of infinitely many paths such that some of them touch theedge of the universe. After introducing equal length small time interval[s, s + ε] with ε > 0 suchthat ε ↓ 0 and using Riemann–Lebesgue lemma if at time s one particle touches the end of theuniverse, then at a later time point it would come back and go to the opposite side of the previousdirection to make the path integral a measurable function [42]. Similarly, agent i has infinitelyopinions, out of them they choose the opnion corresponding to least cost given by the constraintexplained in Equation (2.2). Furthermore, the advantage of Feynman approach is that, it can beused in both in linear and non-linear stochastic differential equation systems where constructingan HJB equation is almost impossible [32,43].
Definition 3.1. Suppose, for a particle L̂[s, y(s), ẏ(s)] = (1/2)m̂ẏ(s)2−V̂ (y) be the Lagrangian in
classical sense in generalized coordinate y with mass m̂ where (1/2)m̂ẏ2 and V̂ (y) are kinetic and
potential energies respectively. The transition function of Feynman path integral corresponding to
the classical action function
Z∗ =

∫ t
0 L̂(s, y(s), ẏ(s))ds is defined as Ψ(y) =

∫
R exp{Z∗}DY , where ẏ = ∂y/∂s and DY is

an approximated Riemann measure which represents the positions of the particle at different time
points s in [0, t] [30].

Here i th agent’s objective is to minimize Equation (2.1) subject to Equations (2.2). FollowingDefinition 3.1 the quantum Lagrangian at time s of [s, s + ε] is
Li = Es

{
1
2

{∑
j∈ηi

wi j
[
x i(s)− x j(s)

]2
+ ki

[
x i(s)− x i0

]2
+
[
ui(s)

]2}
ds

+ λi
[
∆x i(s)− µi [s, x i(s), ui(s)]ds − σi [s, x i(s), ui(s)]dBi(s)

]}
, (3.1)

where λi is a time independent quantum Lagrangian multiplier (one can think of as a penalizationconstant of agent i ). As at the beginning of the small time interval [s, s + ε], agent i does not haveany future information, they make expectations based on their opinion x i . For another normalizingconstant Liε > 0 and for time interval [s, s + ε] such that ε ↓ 0 define a transition function from sto s + ε as
Ψi
s,s+ε(x

i) =
1

Liε

∫
Rn

exp[−εAs,s+ε(x
i)]Ψi

s(x
i)dx i(s), (3.2)

where Ψi
s(x

i) is the value of the transition function based on opinion x i at time s with the initialcondition Ψi
0(x i) = Ψi

0. Therefore, the action function of agent i is,

https://doi.org/10.28924/ada/stat.3.10


Eur. J. Stat. 10.28924/ada/stat.3.10 8

As,s+ε(x
i) =

∫ s+ε

s

Eν
{

1
2

{∑
j∈ηi

wi j
[
x i(ν)− x j(ν)

]2
+ ki

[
x i(ν)− x i0

]2
+
[
ui(ν)

]2}
dν

+ hi [ν + ∆ν, x i(ν) + ∆x i(ν)]

}
,

where hi [ν + ∆ν, x i(ν) + ∆x i(ν)] ∈ C2([0, t]× Rn) such that,
hi [ν + ∆ν, x i(ν) + ∆x i(ν)]

= λi
[
∆x i(ν)− µi [ν, x i(ν), ui(ν)]dν − σi [ν, x i(ν), ui(ν)]dBi(ν)

]
.

Here the action function has the notation As,s+ε(x
i) which means within [s, s + ε] the action ofagent i depends on their opinion x i and furthermore, I assume this system has a feedback structure.Therefore, the opinion of agent i also depends on the strategy ui as well as the rest of the school.Same argument goes to the transition function Ψs,s+ε(x

i).
Definition 3.2. For agent i optimal opinion x i∗(s) and their continuous optimal strategy ui∗(s)

constitute a dynamic stochastic Equilibrium such that for all s ∈ [0, t] the conditional expectation
of the cost function is

E0

∫ t

0

1
2

{∑
j∈ηi

wi j
[
x i∗(s)− x j∗(s)

]2
+ ki

[
x i∗(s)− x i0

]2
+
[
ui∗(s)

]2}
ds

∣∣∣∣Fx∗0

 ds
≥ E0

∫ t

0

1
2

{∑
j∈ηi

wi j
[
x i(s)− x j(s)

]2
+ ki

[
x i(s)− x i0

]2
+
[
ui(s)

]2}
ds

∣∣∣∣Fx0
 ds,

with the opinion dynamics explained in Equation (2.2), where Fx∗0 is the optimal filtration starting
at time 0 such that, Fx∗0 ⊂ Fx0 .

4. Main Results
Suppose, for the opinion space S0 = {x(s) : s ∈ [0, t]} and agent i ’s strategy space Γi thereexists a permissible strategy γ i : [0, t]×S0 → Γi and for all i ∈ N define the integrand of the costfunction as

gi(s, x, x i0, u
i) = 1

2

(∑
j∈ηi

wi j
[
x i(s)− x j(s)

]2
+ ki

[
x i(s)− x i0

]2
+
[
ui(s)

]2)
.

Proposition 4.1. For stochastic dynamic game of n-agents of time interval [0, t], let for agent i
(i) the feedback control ui(s, x i) : [0, t]× R→ R is a continuously differentiable function,
(ii) The cost integrand gi(s, x, x i0, ui) : [0, t]×Rn×R×R→ R is a C2 function on R for all i ∈ N .
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If
{
γ i∗(s, x i0, x

i(s)) = φi∗(s, x i); i ∈ N
}

is a feedback Nash equilibrium and {x(s), s ∈ [0, t]} is
the opinion trajectory, then there exists n Lagrangian multipliers λi : [0, t]→ R, i ∈ N with initial
condition λi0 such that, for a Lagrangian

Li(s, x, x i0, ui) = gi(s, x, x i0, u
i) + λi

[
dx i(s)− µi(s, x i , ui)ds − σi(s, x i , ui)dBi(s)

]
with its Euclidean action function

Ai0,t(x) =

∫ t

0

Es
{
gi(s, x, x i0, u

i)ds + λi
[
dx i(s)− µi(s, x i , ui)ds − σi(s, x i , ui)dBi(s)

]}
the following conditions hold: (a) λi = ∂

∂x i
Li , and (b) x i∗(0) = x i0 ∈ [0, 1] with i ∈ N . Under this

case, the optimal feedback control will be the solution of the following equation

∂
∂ui
f i(s, x, λi , ui)

[
∂2

∂(x i )2 f
i(s, x, λi , ui)

]2
= 2 ∂

∂x i
f i(s, x, λi , ui) ∂2

∂x i∂ui
f i(s, x, λi , ui),

where for a function hi(s, x i) ∈ C2([0,∞)× R)

f i(s, x, λi , ui) = gi(s, x, x i0, u
i) + λihi(s, x i) +

[
λi
∂hi (s,x i )
∂s + ∂λi (s)

∂s hi(s, x i)
]

+ λi
∂hi (s,x i )
∂x i

µi(s, x i , ui) + 1
2λ

i [σi(s, x i , ui)]2 ∂2hi (s,x i )
∂(x i )2 .

Proof. Equation (2.2) implies
x i(s + ds)− x i(s) = µi [s, x i(s), ui(s)] ds + σi [s, x i(s), ui(s)] dBi(s). (4.1)

Following [44] we get our Euclidean action function as
Ai0,t(x i) =

∫ t

0

Es
{
gi(s, x, x i0, u

i)ds + λi(s)
[
dx i(s)− µi(s, x i , ui)ds − σi(s, x i , ui)dBi(s)

]}
,

where Es is the conditional expectation on opinion x i(s) at the beginning of time s . Now, fora small change in time ∆s = ε > 0, and for agent i ’s normalizing constant Liε > 0 , define atransitional wave function in small time interval as
Ψi
s,s+ε(x

i) =
1

Liε

∫
R

exp

{
− εAis,s+ε(x)

}
Ψi
s(x

i)dx i(s), (4.2)
for ε ↓ 0 and Ψi

s(x
i) is the value of the transition function at time s and opinion x i(s) with theinitial condition Ψi

0(x i) = Ψi
0 for all i ∈ N .For the small time interval [s, τ ] where τ = s + ε the Lagrangian can be represented as,

Ais,τ (x) =

∫ τ

s

Es
{
gi [ν, x(ν), x i0, u

i(ν)] dν + λi(ν)
[
x i(ν + dν)− x i(ν)

− µi [ν, x i(ν), ui(ν)] dν − σi [ν, x i(ν), ui(ν)] dBi(ν)
]}
, (4.3)

with the initial condition x i(0) = x i0. This conditional expectation is valid when the control ui(ν)of agent i ’s opinion dynamics is determined at time ν and the opinions of all n-agents x(ν) isgiven [44]. The evolution of a process takes place as if the action function is stationary. Therefore,
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Eur. J. Stat. 10.28924/ada/stat.3.10 10the conditional expectation with respect to time only depends on the expectation of initial timepoint of interval [s, τ ].Define ∆x i(ν) = x i(ν + dν)− x i(ν), then Fubini’s Theorem implies,
Ais,τ (x i) = Es

{∫ τ

s

gi [ν, x(ν), x i0, u
i(ν)] dν + λi(ν)

[
∆x i(ν)

− µi [ν, x i(ν), ui(ν)] dν − σi [ν, x i(ν), ui(ν)] dBi(ν)
]}
. (4.4)

By Itô’s Theorem there exists a function hi [ν, x i(ν)] ∈ C2([0,∞)×R) such that Y i(ν) = hi [ν, x i(ν)]where Y i(ν) is an Itô process [45]. After assuming
hi [ν + ∆ν, x i(ν) + ∆x i(ν)] = ∆x i(ν)− µi [ν, x i(ν), ui(ν)] dν − σi [ν, x i(ν), ui(ν)] dBi(ν),

Equation (4.4) becomes,
Ais,τ (x i) = Es

{∫ τ

s

gi [ν, x(ν), x i0, u
i(ν)] dν + λihi

[
ν + ∆ν, x i(ν) + ∆x i(ν)

]}
. (4.5)

For a very small interval around time point s with ε ↓ 0, and Itô’s Lemma yields,
εAis,τ (x i) = Es

{
εgi [s, x(s), x i0, u

i(s)] + ελihi [s, x i(s)] + ελihis [s, x
i(s)]

+ ελihix [s, x i(s)]µi [s, x i(s), ui(s)] + ελihix [s, x i(s)]σi [s, x i(s), ui(s)]∆Bi(s)

+ 1
2ελ

i(σi [s, x i(s), ui(s)])2hixx [s, x i(s)] + o(ε)

}
, (4.6)

where his = ∂
∂s h

i , hix = ∂
∂x i
hi and hixx = ∂2

∂(x i )2 h
i , and we use the condition [∆x i(s)]2 = ε with

∆x i(s) = εµi [s, x i(s), ui(s)] +σi [s, x i(s), ui(s)]∆Bi(s). We use Itô’s Lemma and a similar approxi-mation to approximate the integral. With ε ↓ 0, dividing throughout by ε and taking the conditionalexpectation we get,
εAis,τ (x i) = Es

{
εgi [s, x(s), x i0, u

i(s)] + ελihi [s, x i(s)] + ελihis [s, x
i(s)]

+ ελihix [s, x i(s)]µi [s, x i(s), ui(s)] + 1
2ελ

iσ2i [s, x i(s), ui(s)]hixx [s, x i(s)] + o(1)

}
,(4.7)

as Es [∆Bi(s)] = 0 and Es [o(ε)]/ε → 0 as ε ↓ 0 with the initial condition x i0. For ε ↓ 0 thetransition function at s is Ψi
s(x

i) for all i ∈ N . Hence, using Equation (4.2), the transition functionfor [s, τ ] is
Ψi
s,τ (x i) =

1

Liε

∫
R

exp

{
− ε
[
gi [s, x(s), x i0, u

i(s)] + λihi [s, x i(s)]

+ λihis [s, x
i(s)] + λihix [s, x i(s)]µi [s, x i(s), ui(s)]

+ 1
2λ

i(s)(σi [s, x i(s), ui(s)])2hixx [s, x i(s)]
]}

Ψi
s(x)dx i(s) + o(ε1/2). (4.8)
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Ψis(x

i) + ε
∂Ψis(x

i)

∂s
+ o(ε)

=
1

Liε

∫
R

exp

{
− ε
[
gi [s, x(s), x i0, u

i(s)] + λi(s)hi [s, x i(s)]

+ λihis [s, x
i(s)] + λihix [s, x i(s)]µi [s, x i(s), ui(s)]

+ 1
2λ

i(σi [s, x i(s), ui(s)])2hixx [s, x i(s)]
]}

Ψi
s(x)dx i(s) + o(ε1/2). (4.9)

For fixed s and τ let x i(s)− x i(τ) = ξi so that x i(s) = x i(τ) + ξi . When ξi is not around zero, fora positive number η < ∞ we assume |ξi | ≤ √ ηε
x i (s)

so that for ε ↓ 0, ξi takes even smaller valuesand agent i ’s opinion 0 < x i(s) ≤ ηε/(ξi)2. Therefore,
Ψis(x

i) + ε
∂Ψis(x

i)

∂s
=

1

Liε

∫
R

[
Ψis(x

i) + ξi
∂Ψis(x

i)

∂x i
+ o(ε)

]
× exp

{
− ε
[
gi [s, x(s), x i0, u

i(s)] + λihi [s, x i(s)] + λihix [s, x i(s)]µi [s, x i(s), ui(s)]

+ 1
2λ

i(σi [s, x i(s), ui(s)])2hixx [s, x i(s)]
]}
dξi + o(ε1/2).

Before solving for Gaussian integral of the each term of the right hand side of the above Equationdefine a C2 function
f i [s, ξ, λi(s), ui(s)]

= gi [s, x(s) + ξ, x i0, u
i(s)] + λihi [s, x i(s) + ξi ] + λihis [s, x

i(s) + ξi ]

+ λihix [s, x i(s) + ξi ]µi [s, x i(s) + ξi , ui(s)] + 1
2λ

iσ2i [s, x i(s) + ξi , ui(s)]hixx [s, x i(s) + ξi ] + o(1),

where ξ is a vector of all n-agents’ ξi ’s. Hence,
Ψis(x

i) + ε
∂Ψis(x

i)

∂s
= Ψis(x

i)
1

Liε

∫
R

exp
{
−εf i [s, ξ, λi(s), ui(s)]

}
dξi

+
∂Ψis(x

i)

∂x i
1

Liε

∫
R
ξi exp

{
−εf i [s, ξ, λi(s), ui(s)]

}
dξi + o(ε1/2). (4.10)

After taking ε ↓ 0, ∆u ↓ 0 and a Taylor series expansion with respect to x i of f i [s, ξ, λi , ui(s)]gives,
f i [s, ξ, λi , u(s)] = f i [s, x(τ), λi , ui(s)] + f ix [s, x(τ), λi , ui(s)][ξi − x i(τ)]

+ 1
2 f
i
xx [s, x(τ), λi , ui(s)][ξi − x i(τ)]2 + o(ε).
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Eur. J. Stat. 10.28924/ada/stat.3.10 12Define mi = ξi − x i(τ) so that dξi = dmi . First integral on the right hand side of Equation (4.10)becomes,∫
R

exp
{
− εf i [s, ξ, λi , ui(s)]}dξi

= exp
{
− εf i [s, x(τ), λi , ui(s)]

}∫
R

exp

{
− ε
[
f ix [s, x(τ), λi , ui(s)]mi + 1

2 f
i
xx [s, x(τ), λi , ui(s)](mi)2

]}
dmi . (4.11)

Assuming ai = 1
2 f
i
xx [s, x(τ), λi , ui(s)] and bi = f ix [s, x(τ), λi , ui(s)] the argument of the exponentialfunction in Equation (4.11) becomes,

ai(mi)2 + bimi = ai
[

(mi)2 +
bi

ai
mi
]

= ai
(
mi +

bi

2ai
mi
)2

−
(bi)2

4(ai)2
. (4.12)

Therefore,
exp

{
− εf i [s, x(τ), λi , ui(s)]

}∫
R

exp
{
− ε[ai(mi)2 + bimi ]

}
dmi

= exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}∫
R

exp

{
−

[
εai
(
mi +

bi

2ai
mi
)2
]}

dmi

=

√
π

εai
exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}
, (4.13)

and
Ψis(x

i)
1

Liε

∫
R

exp
{
− εf i [s, ξ, λi , ui(s)]}dξi

= Ψis(x)
1

Liε

√
π

εai
exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}
. (4.14)

Substituting ξi = x i(τ) +mi second integrand of the right hand side of Equation (4.10) yields,∫
R
ξi exp

[
−ε{f i [s, ξ, λi , ui(s)]}

]
dξi

= exp{−εf i [s, x(τ), λi , ui(s)]}
∫
R

[x i(τ) +mi ] exp
[
−ε
[
ai(mi)2 + bimi

]]
dmi

= exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}[
x i(τ)

√
π

εai

+

∫
R
mi exp

{
−ε

[
ai
(
mi +

bi

2ai
mi
)2
]}

dmi
]
. (4.15)

Substituting k i = mi + bi/(2ai) in Equation (4.15) we get,
exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}[
x i(τ)

√
π

εai
+

∫
R

(
k i −

bi

2ai

)
exp[−aiε(k i)2]dk i

]
= exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}[
x i(τ)−

bi

2ai

]√
π

εai
. (4.16)
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1

Liε

∂Ψis(x
i)

∂x i

∫
R
ξi exp

[
−εf [s, ξ, λi , ui(s)]

]
dξi

=
1

Liε

∂Ψis(x
i)

∂x i
exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}[
x i(τ)−

bi

2ai

]√
π

εai
. (4.17)

Using results of Equations (4.14), and (4.17) into Equation (4.10) we get,
Ψis(x

i) + ε
∂Ψis(x

i)

∂s

=
1

Liε

√
π

εai
Ψis(x

i) exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}
+

1

Liε

∂Ψis(x
i)

∂x i

√
π

εai
exp

{
ε

[
(bi)2

4(ai)2
− f i [s, x(τ), λi , ui(s)]

]}[
x i(τ)−

bi

2ai

]
+ o(ε1/2). (4.18)

As f i is in Schwartz space, derivatives are rapidly falling and assuming 0 < |bi | ≤ ηε, 0 < |ai | ≤
1
2 [1− (ξi)−2]−1 and x i(s)− x i(τ) = ξi we get,

x i(τ)−
bi

2ai
= x i(s)− ξi −

bi

2ai
= x i(s)−

bi

2ai
,

such that ∣∣∣∣x i(s)−
bi

2ai

∣∣∣∣ =

∣∣∣∣ ηε(ξi)2
− ηε

[
1−

1

(ξi)2

] ∣∣∣∣ ≤ ηε.
Therefore, Wick-rotated Schrödinger type Equation for agent i is,

∂Ψis(x)

∂s
=

[
(bi)2

4(ai)2
− f i [s, x(τ), λi(s), ui(s)]

]
Ψis(x). (4.19)

Differentiating the Equation (4.19) with respect to ui gives us optimal control of agent i under thisstochastic opinion dynamics which is{
2f ix
f ixx

[
f ixx f

i
xu − f ix f ixxu
(f ixx)2

]
− f iu

}
Ψis(x) = 0, (4.20)

where f ix = ∂
∂x i
f i , f ixx = ∂2

∂(x i )2 f
i , f ixu = ∂2

∂x i∂ui
f i and f ixxu = ∂3

∂(x i )2∂ui
f i = 0. Therefore, optimalfeedback control of agent i in stochastic opinion dynamics is represented as φi∗(s, x i) and is foundby setting Equation (4.20) equal to zero. Hence, φi∗(s, x i) is the solution of the following Equation

f iu(f ixx)2 = 2f ix f
i
xu. � (4.21)

�

Proposition 4.2. For the initial condition Ψi
0(x i) = I i(x i) the Wick-rotated Schrödinger-type

equation of agent i ∈ N

∂Ψis(x
i)

∂s
=

[
(bi)2

4(ai)2
− f i [s, x(s), λi , ui(s)]

]
Ψis(x

i),
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where ai = 1
2

∂2

∂(x i )2 f
i [s, x(s), λi , ui(s)] and bi = ∂

∂x i
f i [s, x(s), λi , ui(s)], has a unique solution

Ψis(x) = I i(x i) exp

{
s

[
(bi)2

4(ai)2
− f i [s, x(s), λi , ui(s)]

]}
.

The optimal opinion x i∗ can be found after solving the following equation,

∂2

∂s∂x i
f i [s, x(s), λi , ui(s)] =

∂

∂x i
f i [s, x(s), λi , ui(s)], (4.22)

and corresponding feedback control Nash equilibrium is φi∗(s, x i∗).

Proof. Let for three variables v i [x i(s), ui(s)], z i [x i(s), ui(s)] and w i [x i(s), ui(s)] generalized Wick-rotated Schrödinger type equation for agent i is,
∂Ψis(x

i)

∂s
= v i [x i(s), ui(s)]Ψis(x

i) + z i [x i(s), ui(s)]
∂Ψis(x

i)

∂x i
+ w i [x i(s), ui(s)]

∂2Ψis(x
i)

∂(x i)2
,(4.23)

with the initial condition Ψi
0(x i) = I i(x i). As agent i ’s wave function Ψis(x

i) is a function of opinion
x i(s) for fixed control ui(s), the solution to Equation (4.23) is found by assuming v i , z i and w i varyaccording to the movement of x i ’s only. Define Ψis;s(x

i) = ∂
∂sΨis(x

i), Ψis;x(x i) = ∂
∂x i

Ψis(x
i) and

Ψis;xx(x i) = ∂2

∂(x i )2 Ψis(x
i). Hence,

Ψis;s(x
i) = v i(x i , ui)Ψis(x

i) + z i(x i , ui)Ψis;x(x i) + w i(x i , ui)Ψis;xx(x i). (4.24)
For a ξ̃ ∈ R, the Fourier transformation of Ψis(x

i) is,
B{Ψis(x

i)} = Ψs(ξ̃) =

∫
R

Ψis(x
i) exp

{
− iξ̃x i

}
dx i . (4.25)

As B{Ψis;x(x i)} =
∫
R

∂
∂x i

Ψis(x
i) exp{−iξ̃x i}dx i then assuming Ψis(x

i) ↓ 0 as x i → ±∞, Equa-tion (4.25) gives, B{Ψis;x(x i)} = iξ̃B{Ψis(x
i)}. Therefore, B{Ψis;x(x i)} = iξ̃B{Ψis(x

i)} and,
B{Ψis;xx(x i)} = iξ̃B{Ψis;x(x i)} = −ξ̃2B{Ψis(x

i)}. Rearranging terms in Equation (4.24) andFourier transformation with above conditions give,
Ψis;s(x

i)− v i(x i , ui)Ψis(x
i)− z i(x i , ui)Ψis;x(x i)− w i(x i , ui)Ψis;xx(x i) = 0

∂Ψis(ξ̃)

∂s
+ Ψis(ξ̃)

[
w i(x i , ui)ξ̃2 − z i(x i , ui)iξ̃ − v i(x i , ui)

]
= 0. (4.26)

Let us assume an integrating factor exp
{∫

[w i(x i , ui)ξ̃2 − z i(x i , ui)iξ̃ − v i(x i , ui)]ds
} which canbe written as exp

{
s[w i(x i , ui)ξ̃2 − z i(x i , ui) iξ̃ − v i(x i , ui)]

}
. Therefore,

exp
{
s
[
w i ξ̃2 − z iξ̃ − v i

]} {
∂
∂sΨis(ξ̃) + Ψis(ξ̃)

[
w i ξ̃2 − z i iξ̃ − v i

]}
= 0,

or equivalently
∂
∂sΨis(ξ̃) exp

{
s
[
w i ξ̃2 − z i iξ̃ − v i

]}
+{

Ψis(ξ̃)
[
w i ξ̃2 − z i iξ̃ − v i

]}
exp

{
s
[
w i ξ̃2 − z i iξ̃ − v i

]}
= 0,
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∂
∂s exp

{
s
[
w i ξ̃2 − z i iξ̃ − v i

]}
Ψis(ξ̃) = 0. (4.27)

Integrating both sides of Equation (4.27) yields,
exp

{
s
[
w i ξ̃2 − z i iξ̃ − v i

]}
Ψis(ξ̃) = c i(ξ̃) and,

Ψis(ξ̃) = c i(ξ̃) exp
{
−s
[
w i ξ̃2 − z i iξ̃ − v i

]}
. (4.28)

Applying the Fourier transformation on the initial condition yields, Ψ
i
0(ξ̃) = I

i
(ξ̃) which implies

c i(ξ̃) ≡ I i(ξ̃). Using this condition Equation (4.28) gives,
Ψis(ξ̃) = I

i
(ξ̃) exp

{
−s
[
w i ξ̃2 − z i iξ̃ − v i

]}
= I

i
(ξ̃)Φ

i
(s, ξ̃), (4.29)

where Φ
i
(s, ξ̃) = exp

{
−s
[
w i ξ̃2 − z i iξ̃ − v i

]} for all i ∈ N . Fourier Inversion Theorem yields,
Φi(s, x i) =

1

2π
exp

[
(sz i − x i)2

4s2(w i)2
+ sv i

]√
π

sw i
, ∀i ∈ N. (4.30)

As the Fourier transformation Ψis(ξ̃) = I
i
(ξ̃)Φ

i
(s, ξ̃) is the product of two Fourier transformations,therefore the Convolution Theorem implies that for I i(x i) and Φi [s, x i(s)],

Ψis(ξ̃) = B
{
I i [x i(s)] ∗Φi [s, x i(s)]

}
,

and
Ψis(x

i) = (I i ∗Φi)[s, x i(s)] =

∫
R

Φi(s, x i − y i)I i(y i)dy i ,

for all y i ∈ R. Hence, a solution to the Equation (4.23) is,
Ψis(x

i) =

∫
R

1

2π
exp

{
[sz i(x i − y i , ui)− (x i − y i)]2

4s2(w i)2(x i − y i , ui) + sv i(x i − y i , ui)
}

×
√

π

sw i(x i − y i , ui) I
i(y i)dy i . (4.31)

If one compares Wick-rotated Schrödinger type Equation (4.19) with (4.23) we find out v i(x i , ui) =

(bi)2/[4(ai)2]− f i(s, x i , ui) and other terms vanishes. Therefore, Equation (4.30) becomes
Φi(s, x i) =

1

2π

∫
R

exp(sv i) exp
(
iξ̃x i

)
dξ̃ = exp(sv i)δ(x i), (4.32)

where δ(x i) = 1
2π

∫
R exp

(
iξ̃x i

)
dξ̃ is the Dirac δ-function of the opinion of agent i . Now,

Ψis(ξ̃) =

∫
R

∫
R

exp(−iξ̃x i)I i(y i) ∗Φ(x i − y i)dx idy i

=

∫
R
I i(y i)

[∫
R

exp(−iξ̃x i)Φ(x i − y i)dx i
]
dy i .
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Ψis(ξ̃) =

∫
R
I i(y i)

[∫
R

exp(−iξ̃ui) exp(−iξ̃y i)Φ(ui)dui
]
dy i

=

[∫
R
I i(y i) exp(−iξ̃y i)dy i

] [∫
R

Φ(ui) exp(−iξ̃ui)dui
]

= B(I i) ∗ B(Φi).

Therefore, the solution to Equation (4.19) is Ψis(x
i) = I i(x i) exp[sv i(x i , ui)] where v i(x i , ui) =

(bi)2/[4(ai)2]−f i(s, x i , ui). After using this solution to the wave function Ψis(x
i) into Wick-rotatedSchrödinger type Equation (4.19) we get,

∂
∂s f

i [s, x(s), λi , ui(s)] = ∂
∂x i
f i [s, x(s), λi , ui(s)],

and differentiating with respect to x i gives
∂
∂x i

{
∂
∂s f

i [s, x(s), λi , ui(s)]
}

= ∂
∂x i
f i [s, x(s), λi , ui(s)]. (4.33)

Optimal opinion of agent i , x i∗ can be found after solving the Equation (4.33) and an optimalfeedback control φi∗(s, x i∗) is obtained. � �

Corollary 4.1. Define x∗ = [x1∗, x2∗, ..., xn∗]T for all i ∈ N . As each player has an optimal opinion
x i∗, x∗ is an optimal opinion vector. Furthermore,

φ∗(s, x∗) =
[
φ1∗(s, x1∗), φ2∗(s, x2∗), ..., φn∗(s, xn∗)

]T
is an optimal control vector of feedback Nash equilibrium.

After combining the opinion state variables and the Lagrangian multipliers, the following equationis obtained [
dx(s)

dλ(((s)))

]
= K̂

[
x0

λ0

]
ds + A

[
x(s)

λ(s)

]
ds +

[
σ

000

][
dB(s)

dBλ(s)

]
where

A =

[
µ − I
−W 000

]
, K̂ =

[
000 000

K 000

]
where I is the identity matrix of size n, λ(s) = [λ1(s), λ2(s), ..., λn(s)]T ,
K = diag[k1, k2, ..., kn], µ is an n × 1 vector, σ is an n × m-dimensional matrix dB(s) is an
m×1-dimensional Brownian motion corresponding to opinion and dBλ(s) is an m×1 dimensionalBrownian motion of the Lagrangian multiplier. Following [9]

W =


q1 −w12 . . . −w1n

−w21 q2 . . . −w2n... ... . . . ...
−wn1 −wn2 . . . qn


with qi =

∑
j∈ηi wi j + ki . W is a Laplacian-like matrix of a weighted directed gaph G [9] where

i j th element in the off-diagonal shows the weight of the edge directed from i to j . Define dX(s) =
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[dx(s), dλ(s)]T , X0 = [x0,λ0]T , X(s) = [x(s),λ(s)]T , σ̂ = [σ, 000]T and dB̂(s) = [dB(s), dBλ(s)]T .Then we get the following equation
dX(s) = K̂X0ds + AX(s)ds + σ̂dB̂(s). (4.34)

Following [45] we get a unique solution of the stochastic differential equation expressed in Equation(4.34) as
X(s) = exp(As)

[
K̂X0 + exp(−As)σ̂B̂(s) +

∫ t

0

exp(−As)Aσ̂B̂(s)ds

]
. (4.35)

5. Stochastic Differential Games With an Explicit Feedback Nash Equilibrium
Propositions 4.1 and 4.2 states that, for agent i and given hi(s, x i) one can get a optimal Nashfeedback control φi∗(s, x i) and for a unique solution of the transition wave function the uniqueopinion dynamics is x i∗. In this section I am considering two main consensus: full consensus orcomplete information and consensus under a leader who can influence other agents’ opinions.First, consider the consensus under complete information. Let there be a network where allagents are connected with each other or ηi = N \{i}. As every agent has equal power to influenceothers, in the long run a consensus will be eventually reached. As some agents are stubborn,their opinions might not be influenced by others and a full consensus is not reached. Following [9]assume all the parameters of agent i ’s cost function are equal or ki = k , wi j = wj i = w for all

i ∈ N and (i , j) ∈ E where agent i ’s stochastic opinion dynamics is represented by
dx i(s) =

1
n

n∑
j=1

x j∗ + γ(s)

x i(s)− 1
n

n∑
j=1

x j∗

− ui(s)

 ds +
√

2σdBi(s), (5.1)
where γ(s) = k

λ1
+
(
nw
λ1

)
cosh[

√
λ1(t−s)]

cosh(
√
λ1t)

, λ1 = k + nw and σ is a constant diffusion component. InEquation (5.1) x j∗ is the optimal opinion of j th agent according to agent i because, under completeinformation agent i has the information of all possible reaction functions of agent j but does notknow what reaction function agent j will play. Therefore, agent i assumes agent j is rational andcalculates optimal opinion x j∗. Opinion trajectory explained in Equation (5.1) has drift part and adiffusion part. The drift part has three components, the first component is the average of optimalopinions of all the agents in the network, the second term depends on the difference between theopinion of agent i at time s and the average and the third component is the control of agent i . Ascontrol is the cost of agent i in the opinion dynamics, it comes with a negative sign at the front. Ido not consider other agents’ controls in Equation (5.1) because, I assume all of the agents’ controlin this network are independent to each other.
Proposition 5.1. Suppose agent i minimizes the objective cost function∫ t

0

E0

{
1
2nw

[
x i(s)− x j(s)

]2
+ 1

2k
[
x i(s)− x i0

]2
+ 1

2

[
ui(s)

]2 ∣∣∣∣Fx0}ds,
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subject to the stochastic opinion dynamics expressed in Equation (5.1). For b, d > 0, define
hi(s, x i) = exp(sbx i + d).

(i) Then for

f i(s, x, λi , ui) = 1
2nw

(
x i − x j

)2
+ 1

2k
(
x i − x i0

)2
+ 1

2

(
ui
)2

+ bλix ihi(s, x i) + ∂λi

∂s h
i(s, x i)

+ sbλihi(s, x i)

1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ s2b2σλihi(s, x i),

a feedback Nash Equilibrium control of opinion dynamics

φi∗(s, x i) = p +

{
q +

[
q2 + (r − p2)3

] 1
2

} 1
3

+

{
q −

[
q2 + (r − p2)3

] 1
2

} 1
3

, (5.2)
where

p = −
B2(s, γ, x i , x j , λi)

3B1(s, x i , λi)
,

q = [p(s, γ, x i , x j , λi)]3 +
B2(s, γ, x i , x j , λi)B3(s, γ, x i , x j , λi)− 3B1(s, x i , λi)B4(s, γ, x i , x j , λi)

6[B1(s, x i , λi)]2
,

r =
B3(s, γ, x i , x j , λi)

3B1(s, x i , λi)
,

B1 = (C2)2, B2 = −C2(2A2 + C1), B3 = (A2)2 − 2A2C1C2 − (C3)2, B4 = A1C3 − C1(A2)2,
C1 = sbλihi(s, x i), C2 = (sb)3λihi(s, x i), and C3 = (sb)2λihi(s, x i).

(ii) For a unique solution of the wave function Ψis(x
i) as expressed in Proposition 4.2 and λi is

a C2 function with respect to s , an optimal opinion x i∗ is obtained by solving following equation

hi(s, x i)

{
2bλix i + sb3λi(x i)2 + sb ∂

2λi

∂s2 + b(1 + sbx i)∂λ
i

∂s +
[

[(sb)2 + b(1 + b + sb)]∂λ
i

∂s

]
1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ γ
[
sb ∂λ

i

∂s + bλi(1 + sx i)
]

+ sbλi

1 + sb

x i − 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b2

[
λi(3 + sbx i) + ∂λi

∂s

]}
= x i(k + nw)− (nwx j + kx i0) + bhi(s, x i)

{
sbλix i(1 + sγ) + λi + s ∂λ

i

∂s

+ s2bλi

(1− γ) 1
n

n∑
j=1

x j∗ − ui
+ sλi(γ + s2bσ)

}
, (5.3)

which is

x i∗ = A11 +

{
A12 +

[
(A12)2 + [A13 − (A11)2]3

] 1
2

} 1
3

+

{
A12 −

[
(A12)2 + [A13 − (A11)2]3

] 1
2

} 1
3

,(5.4)
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where

A13 =
A9(s, σ, γ, λi , ui , x j)

3A7(s, λi)

A12 = (A11)3 +
A8(s, σ, γ, λi , ui , x j)A9(s, σ, γ, λi , ui , x j)− 3A7(s, λi)A10(s, σ, γ, λi , ui , x j)

6[A7(s, λi)]2
,

A11 = −
A8(s, σ, γ, λi , ui , x j)

3A7(s, λi)
,

A10(s, σ, γ, λi , ui , x j) = A3(s, σ, γ, λi , ui , x j) + beA5(s, σ, γ, λi , ui , x j),

A9(s, σ, γ, λi , ui , x j) = beA6(s, σ, γ, λi , ui , x j) + sb2A5(s, σ, γ, λi , ui , x j)− (k + nw),

A8(s, σ, γ, λi , ui , x j) = sb2[eλi + A6(s, σ, γ, λi , ui , x j)],

A7(s, λi) = s2b4λi ,

A6(s, σ, γ, λi , ui , x j) = [2 + γs + s2b ∂∂s γ + σ(sb)2 − sb(1 + sγ)]λi

+ [sb + γ(1 + b + sb + s2b)]∂λ
i

∂s ,

and

A5(s, σ, γ, λi , ui , x j)

= s ∂
2λi

∂s2 + ∂λi

∂s +
[

(1 + b + sb + s2b)∂λ
i

∂s

](1− γ) 1
n

n∑
j=1

x j∗ − ui
+ γλi

(
1 + s ∂λ

i

∂s

)

+ sλi

1− sb 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b2

(
3λi + ∂λi

∂s

)
− A4(s, σ, γ, λi , ui , x j).

(iii) The opinion difference between agents i and j at time s ∈ [0, t] is

|∆x i j(s)| ≤ |∆x i j0 |+
∣∣∣∣∫ t

0

[
γ(s)∆x i j(s)− ∆ui j(s)

]
ds

∣∣∣∣+
∣∣∣√2σ

∣∣∣ ∣∣∣∣∫ t

0

[dBi(s)− dBj(s)]

∣∣∣∣ ,
where ∆x i j(s) = x i(s)− x j(s), ∆x i j0 = x i0 − x

j
0 and ∆ui j(s) = ui(s)− uj(s).

Proof. (i). Let hi(s, x i) = exp(sbx i + d), for a finite b > 0 and d > 0 with
∂
∂s h

i(s, x i) = bx ihi(s, x i), ∂
∂x i
hi(s, x i) = sbhi(s, x i) and ∂2

∂(x i )2 h
i(s, x i) = s2b2hi(s, x i). Hence,Proposition 4.1 implies,

f i(s, x, λi , ui) = 1
2nw

(
x i − x j

)2
+ 1

2k
(
x i − x i0

)2
+ 1

2

(
ui
)2

+ bλix ihi(s, x i) + ∂
∂sλ

ihi(s, x i)

+ sbλihi(s, x i)

1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ s2b2σλihi(s, x i).

(5.5)
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∂
∂x i
f i(s, x, λi , ui) = nw(x i − x j) + k(x i − x i0) + bhi(s, x i)

{
s ∂λ

i

∂s

+ λi

1 + bsx i + s2b

1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ sγ + σs3b2

}
= A1(s, γ, x i , x j , λi)− s2b2λihi(s, x i)ui ,

∂2

∂(x i )2 f
i(s, x, λi , ui) = nw + k + sb2hi(s, x i)

{
s ∂λ

i

∂s + λi
[

1 + sbx i + sγ + σs3b2

+ s2b

[
1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui]]}+ sb2λi(1 + sγ)hi(s, x i)

= A2(s, γ, x i , x j , λi)− s3b3λihi(s, x i)ui ,

∂
∂ui
f i(s, x, λi , ui) = ui − sbλihi(s, x i), (5.6)

and,
∂2

∂x i∂ui
f i(s, x, λi , ui) = −s2b2λihi(s, x i). (5.7)

Therefore, Equation (4.21) implies[
ui − sbλihi(s, x i)

] [
A2(s, γ, x i , x j , λi)− s3b3uiλihi(s, x i)

]2
= 2s2b2λihi(s, x i)

[
s2b2uiλihi(s, x i)− A1(s, γ, x i , x j , λi)

]
,

and we get a cubic polynomial with respect to control
B1(s, x i , λi)(ui)3 + B2(s, γ, x i , x j , λi)(ui)2 + B3(s, γ, x i , x j , λi)ui + B4(s, γ, x i , x j , λi) = 0, (5.8)

where B1 = (C2)2, B2 = −C2(2A2 +C1), B3 = (A2)2 − 2A2C1C2 − (C3)2, B4 = A1C3 −C1(A2)2,
C1(s, x i , λi) = sbλihi(s, x i), C2(s, x i , λi) = (sb)3λihi(s, x i), and C3(s, x i , λi) = (sb)2λihi(s, x i).Therefore, Equation (5.8) gives feedback Nash equilibrium of control

φi∗ = p +

{
q +

[
q2 + (r − p2)3

] 1
2

} 1
3

+

{
q −

[
q2 + (r − p2)3

] 1
2

} 1
3

, (5.9)
where

p = −
B2(s, γ, x i , x j , λi)

3B1(s, x i , λi)
,

q = p3 +
B2(s, γ, x i , x j , λi)B3(s, γ, x i , x j , λi)− 3B1(s, x i , λi)B4(s, γ, x i , x j , λi)

6[B1(s, x i , λi)]2
,

and
r =

B3(s, γ, x i , x j , λi)

3B1(s, x i , λi)
.
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Eur. J. Stat. 10.28924/ada/stat.3.10 21(ii). In order to prove the second part let us use Proposition 4.2. The right hand side of Equation(4.22) becomes,
∂
∂x i
f i [s, x(s), λi(s), ui(s)]

= x i(k + nw)− (nwx j + kx i0) + bhi(s, x i)

{
sbλix i(1 + sγ) + λi + s ∂λ

i

∂s

+ s2bλi

(1− γ) 1
n

n∑
j=1

x j∗ − ui
+ sλi(γ + s2bσ)

}
= x i(k + nw)− A3(w, k, x j) + bhi(s, x i)

[
A4(s, σ, γ, λi , ui , x j) + sbλix i(1 + sγ)

]
, (5.10)

the left hand side implies
∂
∂s f

i [s, x(s), λi(s), ui(s)]

= hi(s, x i)

{
λi(bx i)2 + ∂2λi

∂s2 + bx i ∂λ
i

∂s

+ b
[
s ∂λ

i

∂s + λi(1 + sx i)
]1

n

∑
j=1

x j∗ + γ

x i − 1
n

∑
j=1

x j∗

− ui
+ sbλi

x i − 1
n

∑
j=1

x j∗

 ∂γ
∂s + sb2σλi(2b + sb2x i) + s2b2σ ∂λ

i

∂s

}
,

and
∂2

∂s∂x i
f i [s, x(s), λi(s), ui(s)]

= hi(s, x i)

{
2bλix i + sb3λi(x i)2 + sb ∂

2λi

∂s2 + b(1 + sbx i)∂λ
i

∂s +
[

[(sb)2 + b(1 + b + sb)]∂λ
i

∂s

]
×1

n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ γ
[
sb ∂λ

i

∂s + bλi(1 + sx i)
]

+ sbλi

1 + sb

x i − 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b3

[
λi(3 + sbx i) + ∂λi

∂s

]}
. (5.11)

Matching Equations (5.10) and (5.11) we get,
hi(s, x i)

{
2bλix i + sb3λi(x i)2 + sb ∂

2λi

∂s2 + b(1 + sbx i)∂λ
i

∂s +
[

[(sb)2 + b(1 + b + sb)]∂λ
i

∂s

]
1
n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ γ
[
sb ∂λ

i

∂s + bλi(1 + sx i)
]

+ sbλi

1 + sb

x i − 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b3

[
λi(3 + sbx i) + ∂λi

∂s

]}
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= x i(k + nw)− (nwx j + kx i0) + bhi(s, x i)

{
sbλix i(1 + sγ) + λi + s ∂λ

i

∂s

+ s2bλi

(1− γ) 1
n

n∑
j=1

x j∗ − ui
+ sλi(γ + s2bσ)

}
,

or,
bhi(s, x i)

{
2λix i + sb2λi(x i)2 + s ∂

2λi

∂s2 + (1 + sbx i)∂λ
i

∂s +
[

(1 + s2b + b + sb)∂λ
i

∂s

]
×1

n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ γ
[
s ∂λ

i

∂s + λi(1 + sx i)
]

+ sλi

1 + sb

x i − 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b2

[
λi(3 + sbx i) + ∂λi

∂s

]

−
[
sbλix i(1 + sγ) + λi + s ∂∂sλ

i + s2bλi

(1− γ) 1
n

n∑
j=1

x j∗ − ui
+ sλi(γ + s2bσ)

]}
= x i(k + nw)− A3(w, k, x j). (5.12)

As hi(s, x i) = exp(sbx i + d), for b > 0, d > 0 fixed and a very small value of x i it can beapproximated as hi(s, x i) = 1 + (sbx i + d) + o([sbx i + d ]2) ≈ 1 + d + sbx i = e + sbx i whereassume e = 1 + d .Therefore,
(be + sb2x i)

{
2λix i + sb2λi(x i)2 + s ∂

2λi

∂s2 + (1 + sbx i)∂λ
i

∂s +
[

(1 + s2b + b + sb)∂λ
i

∂s

]
×1

n

n∑
j=1

x j∗ + γ

x i − 1
n

n∑
j=1

x j∗

− ui+ γ
[
s ∂λ

i

∂s + λi(1 + sx i)
]

+ sλi

1 + sb

x i − 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b2

[
λi(3 + sbx i) + ∂λi

∂s

]

−
[
sbλix i(1 + sγ) + λi + s ∂λ

i

∂s + s2bλi

(1− γ) 1
n

n∑
j=1

x j∗ − ui
+ sλi(γ + s2bσ)

]}
= x i(k + nw)− A3(w, k, x j). (5.13)

After rearranging terms of Equation (5.13) we get a cubic polynomial opinion of agent i
A7(s, λi)(x i)3 + A8(s, σ, γ, λi , ui , x j)(x i)2 + A9(s, σ, γ, λi , ui , x j)x i + A10(s, σ, γ, λi , ui , x j) = 0,(5.14)
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A10(s, σ, γ, λi , ui , x j) = A3(s, σ, γ, λi , ui , x j) + beA5(s, σ, γ, λi , ui , x j),

A9(s, σ, γ, λi , ui , x j) = beA6(s, σ, γ, λi , ui , x j) + sb2A5(s, σ, γ, λi , ui , x j)− (k + nw),

A8(s, σ, γ, λi , ui , x j) = sb2[eλi + A6(s, σ, γ, λi , ui , x j)],

A7(s, λi) = s2b4λi ,

A6(s, σ, γ, λi , ui , x j) = [2 + γs + s2b ∂γ∂s + σ(sb)2 − sb(1 + sγ)]λi

+ [sb + γ(1 + b + sb + s2b)]∂λ
i

∂s ,

and
A5(s, σ, γ, λi , ui , x j)

= s ∂
2λi

∂s2 + ∂λi

∂s +
[

(1 + b + sb + s2b)∂λ
i

∂s

](1− γ) 1
n

n∑
j=1

x j∗ − ui
+ γλi

(
1 + s ∂λ

i

∂s

)

+ sλi

1− sb 1
n

n∑
j=1

x j∗

 ∂γ
∂s + σs2b2

(
3λi + ∂λi

∂s

)
− A4(s, σ, γ, λi , ui , x j).

After solving Equation (5.14) we get a set of optimal opinions for agent i
x i∗ = A11 +

{
A12 +

[
(A12)2 + [A13 − (A11)2]3

] 1
2

} 1
3

+

{
A12 −

[
(A12)2 + [A13 − (A11)2]3

] 1
2

} 1
3

,(5.15)
where
A11 = −

A8(s, σ, γ, λi , ui , x j)

3A7(s, λi)
,

A12 = (A11)3 +
A8(s, σ, γ, λi , ui , x j)A9(s, σ, γ, λi , ui , x j)− 3A7(s, λi)A10(s, σ, γ, λi , ui , x j)

6[A7(s, λi)]2
,

and
A13 =

A9(s, σ, γ, λi , ui , x j)

3A7(s, λi)
.

(iii). The integral forms of opinions of agents i and j obtained from the Equation (5.1) are
x i(s) = x i0 +

∫ t

0

1
n

n∑
j=1

x j∗ + γ(s)

x i(s)− 1
n

n∑
j=1

x j∗

− ui(s)

 ds +
√

2σ

∫ t

0

dBi(s),

and
x j(s) = x j0 +

∫ t

0

[
1
n

n∑
i=1

x i∗ + γ(s)

(
x j(s)− 1

n

n∑
i=1

x i∗

)
− uj(s)

]
ds +

√
2σ

∫ t

0

dBj(s),
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where x i0 and x j0 are the initial opinions of agents i and j . As agents i and j comes from the samepopulation hence, 1
n

∑n
i=1 x

i∗ = 1
n

∑n
j=1 x

j∗. Subtracting x j(s) from x i(s) gives,
x i(s)− x j(s)

= (x i0 − x
j
0) +

∫ t

0

[
γ(s)[x i(s)− x j(s)]− [ui(s)− uj(s)

]
ds +

√
2σ

∫ t

0

[
dBi(s)− dBj(s)

]
and taking absolute value on both sides and using triangle inequality we get,

|∆x i j(s)| ≤ |∆x i j0 |+
∣∣∣∣∫ t

0

[
γ(s)∆x i j(s)− ∆ui j(s)

]
ds

∣∣∣∣+
∣∣∣√2σ

∣∣∣ ∣∣∣∣∫ t

0

[dBi(s)− dBj(s)]

∣∣∣∣ ,
where ∆x i j(s) = x i(s)− x j(s), ∆x i j0 = x i0 − x

j
0 and ∆ui j(s) = ui(s)− uj(s). � �

Consider the consensus with a leader (agent 1) under complete information. It might be a networkwhere agent 1, the political analyst who can influence the decision of the rest of the agents butnot the other way. Furthermore, I also assume that, before a game starts the leader makes theiroptimal opinion based on the history of the network and their perspective of opinion performanceof other agents. Once agent 1 optimizes their opinion at the beginning of the game, they neverchange their mind and influences in other agents’ decisions. Therefore, leader’s cost functional isdefined as,
L1(s, x, x1

0 , u
1) =

∫ t

0

1
2

(
nw̄
[
x1(s)− x̃ j(s)

]2
+ k1

[
x1(s)− x1

0

]2
+
[
u1(s)

]2)
ds, (5.16)

where w̄ ∈ [0,∞) is a parameter assigned by agent 1 to weight the susceptibility of agent jto influence them before the game starts, k1 is a finite positive constant which measures thestubbornness of the leader, u1 is the opinion control and x̃ j < x j∗ be the fixed opinion values of theother agents according to agent 1. The reason behind the assumption x̃ j < x j∗ is that, the leaderis a rational person and they want to get more return out of this network than any other agent andassigns an opinion x̃ j which is less than agent j ’s optimal opinion before a game starts. Opiniondynamics of the leader (agent 1) is
dx1(s) =

 1
n−1

n∑
j=2

x̃ j + γ̂(s)

x1(s)− 1
n−1

n∑
j=2

x̃ j

− u1(s)

 ds +
√

2σ1dB1(s), (5.17)
where γ̂(s) = k1

λ̂1
+
(
nw̄
λ̂1

) cosh[√λ̂1(t−s)
]

cosh
(√

λ̂1t
) , λ̂1 = k1 + nw̄ and σ1 is a constant diffusion component

of the leader. Therefore a leader’s problem is to minimize the expected cost functional E(L1) withrespect to their control u1 and opinion x1 subject to the Equation (5.17). Proposition 5.1 implies,
Corollary 5.1. Suppose the leader (agent 1) has the objective cost function

E
{

1
2nw̄

[
x1(s)− x̃ j(s)

]2
+ 1

2k1

[
x1(s)− x1

0

]2
+ 1

2

[
u1(s)

]2}
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subject to the stochastic opinion dynamics expressed in Equation (5.17). For b, d > 0, define
h1(s, x1) = exp(sbx1 + d).

(i) Then for

f 1(s, x, λ1, u1) = 1
2nw̄

(
x1 − x̃ j

)2
+ 1

2k1

(
x1 − x1

0

)2
+ 1

2

(
u1
)2

+ bλ1x1h1(s, x1) + ∂λ1

∂s h
1(s, x1)

+ sbλ1h1(s, x1)

 1
n−1

n∑
j=2

x̃ j + γ̂

x1 − 1
n−1

n∑
j=2

x̃ j

− u1

+ s2b2σ1λ1h1(s, x1),

an optimal control of the leader

φ̂1∗(s, x1) = p̂ +

{
q̂ +

[
q̂2 + (r̂ − p̂2)3

] 1
2

} 1
3

+

{
q̂ −

[
q̂2 + (r̂ − p̂2)3

] 1
2

} 1
3

, (5.18)
where

p̂ = −
B̂2(s, γ̂, x1, x̃ j , λ1)

3B̂1(s, x1, λ1)
,

q̂ = (p̂)3 +
B̂2(s, γ̂, x1, x̃ j , λ1)B̂3(s, γ̂, x1, x̃ j , λ1)− 3B̂1(s, x1, λ1)B̂4(s, γ̂, x1, x̃ j , λ1)

6[B̂1(s, x1, λ1)]2
,

r̂ =
B̂3(s, γ̂, x1, x̃ j , λ1)

3B̂1(s, x1, λ̂1)
,

B̂1 = (Ĉ2)2, B̂2 = −Ĉ2(2Â2 + Ĉ1), B̂3 = (Â2)2 − 2Â2Ĉ1Ĉ2 − (Ĉ3)2, B̂4 = Â1Ĉ3 − Ĉ1(Â2)2,
Ĉ1 = sbλ1h1(s, x1), Ĉ2 = (sb)3λ1h1(s, x1), and Ĉ3 = (sb)2λ1h1(s, x1).

(ii) For a unique solution of the leader’s wave function Ψ1s(x) and λ1 is a C2 function with
respect to s , a leader’s optimal opinion x1∗ is obtained by solving following equation

h1(s, x1)

{
2bλ1x1 + sb3λ1(x1)2 + sb ∂

2λ1

∂s2 + b(1 + sbx1)∂λ
1

∂s +
[

[(sb)2 + b(1 + b + sb)]∂λ
1

∂s

]
 1
n−1

n∑
j=2

x̃ j + γ̂

x1 − 1
n−1

n∑
j=2

x̃ j

− u1

+ γ̂
[
sb ∂λ

1

∂s + bλ1(1 + sx1)
]

+ sbλ1

1 + sb

x1 − 1
n−1

n∑
j=2

x̃ j

 ∂γ̂
∂s + σ1s2b3

[
λ1(3 + sbx1) + ∂λ1

∂s

]}
= x1(k1 + nw̄)− (nw̄ x̃ j + k1x

1
0 ) + bh1(s, x1)

{
sbλ1x1(1 + sγ̂) + λ1 + s ∂λ

1

∂s

+ s2bλ1

(1− γ̂) 1
n−1

n∑
j=2

x̃ j − u1

+ sλ1(γ̂ + s2bσ1)

}
,

which is

x1∗ = Â11 +

{
Â12 +

[
(Â12)2 + [Â13 − (Â11)2]3

] 1
2

} 1
3

+

{
Â12 −

[
(Â12)2 + [Â13 − (Â11)2]3

] 1
2

} 1
3

,(5.19)
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where

Â13 =
Â9(s, σ1, γ̂, λ1, u1, x̃ j)

3Â7(s, λ1)

Â12 = (Â11)3 +
Â8(s, σ1, γ̂, λ1, u1, x̃ j)Â9(s, σ1, γ̂, λ1, u1, x̃ j)− 3Â7(s, λ1)Â10(s, σ1, γ̂, λ1, u1, x̃ j)

6[Â7(s, λ1)]2
,

Â11 = −
Â8(s, σ1, γ̂, λ1, u1, x̃ j)

3Â7(s, λ1)
,

Â10(s, σ1, γ̂, λ1, u1, x̃ j) = Â3(s, σ1, γ̂, λ1, u1, x̃ j) + beÂ5(s, σ1, γ̂, λ1, u1, x̃ j),

Â9(s, σ1, γ̂, λ1, u1, x̃ j) = beÂ6(s, σ1, γ̂, λ1, u1, x̃ j) + sb2Â5(s, σ1, γ̂, λ1, u1, x̃ j)− (k1 + nw̄),

Â8(s, σ1, γ̂, λ1, u1, x̃ j) = sb2[eλ1 + Â6(s, σ1, γ̂, λ1, u1, x̃ j)],

Â7(s, λ1) = s2b4λ1,

Â6(s, σ1, γ1, λ1, u1, x̃ j) = [2 + γ̂s + s2b ∂γ̂∂s + σ1(sb)2 − sb(1 + sγ̂)]λ1

+ [sb + γ̂(1 + b + sb + s2b)]∂λ
1

∂s ,

and

Â5(s, σ1, γ̂, λ1, u1, x̃ j)

= s ∂
2λ1

∂s2 + ∂λ1

∂s +
[

(1 + b + sb + s2b)∂λ
1

∂s

](1− γ̂) 1
n−1

n∑
j=2

x̃ j − u1

+ γ̂λ1
(

1 + s ∂λ
1

∂s

)

+ sλ1

1− sb 1
n−1

n∑
j=2

x̃ j

 ∂γ̂
∂s + σ1(sb)2

(
3λ1 + ∂λ1

∂s

)
− Â4(s, σ1, γ̂, λ1, u1, x̃ j).

As in Corollary 5.1 optimal opinion of agent 1 is a solution of a cubic equation x1∗ takesthree values and because of rationality he chooses that x1∗ which has the maximum value. If
x1∗ = {x1∗

1 , x1∗
2 , x1∗

3 } then optimal opinion of the leader is x̄1∗ = max{x1∗
1 , x1∗

2 , x1∗
3 }. Undercomplete information all the other agents has the information about x̄1∗ before a game starts andadjusts their opinions on it. The network is represented by a direct graph with edges directed fromall the agents towards the leader. Thus η1 = ∅, ηi = {1},∀i ∈ N \ {1} [9]. Each of other agentsrepresented by i ∈ N \ {1} minimizes the expectation of his cost functional expressed in Equation(2.1) where wi j 6= 0 if j = 1, subject to his stochastic opinion dynamics

dx i(s) =
[

1
λ̃i

(
kix

i(s) + wi1x̄
1∗)+ ξ̂i(s)

(
x i(s)− x̄1∗)− ui(s)

]
ds +

√
2σBi(s), (5.20)

where for all i ∈ N \ {1}, ξ̂i(s) =
wi1 cosh

(√
λ̃i (t−s)

)
λ̃i cosh

(√
λ̃i t
) , λ̃i = ki + wi1, ui(s) is the control of opinion,

σ > 0 is a constant diffusion component and Bi(s) the Brownian motion of agent i . In this frameworkwe assume that, apart from the leader other agents have very small influence in i th agent’s opinion.
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Proposition 5.2. Suppose, there is a network where all agents are unilaterally connected to their
leader. Let agent i minimizes his objective cost function

E

{
1
2

n−1∑
i=1

wi1
[
x i(s)− x j(s)

]2
+ 1

2ki
[
x i(s)− x i0

]2
+ 1

2

[
ui(s)

]2}
, (5.21)

subject to the stochastic opinion dynamics expressed in Equation (5.20). For b, d > 0, define
hi(s, x i) = exp(sbx i + d).

(i) Then for

f i(s, x, λi , ui) = 1
2

n−1∑
i=1

wi1
(
x i − x j

)2
+ 1

2ki
(
x i − x i0

)2
+ 1

2

(
ui
)2

+ bλix ihi(s, x i) + ∂λi

∂s h
i(s, x i)

+ sbλihi(s, x i)
[

1
λ̃i

(
kix

i + wi1x̄
1∗)+ ξ̂i

(
x i − x̄1∗)− ui]+ s2b2σλihi(s, x i),

we have a feedback Nash Equilibrium control of opinion dynamics

φi∗0 (s, x i) = p̃ +

{
q̃ +

[
q̃2 + (r̃ − p̃2)3

] 1
2

} 1
3

+

{
q̃ −

[
q̃2 + (r̃ − p̃2)3

] 1
2

} 1
3

, (5.22)
where

p̃ = −
B̃2(s, ξ̂i , x

i , x j , λi)

3B1(s, x i , λi)
,

q̃ = p̃3 +
B̃2(s, ξ̂i , x

i , x j , λi)B̃3(s, ξ̂i , x
i , x j , λi)− 3B̃1(s, x i , λi)B̃4(s, ξ̂i , x

i , x j , λi)

6[B̃1(s, x i , λi)]2
,

r̃ =
B̃3(s, ξ̂i , x

i , x j , λi)

3B̃1(s, x i , λi)
,

B̃1 = (C̃2)2, B̃2 = −C̃2(2Ã2 + C̃1), B̃3 = (Ã2)2 − 2Ã2C̃1C̃2 − (C̃3)2, B̃4 = Ã1C̃3 − C̃1(Ã2)2,
C̃1 = sbλihi(s, x i), C̃2 = (sb)3λihi(s, x i), and C̃3 = (sb)2λihi(s, x i).

(ii) For a unique solution of the wave function Ψis(x) as expressed in Proposition 4.2 and λi(s)

is a C2 function with respect to s , an optimal opinion x i∗ is obtained by solving following equation

sb3λihi(s, x i)(x i)2 + hi(s, x i)

{
2bλi + sb2 ∂λi

∂s + s[1 + sb2 ∂λi

∂s + bλi(1 + b + sb)]

(
ξ̂i +

ki

λ̃i

)
+ s2b2 ∂ξ̂i

∂s + s3b4σλi − sb2λi
[

1 + s

(
ξ̂i +

ki

λ̃i

)]}
x i − (ki + wi1)x i + hi(s, x i)×{

sb ∂
2λi

∂s2 + b ∂λ
i

∂s − sb[sb ∂λ
i

∂s + λi(1 + b + sb)]

[(
ξ̂i +

wi1

λ̃i

)
x̄1∗ + ui

]
+

(
ξ̂i +

ki

λ̃i

)
×

b(λi + ∂λi

∂s ) + sbλi(1− sbx̄1∗)∂ξ̂i∂s + s2b3σλi(1 + 2s + s ∂λ
i

∂s )− bÃ4(s, σ, ξ̂i , λ
i , ui , x j)

}
+ Ã3(wi1, ki , x

j) = 0,
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which is

x i∗ = Ã12 +

{
Ã13 +

[
(Ã13)2 + [Ã14 − (Ã12)2]3

] 1
2

} 1
3

+

{
Ã13 −

[
(Ã13)2 + [Ã14 − (Ã12)2]3

] 1
2

} 1
3

,(5.23)
where

Ã14 =
Ã10(s, σ, ξ̂i , λ

i , ui)

3Ã8(s, λi)
,

Ã13 = (Ã12)3 +
Ã9(s, σ, ξ̂i , λ

i , ui)Ã10(s, σ, ξ̂i , λ
i , ui)− 3Ã8(s, λi)Ã11(s, σ, ξ̂i , wi1, ki , λ

i , ui , x j)

6[Ã8(s, λi)]2
,

Ã12 = −
Ã9(s, σ, ξ̂i , λ

i , ui)

3Ã8(s, λi)
,

Ã11(s, σ, wi1, ki , ξ̂i , λ
i , ui , x j) = Ã3(wi1, ki , x

j) + eÃ7(s, σ, ξ̂i , λ
i , ui),

Ã10(s, σ, wi1, ki , ξ̂i , λ
i , ui) = ki + wi1 + eÃ6(s, σ, ξ̂i , λ

i , ui) + sbÃ7(s, σ, ξ̂i , λ
i , ui),

Ã9(s, σ, ξ̂i , λ
i , ui) = e + Ã5(s, λi) + sbÃ6(s, σ, ξ̂i , λ

i , ui),

Ã8(s, λi) = sbÃ5(s, λi),

Ã7(s, σ, ξ̂i , λ
i , ui) = sb ∂

2λi

∂s2 + b ∂λ
i

∂s − sb[sb ∂λ
i

∂s + λi(1 + b + sb)]

[(
ξ̂i +

wi1

λ̃i

)
x̄1∗ + ui

]
+

(
ξ̂i +

ki

λ̃i

)
× b(λi + ∂λi

∂s ) + sbλi(1− sbx̄1∗)∂ξ̂i∂s + s2b3σλi(1 + 2s + s ∂λ
i

∂s )− bÃ4(s, σ, ξ̂i , λ
i , ui),

Ã6(s, σ, ξ̂i , λ
i , ui) = 2bλi + sb2 ∂λi

∂s + s[1 + sb2 ∂λi

∂s + bλi(1 + b + sb)]

(
ξ̂i +

ki

λ̃i

)
+ s2b2 ∂ξ̂i

∂s + s3b4σλi − sb2λi
[

1 + s

(
ξ̂i +

ki

λ̃i

)]
,

Ã5(s, λi) = sb3λi ,

Ã4(s, σ, ξ̂i , λ
i , ui) = λi + s ∂λ

i

∂s + s2bλi
(
wi1

λ̃i
x̄1∗ − ξ̂i x̄1∗ − ui

)
+ sλi

[
ξ̂i +

ki

λ̃i
+ s2b3σ

]
,

and

Ã3(wi1, ki , x
j) = wi1x

j + kix
i
0.

Proof. (i). For b > 0, d > 0 let hi(s, x i) = exp(sbx i + d), ∂
∂s h

i(s, x i) = bx ihi(s, x i), ∂
∂x i
hi(s, x i) =

sbhi(s, x i) and ∂2

∂(x i )2 h
i(s, x i) = s2b2hi(s, x i). Hence, Proposition 4.1 implies,

f i(s, x, λi , ui) = 1
2

n−1∑
i=1

wi1
(
x i − x j

)2
+ 1

2ki
(
x i − x i0

)2
+ 1

2

(
ui
)2

+ bλix ihi(s, x i) + ∂λi

∂s h
i(s, x i)

+ sbλihi(s, x i)
[

1
λ̃i

(
kix

i + wi1x̄
1∗)+ ξ̂i

(
x i − x̄1∗)− ui]+ s2b2σλihi(s, x i).
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∂
∂x i
f i(s, x, λi , ui) = wi1(x i − x j) + ki(x

i − x i0) + bhi(s, x i)

{
s ∂λ

i

∂s

+ λi
[

1 + bsx i + s2b
[

1
λ̃i

(
kix

i + wi1x̄
1∗)+ ξ̂i

(
x i − x̄1∗)− ui]

+ s

(
ξ̂i +

ki

λ̃i

)
+ σs3b2

]}
= Ã1(s, ξ̂i , x

i , x j , λi)− s2b2λihi(s, x i)ui ,

∂2

∂(x i )2 f
i(s, x, λi , ui) = wi1 + ki + sb2hi(s, x i)

{
s ∂λ

i

∂s + λi
[

1 + sbx i + s

(
ξ̂i +

ki

λ̃i

)
+ σs3b2

+ s2b
[

1
λ̃i

(
kix

i + wi1x̄
1∗)+ ξ̂i

(
x i − x̄1∗)− ui]]}+ sb2λi

(
ξ̂i +

ki

λ̃i

)
hi(s, x i)

= Ã2(s, ξ̂i , x
i , x j , λi)− s3b3λihi(s, x i)ui ,

∂
∂ui
f i(s, x, λi , ui) = ui − sbλihi(s, x i),

and,
∂2

∂x i∂ui
f i(s, x, λi , ui) = −s2b2λihi(s, x i).

Therefore, Equation (4.21) implies[
ui − sbλihi(s, x i)

] [
Ã2(s, ξ̂i , x

i , x j , λi)− s3b3uiλihi(s, x i)
]2

= 2s2b2λihi(s, x i)
[
s2b2uiλihi(s, x i)− Ã1(s, ξ̂i , x

i , x j , λi)
]
,

and the cubic polynomial of agent i with respect to control under the presence of a leader is
B̃1(s, x i , λi)(ui)3 + B̃2(s, ξ̂i , x

i , x j , λi)(ui)2 + B̃3(s, ξ̂i , x
i , x j , λi)ui + B̃4(s, ξ̂i , x

i , x j , λi) = 0,

where B̃1 = (C̃2)2, B̃2 = −C̃2(2Ã2 + C̃1), B̃3 = (Ã2)2 − 2Ã2C̃1C̃2 − (C̃3)2, B̃4 = Ã1C̃3 − C̃1(Ã2)2,
C̃1(s, x i , λi) = sbλihi(s, x i), C̃2(s, x i , λi) = (sb)3λihi(s, x i), and C̃3(s, x i , λi) = (sb)2λihi(s, x i).Therefore, feedback Nash equilibrium control under the presence of a leader is

φi∗0 (s, x i) = p̃ +

{
q̃ +

[
q̃2 + (r̃ − p̃2)3

] 1
2

} 1
3

+

{
q̃ −

[
q̃2 + (r̃ − p̃2)3

] 1
2

} 1
3

,

where
p̃ = −

B̃2(s, ξ̂i , x
i , x j , λi)

3B1(s, x i , λi)
,

q̃ = p̃3 +
B̃2(s, ξ̂i , x

i , x j , λi)B̃3(s, ξ̂i , x
i , x j , λi)− 3B̃1(s, x i , λi)B̃4(s, ξ̂i , x

i , x j , λi)

6[B̃1(s, x i , λi)]2
,

r̃ =
B̃3(s, ξ̂i , x

i , x j , λi)

3B̃1(s, x i , λi)
.
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∂
∂x i
f i [s, x(s), λi(s), ui(s)]

= x i(ki + wi1)− (wi1x
j + kix

i
0) + bhi(s, x i)

{
sbλix i

[
1 + s(ξ̂i +

ki

λ̃i
)

]
+ λi + s ∂λ

i

∂s

+ s2bλi
[(
wi1

λ̃i
− ξ̂i

)
x̄1∗ − ui

]
+ sλi

[
ξ̂i +

ki

λ̃i
+ s2b3σ

]}
= x i(ki + wi1)− Ã3(wi1, ki , x

j) + bhi(s, x i)

[
Ã4(s, σ, ξ̂i , λ

i , ui) + sbλix i
[

1 + s

(
ξ̂i +

ki

λ̃i

)]]
,

(5.24)
the left hand side implies

∂
∂s f

i [s, x(s), λi(s), ui(s)]

= hi(s, x i)

{
λi(bx i)2 + ∂2λi

∂s2 + bx i ∂λ
i

∂s

+ b
[
s ∂λi∂s + λi(1 + sx i)

] [ 1

λ̃i
(kix

i + wi1x̄
1∗) + ξ̂i(x

i − x̄1∗)− ui
]

+ sbλi
(
x i − x̄1∗) ∂ξ̂i

∂s + s2b2σ ∂λ
i

∂s + sb2σλi [2 + sbx i ]

}
,

and
∂2

∂s∂x i
f i [s, x(s), λi(s), ui(s)]

= hi(s, x i)

{
2bλix i + sb3λi(x i)2 + sb ∂

2λi

∂s2 + b(1 + sbx i)∂λ
i

∂s +
[

(sb)2 ∂λi

∂s + sbλi(1 + b + sb)
]
×[

1

λ̃i
(kix

i − wi1x̄1∗) + ξ̂i(x
i − x̄1∗)− ui

]
+

(
ξ̂i +

ki

λ̃i

)[
sb ∂λ

i

∂s + bλi(1 + sx i)
]

+ sbλi
[
1 + sb

(
x i − x̄1∗)] ∂ξ̂i

∂s + s2b3σλi [1 + 2s + sbx i + s ∂λ
i

∂s ]

}
. (5.25)

Comparing Equations (5.24) and 5.25 we get,
hi(s, x i)

{
2bλix i + sb3λi(x i)2 + sb ∂

2λi

∂s2 + b(1 + sbx i)∂λ
i

∂s +
[

(sb)2 ∂λi

∂s + sbλi(1 + b + sb)
]
×[

1

λ̃i
(kix

i − wi1x̄1∗) + ξ̂i(x
i − x̄1∗)− ui

]
+

(
ξ̂i +

ki

λ̃i

)[
sb ∂λ

i

∂s + bλi(1 + sx i)
]

+ sbλi
[
1 + sb

(
x i − x̄1∗)] ∂ξ̂i

∂s + s2b3σλi [1 + 2s + sbx i + s ∂λ
i

∂s ]

}
= x i(ki + wi1)− Ã3(wi1, ki , x

j) + bhi(s, x i)

[
Ã4(s, σ, ξ̂i , λ

i , ui) + sbλix i
[

1 + s

(
ξ̂i +

ki

λ̃i

)]]
.
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sb3λihi(s, x i)(x i)2 + hi(s, x i)

{
2bλi + sb2 ∂λi

∂s + s[1 + sb2 ∂λi

∂s + bλi(1 + b + sb)]

(
ξ̂i +

ki

λ̃i

)
+ s2b2 ∂ξ̂i

∂s + s3b4σλi − sb2λi
[

1 + s

(
ξ̂i +

ki

λ̃i

)]}
x i − (ki + wi1)x i + hi(s, x i)×{

sb ∂
2λi

∂s2 + b ∂λ
i

∂s − sb[sb ∂λ
i

∂s + λi(1 + b + sb)]

[(
ξ̂i +

wi1

λ̃i

)
x̄1∗ + ui

]
+

(
ξ̂i +

ki

λ̃i

)
×

b(λi + ∂λi

∂s ) + sbλi(1− sbx̄1∗)∂ξ̂i∂s + s2b3σλi(1 + 2s + s ∂λ
i

∂s )− bÃ4(s, σ, ξ̂i , λ
i , ui)

}
+ Ã3(wi1, ki , x

j) = 0,

or,
Ã5(s, λi)hi(s, x i)(x i)2 + Ã6(s, σ, ξ̂i , λ

i , ui)hi(s, x i)x i + (ki + wi1)x i

+ Ã7(s, σ, ξ̂i , λ
i , ui)hi(s, x i) + Ã3(wi1, ki , x

j) = 0. (5.26)
As in Equation (5.26) hi(s, x i) = exp(sbx i + d), for b > 0, d > 0 fixed and a very small value of x iit can be approximated as hi(s, x i) = 1 + (sbx i + d) + o([sbx i + d ]2) ≈ 1 + d + sbx i = e + sbx iwhere assume e = 1 + d .Therefore, we get a cubic equation expressed as,

Ã8(s, λi)(x i)3 + Ã9(s, σ, ξ̂i , λ
i , ui)(x i)2

+ Ã10(s, σ, wi1, ki , ξ̂i , λ
i , ui , x j)x i + Ã11(s, σ, wi1, ki , ξ̂i , λ

i , ui , x j) = 0, (5.27)
where

Ã8(s, λi) = sbÃ5(s, λi),

Ã9(s, σ, ξ̂i , λ
i , ui) = e + Ã5(s, λi) + sbÃ6(s, σ, ξ̂i , λ

i , ui),

Ã10(s, σ, wi1, ki , ξ̂i , λ
i , ui , x j) = ki + wi1 + eÃ6(s, σ, ξ̂i , λ

i , ui) + sbÃ7(s, σ, ξ̂i , λ
i , ui),

and
Ã11(s, σ, ξ̂i , λ

i , ui , x j) = Ã3(wi1, ki , x
j) + eÃ7(s, σ, ξ̂i , λ

i , ui).

Solving Equation (5.27) gives agent i ’s optimal opinion
x i∗ = Ã12 +

{
Ã13 +

[
(Ã13)2 + [Ã14 − (Ã12)2]3

] 1
2

} 1
3

+

{
Ã13 −

[
(Ã13)2 + [Ã14 − (Ã12)2]3

] 1
2

} 1
3

,(5.28)
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Ã12 = −

Ã9(s, σ, ξ̂i , λ
i , ui)

3Ã8(s, λi)
,

Ã13 = (Ã12)3 +
Ã9(s, ξ̂i , γ, λ

i , ui)Ã10(s, σ, wi1, ki , ξ̂i , λ
i , ui , x j)− 3Ã8(s, λi)Ã11(s, σ, wi1, ki , ξ̂i , λ

i , ui , x j)

6[Ã8(s, λi)]2
,

and
Ã14 =

Ã10(s, σ, wi1, ki , ξ̂i , λ
i , ui , x j)

3Ã8(s, λi)
.

�

6. Discussion
This paper shows consensus as a feedback Nash equilibrium from a stochastic differential game.The same integral cost function has been used as in [9] subject to a stochastic opinion dynamics. AFeynman-type path integral approach has been used to construct a Wick-rotated Schrödinger typeequation (i.e a Fokker-Plank diffusion equation). Finally, optimal opinion x i∗ and control ui∗ havebeen determined after solving the first order condition of the Wick-rotated Schrödinger equation.So far from my knowledge, this is a new approach. As different people have different opinions,an opinion changes over time and stubbornness and influence from others have some effects onindividual decisions under the assumption that human body is a automaton. The fundamentalassumption of this paper is opinion dynamics is stochastic in nature which is another contributionof this paper. Furthermore, results of this paper give more generalized solution of opinion dynamicsthan [9].
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