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Abstract. This paper introduces time variant wave-signal-amplitude cosine and sine regression asan extension to wave signal Fourier function and Wave-Shape Function (WSF) model. A full-scaleconditional characterization of the linear time variant wave-signal-amplitude cosine and sine model ofcosine and sine function with random errors (ηi ) was proposed. The associated regression coefficientswere estimated via the Ordinary Least Square (OLS) technique, such that, the model wave signal,frequency, and phase were carved-out. In application to real life problem, the wave-signal-amplitudetrigonometry model was applied to the real-time observations of the latitude and longitude of the wavebuoys’ Belmullets of the Atlantic Ocean. The full-scale real-time observations of the wave climateare the time-variant significant wave height (in metre), peak wave (in oC) and sea temperature (in
oC) from 2012 to 2022.

1. Introduction
Oscillatory and wave signal (wavelike motion) have started receiving significant attention overthe past century. Wave signals can be in terms of static or dynamic amplitude and frequency.Static wavy signals can be interpreted as uniform or non-uniform time-varying components ofamplitude and frequency, while dynamic components can be connoted as components of amplitudeand frequency without time-varying traits [1, 2, 3].According to [4, 5], real-valued oscillatory and wave signals are mostly expressed in terms of timedomain, such that they are valued as time step. This can be perceived as a useful structurizationof periodic function, commonly a Fourier function or frequency domain process. Real-world wave
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Eur. J. Stat. 10.28924/ada/stat.3.12 2signals are sometimes not fully periodic, in such scenario, frequency spectra are used to changethe time variant, see [6, 7, 8]. Consequently, this led to the concept of wavelets, as a means forbridging the lacuna between frequency and time domain. [9] theorized wavelets as a representationof repeatable structure of seismic signals. Wavelike motion function was proposed by [10] as trend-and noise-free oscillatory signal model of paired amplitude-oscillation of the realization of the form
f (t) = A(t)s (φ(t)), where A ∈ C1(R); t ∈ R; A ∈ C1(R) is the time-varying amplitude of positivesmooth function called Amplitude Modulation (AM). φ ∈ C2(R) is the quantifiable monotonicincreasing function of the signal oscillate known as phase function, and φ is the modulus coefficientknown as Instantaneous Frequency (IF); s(t) is a 1-periodic of Wave-Shape Function (WSF), (Seeappendix for slowing and time-varying conditions that must be satisfied).One of the wave signal and oscillatory processes widely consider is the superimposition ofAmplitude-and-Frequency-Modulated (AMFM) components, such that the signal must satisfy theIntrinsic Mode Type (IMT) condition, that is, A(t) cos (2πφ(t)), see [11, 12]. The wave signal oftime-varying frequency and amplitude are usually faced with the lacuna of not being oscillating si-nusoidal, e:g Electrocardiogram (ECG), Ocean Wave (OW), Sparse Time-Frequency (STF), ArterialBlood Pressure (ABP) etc. [13, 14, 15]. However, ECG signal represents one human heartbeat withits form and structure not related to sine wave. Statistically, non-sinusoidal are usually refer toas Wave-Shape Function (WSF, usually abbreviated as WSFv1 or WSFv2 for different types of itsvariation), otherwise known as 1-periodic function by mathematicians. Non-sinusoidal phenome-non via its variations of WSF model have been propounded to accommodate finer structures hiddeninside the WSFv1 variant, while WSFv2 was propounded to accommodate wave-shape oscillatorymodel and time-varying oscillatory pattern [16, 17].Different algorithms have been developed to study oscillatory and wave signal facing differentchallenges of WSFv1 and WSFv2. The notion of degree of nonlinearity and extraction of intrinsicfrequency information are usually used to define sparse time-frequency via some selected algorithms[18, 19, 20].The de-shape algorithm that was developed for the WSFv2 variant usually reduces the impingeof harmonics; such that an exponentiated nonlinear regression approach was propounded basedon WSFv2 to decompose signals with time-varying wavelike motion, see [21]. In relation to recentwork on wave signals and oscillation, [22, 23] presented a new method of systematic analysis ofsignals called Square-Wave Method (SWM). The SWM technique is based on the representation oftypes of signals using sum of trains square waves that are either global or local that lies solely onone time variable “t” (time). They applied the SWM to several analytical characterization signalsand audio signal. [24] considered Gravitational Wave (GW) production of hybrid inflation modelsfor an axion-like waterfall field connected to Abelian gauge fields. They deduced that the linearanalysis of GW signal from the inflationary model can be within the reach of variety of foreseeable
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Eur. J. Stat. 10.28924/ada/stat.3.12 3GW experiments in terms of frequency range and signal strength. They also affirmed that theinflationary models are equivalent to primordial black hole, see [25, 26].[27] proposed a nonlinear regression scheme to disintegrate signals into its constitutional mul-tiple oscillatory components with time-varying frequency, wave-shape function, and amplitude.They coined-out Shape-Adaptive Mode Decomposition (SAMD) algorithm for solving its coeffi-cients of two physiological signals (impedance pneumography and electroencephalography) afterapplying simulated signals to SAMD. They compared recursive diffeomorphism-based regression,linear regression and multiresolution mode decomposition solutions and ascertained that the pro-posed SAMD meaningful decomposed with computational efficiency. [28, 29] developed a modelverification test in the presence of a random walk-like structure in partial changing frequency ofcomplex-valued sinusoidal signals measured in additive normally distributed noise. The evaluatedtest makes joint inference of random walk hypothesis tests in economics that link random walkbehaviors in time series data, and how the test can be used to account for random walk behaviourin frequency space.Affirmed by [30], among the problems usually encounter when dealing with oscillatory and wavesignals are the decomposition of signals; periodicity transformation in generalization to time-frequency domain; and how to handle non-sinusoidal oscillatory signals. Among the developedalgorithms to solve some of the mentioned problems are haemo-dynamic waveform analyses, ac-celerometer analysis for gait cadence, photoplethysmography (PPG), and detection of motion ar-tifact in PPG. Among the several efforts channeled towards research direction were to simplifyoscillatory change detection point in models; handling case when WSF dramatically change fromone pattern to another; stretching of wave-shape oscillatory model [31]. Another challenge posedby wave-signals’ processing is when each component of the wave-signal has an oscillatory pattern;when the wave-shape function is non-sinusoidal function; or when the oscillatory pattern possesseda non-uniform time variant [32]. In instances that multiple components exist, each component ofthe wave signal is usually decomposed for extraction of dynamics information, but a widely knownand acceptable method or solution for extracting convincing dynamics information is still lacking.Among the recently studied analytic model with complex analysis perspective of analytic signalmodel are Trigonometric seasonality, Box-Cox transformation, ARIMA errors, Trend and Seasonalcomponents (TBATS), time-varying autoregressive model, wave-shape oscillatory model etc. [33].In line of wave signal decomposition, this research work will be extending wave signal de-composition to wave-signal-amplitude time variant trigonometry (cosine and sine) regression. Theamplitude, phase, and other wave regression coefficients will be estimated using the Ordinary LeastSquare (OLS) parameter estimation technique. The regression needed sample size (positive inte-gers) for the asymptotic properties that minimizes residual for time variant wave-signal-amplitude
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Eur. J. Stat. 10.28924/ada/stat.3.12 4trigonometry regression of order “N” will be carried-out via [34]’s criterion of sufficiently needed“N”.
2. Methodology

Let f : Ki → < be a real-valued function satisfying appropriate conditional characterization of
ηi(i = 0, · · · , N) 3 Ki ∈ [0, 2πGi ], E(ηi) = 0 and V ar(ηi) = σ2. Then a linear time variantwave-signal-amplitude trigonometry model of cosine and sine function with random errors ηi canbe defined as:

X = f (G,Θ) + ηi (1)Such that, ηi ≈ (0, 1), Θ = {a0, a, b} and i = 0, · · · , N

f (G,Θ) = a0 + a + bG (2)
So, Xi = a0 + a + bGi + ηi (X = a0 + a + bG + η in matrix form)Such that,

a0 = θ0

a = θ1 sin
(

2pi

(
Gi/t

))
b = θ2 cos

(
2pi

(
Gi/t

))
This implies that,

Xi = θ0 + θ1 sin
(

2pi

(
Gi/t

))
+ θ2Gi cos

(
2pi

(
Gi/t

))
+ ηi (3)

Xi is a vector of responses.
{θ0, θ1, θ2} are the wavy-signal-amplitude trigonometry regression coefficients to be estimated.
Gi is a full rank design matrix of explanatory variable.“t” is the time variant of the wave that can be in minutes, hours, days, weeks, months, years etc.
3. Parameter estimation of the time variant wavy-signal-amplitude trigonometry regressioncoefficients via ordinary least square (OLS)

Adopting the OLS parameter estimation technique will make it possible to estimate θ̂0, θ̂1 and
θ̂2 via minimizing the sum of squared residuals.

Xi = θ0 + θ1 sin
(

2pi

(
Gi/t

))
+ θ2Gi cos

(
2pi

(
Gi/t

))
+ ηi (4)

RSS =

N∑
i=1

η̂2i =

N∑
i=1

[
Xi − θ0 − θ1 sin

(
2pi

(
Gi/t

))
− θ2Gi cos

(
2pi

(
Gi/t

))]2 (5)
In order to maximize RSS, θ̂0, θ̂1 and θ̂2 will be differentiated and equate their derivations tozero for a system of equations. That is, the least square estimator of θ0, θ1 & θ2, say θ̂0, θ̂1 and θ̂2must be satisfied,
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Equating (6), (7), and (8) to zero gives;

N∑
i=1

[
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− θ2Gi cos

(
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= 0 (9)
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Equation (9), (10) and (11) are called the Normal equations to be solved for θ0, θ1 & θ2 respec-tively. Such that, the amplitude is the θ0 and phase of the model is arctan(θ1/θ2), such that wavesignal = sin
(

2× π × t ×
(
f̂ + θ̂0 + θ̂1 + θ̂2

)), where f̂ is the frequency. The Normal equationscan be subjected to system of equation by [35] for the embedded parameters to be estimated.
4. Selecting the Regression Size Order for the Time Variant Wavy-Signal-AmplitudeTrigonometry Regression Function

We shall be studying the method of selecting how large the sample size “N” from a data thatbest given a good estimator of the point wise of θ̂0, θ̂1 & θ̂2 the model mean square and modelperformance index. We shall base the sufficiently needed “N” to nullify the variation σ̂ that can beignored on [36]’s criterion of
D(N) =

1

N

N∑
i=1

[
Xi − θ0 − θ1 sin

(
2pi

(
Gi/t

))
− θ2Gi cos

(
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(
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))]2
+

2Nσ̂2

n
(12)

Where ∧
σ2 is any consistent estimator of the σ2η , see [37]. We are particular about the value of

N̂n that minimize D(N) over the positive integers asymptotic properties of D(N) for selecting thetime variant wave-signal-amplitude trigonometry regression of order “N”.Assuming is the minimizer of equation (12), then
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This asserts that for the loss function

γn(N) =

2πGi∫
0

(
f (G,Θ)− f̂
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)2 (14)
We have γn(N̂n)

Min
0≤N≤n−1

γn(N)
1, as n →∞ (Even if the absolute continuity assumption is not satisfied)If this assumption is satisfied, we have
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Its consequence is
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0
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N̂n
(G,Θ)

)2
= Op

(
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n
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This implies that γn(N) = Op

(
1√
n

). That is, any sufficient large size of “n” will be required forestimating {θ0, θ1, θ2, σ2} since 0 ≤ N ≤ n− 1. So, any sufficiently needed sample size must besufficiently large that is far greater than zero.
5. Numerical Analysis

Real-time observations from the Atlantic Marine Energy Test Site (AMETS) data dashboardof wave buoys known as Belmullet Inner (Berth B) and Belmullet Outer (Berth A) are tools thatdisplay the real-time performance indicators related to the wave climate. The real-time performancemeasured by AMETS is being developed by Sustainable Energy Authority of Ireland (SEAI) tofacilitate testing of full-scale wave climate and height floating offshore wind technologies in an openocean harsh met-ocean environment. The full-scale wave climate is the time-variant significant waveheight (metre), peak wave direction (in oC), and sea temperature (in oC) respectively. This researchpresents an assessment of the wave resource at the AMETS on the west coast of Ireland based on10-years of recorded data from 2012 to 2022. The primary aim is to provide an assessment of thewave characteristics and resource variability at the two deployment berths.
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Eur. J. Stat. 10.28924/ada/stat.3.12 7Table 1. Amplitude Regression Coefficients of Latitudes and Longitudes for SeaTemperature, Peak Direction, and Significant Wave Height for Belmullet Outer(Berth A)
Coefficients ∧

θ 0
∧
θ 1

∧
θ 2 RSE MRS ARS F-statistic Phase =arctan(∧θ 1/∧θ 2)

Av.Residual
Latitude SeaTemp. A. 14.7548***(0.0154) 0.0253***(0.0149) 0.0763***(0.0248) 0.0018 0.0140 0.014 1076 0.0001 -0.0012
LongitudeSea Temp.A. -2.8052***(0.0474) -0.055***(0.0234) 0.3859***(0.0516) 0.0052 0.0657 0.0657 5330 -0.0026 -0.0016
Latitude PeakDirection.A. 14.7548***(0.0048) 0.0122***(0.0069) -0.0090***(0.0069) 0.0007 0.0228 0.0134 2.435 -0.0205 -0.0012
LongitudePeak Direc-tion. A.

-2.80523***(0.0475) -0.055***(0.0234) 0.3859***(0.0515) 0.0052 0.0657 0.0657 5330 -0.0026 -0.0017
Latitude Sig-nificant WaveHeight.A.

14.7548 ***(0.0049) 0.0040***(0.0069) 0.0109***(0.0069) 0.0007 0.0134 0.0147 1.427 0.0056 0.0020
LongitudeSignifi-cant WaveHeight.A.

-2.8053***(0.0475) -0.055***(0.0234) 0.3859***(0.0516) 0.0052 0.0657 0.0657 5330 -0.0026 -0.0016

Keys: [a] Temp = Temperature; [b] RSE = Residual Square Error; [c] MRS= Multiple R-Squared; [d] ARS= Adjusted R-Squared

5.1. Discussion: Amplitude is the peak value in either the positive or negative direction of full-scale wave climate and its direction in time-variant significant wave height (metre), peak wavedirection (in oC), and sea temperature (in oC). The latitude sea temperature of Belmullet outer(Berth A), latitude peak wave direction Belmullet outer (Berth A) and latitude significant waveheight Belmullet outer (Berth A) gave a positive response to the increment of the Atlantic Oceanwave climate of 14.7548 (0.0154), 14.7548 (0.0048), and 14.7548 (0.0049) respectively. In bracketare their p-values, there p-values are significantly less than 0.05 to connote that the amplitudeestimates are significantly estimated. This literally means that the sea temperature, peak wavedirection and wave height are positively responding and adding to the water and cooling level of theAtlantic Ocean to the north and south of the sea equator. It is to be noted that the amplitude affectsthe wave height mostly. The longitude sea temperature of Belmullet outer (Berth A), longitude peakwave direction Belmullet outer (Berth A) and longitude significant wave height Belmullet outer(Berth A) gave a negative response to the decrement of the Atlantic Ocean wave climate of -2.8052(0.0474), -2.80523 (0.0475) and -2.8053 (0.0475) respectively. Concisely, it connotes that the seatemperature, peak wave direction and wave height are negatively reducing the water and coolinglevel of the Atlantic Ocean to the north and south of the sea equator. In a similar vein, the latitudesea temperature of Belmullet inner (Berth B), latitude peak wave direction Belmullet inner (Berth
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Eur. J. Stat. 10.28924/ada/stat.3.12 8Table 2. Amplitude Regression Coefficients of Latitudes and Longitudes for SeaTemperature, Peak Direction, and Significant Wave Height for Belmullet Inner(Berth B)
Coefficients ∧

θ 0
∧
θ 1

∧
θ 2 RSE MRS ARS F-statistic Phase =arctan(∧θ 1/∧θ 2)

Av.Residual
Latitude forSea Temp. B. 14.74124***(0.01466)

0.1121***(0.0143) 0.0567***(0.0232) 0.0018 0.0724 0.07238 6581 0.0007 0.0018
Longitude forSea Temp. B. -2.7618***(0.05022) 0.0497***(0.0247) 0.3260***(0.0546) 0.0016 0.1014 0.1014 9515 0.0004 0.0013
Latitude forPeak Direc-tion.B.

14.7412***(0.0054) 0.0115***(0.0076) -0.0102***(0.0076) 0.0008 0.0181 0.0092 2.038 -0.0172 0.0015
Longitude forPeak Direc-tion.B.

-2.7618***(0.0502) 0.0498***(0.0247) 0.3261***(0.0546) 0.0016 0.1014 0.1014 9515 0.0003 0.0013
Latitude Sig-nificant WaveHeight.B.

14.7412***(0.0114) -0.0041***(0.0162) 0.0162***(0.0162) 0.0017 0.0152 -0.0192 0.4418 -0.0042 0.0020
LongitudeSignifi-cant WaveHeight.B.

-2.7617***(0.0502) 0.0497***(0.0247) 0.3260***(0.0546) 0.0016 0.1014 0.1014 9515 0.0004 0.0013

B) and latitude significant wave height Belmullet inner (Berth B) gave a positive response to theincrement of the Atlantic Ocean wave climate of 14.74124 (0.01466), 14.7412 (0.0054), and 14.7412(0.0114) respectively. The longitude sea temperature of Belmullet outer (Berth A), longitude peakwave direction Belmullet outer (Berth A) and longitude significant wave height Belmullet outer(Berth A) gave a negative response to the decrement of the Atlantic Ocean wave climate of -2.7618(0.05022), -2.7618 (0.0502) and -2.7617 (0.0502) respectively. It is also noted that all the residualsquare errors of all the Berths’ indexes are relatively small (RSE < 1), for all, this means thatthe time variant wave-signal-amplitude trigonometry regression produced a commendable residualerror of ηi .The frequency (f ) value is the number of times a wave goes through in a standard distance ortime. If the standard distance is 2π radiant, the frequency is sin(f ) and cos(f ). The wavelength (orperiod) λ is 2π/ |f |. Frequency is the number of cycles in unit time (or length in the spatial domain).From table 3 above, it is only the latitude sea temperature A., latitude peak direction A, latitudesignificant wave height A, latitude for sea Temp. B, latitude for peak direction B, and latitudesignificant wave height B gave positive frequencies and signal-waves of (14.8564, 14.776, 14.769,14.9100, 14.7425, 14.7533) and (0.7506, 0.8013, 0.8055, 0.7142, 0.8209 and 0.8147) respectively.
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Eur. J. Stat. 10.28924/ada/stat.3.12 9Table 3. Frequency and Signal-Wave Belmullet Outer (Berth A) and BelmulletInner (Berth B)
Latitude and Longitude of Belmullets f̂ Sin(f̂ ) Cos(f̂ ) 2π/ |f | Signal-WaveLatitude Sea Temperature A 14.8564 0.7523 -0.6588 0.4231 0.7506Longitude Sea Temperature A -2.4743 -0.6189 -0.7855 2.5404 -0.6208Latitude Peak Direction A 14.776 0.8028 -0.5963 0.4254 0.8013Longitude Peak Direction A -2.3859 -0.6858 -0.7278 2.6345 -0.6876Latitude Significant Wave Height A 14.769 0.8065 -0.5912 0.4256 0.8055Longitude Significant Wave Height A -2.4744 -0.6188 -0.7856 2.5403 -08.620Latitude for Sea Temperature B 14.9100 -0.6982 0.7159 0.4216 0.7142Longitude for Sea Temperature B -2.593 -0.5215 -0.8533 2.4241 -0.5236Latitude for Peak Direction B 14.7425 0.8223 -0.5690 0.4264 0.8209Longitude for Peak Direction B -2.3859 0.6858 -0.7278 2.6345 -0.6876Latitude Significant Wave Height B 14.7533 0.8161 -0.5779 0.4261 0.8147Longitude Significant Wave Height B -2.386 0.6857 -0.7279 2.6344 -0.6876

This means that the length occupied in one complete cycle (wavelength) for the stated indexesare 14.8564, 14.776, 14.769, 14.9100, 14.7425 and 14.7533 respectively. The whole berth indexesproduced positive wavelength (period) for all.
6. Conclusion

Time variant wavy-signal-amplitude trigonometry regression was extensively studied as a condi-tional characterization of cosine and sine function with random errors ηi . The parameter estimationof the amplitude, phase, wavelength, wave signal and other regression coefficients were estimatedusing the Ordinary Least Square (OLS) estimation technique. The needed sample size for robustand efficient of these mentioned estimates and their consistency was carried-out by the Mallow’s(1973) criterion. Real-time observations of wave buoys: Belmullet Inner (Berth B) and Belmul-let Outer (Berth A) from the Atlantic Marine Energy Test Site (AMETS) of the Atlantic Oceanwere subjected to the time variant wavy-signal-amplitude trigonometry regression. The latitudesea temperature of Belmullets (Berth A and B), latitude peak wave direction Belmullets (Berth Aand B) and latitude significant wave height Belmullets (Berth A and B) gave a positive responseto the increment of the Atlantic Ocean wave climate. In conclusion, the length occupied in onecomplete cycle (wavelength) for the stated indexes are 14.8564, 14.776, 14.769, 14.9100, 14.7425and 14.7533 respectively. The whole berth indexes produced positive wavelength (period) for all.
6.1. Acknowledgments. We acknowledge the Sustainable Energy Authority of Ireland (SEAI) forreleasing the datasets used for us.
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Figure 1. Cross Scatter with Density Plot of Significant Wave Height and SeaTemperature for Belmullet A and B.
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7. Appendix
Appendix 1:

For some conditions on Fourier series satisfying s(t) =
∑
γ∈Z

ŝ(γ)e iγ2πt , where ŝ(γ) are theFourier parameters. f (t) = A(t)s (φ(t)) must fulfill the following slowing and time-varying con-ditions:1. ∥∥φ′′∥∥∞ ≤ G, with G ≥ 02. For ω > 0, ∣∣A′(t)∣∣ < ωφ
′
(t) and ∣∣φ′′(t)∣∣ < ωφ

′
(t)
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