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Approximate Maximum Likelihood Estimation in Fractional Stochastic Transport Equation
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Abstract. We estimate the drift of the fractional stochastic transport equation the by maximum like-lihood and the minimum contrast methods. We show consistency and asymptotic normality of theestimators. We consider both continuous and discrete time observations.

1. Introduction
Stochastic transport equation (STE) has applications in biophysics, statistical physics, climate andweather sciences, interface growth, turbulence in fluid dynamics, polymer structure, finance andsports. The STE can be used to model air pollution, dye dispersion or traffic flow with the solutionrepresenting the density of the pollutant (or dye or traffic) at position x and time t . STE canbe useful for modeling long-range correlations of DNA sequences. Molecular motors play a keyrole for generation of movements and forces in cells. STE can be useful for modeling in biophysis,e.g., what is the maximal excursion of a molecular motor against or in the average direction of themotor within a given time? How long does it take a motor to reach its maximum excursion againstthe chemical bias? What is the entropy production associated with an extreme fluctuation of amolecular motor? Other examples are microtubule catastrophes or a sperm winning a race againsta billion competitors. Stochastic nonlinear transport equation has particular applications whichinvolve a two-phase fluid flow, which has been used to study the flow of water through oil in aporous medium. For porous media flows, the spatial variations of porous formations occur on alllength scales, but only variations at the largest length scales are reliably reconstructed from data.The heterogeneities occurring in the smaller lengths scales are incorporated stochastically.A stochastic partial differential equation (SPDE) is a continuous version of simultaneous cross-section time series model. For a fixed spatial mode, it is an autoregressive time series (recall thatan Ornstein-Uhlenbeck process is a continuous limit of Gaussian AR(1) process) and for a fixedtime, it is a regression model. One can study asymptotic estimation for one fixed time point with
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Eur. J. Stat. 10.28924/ada/stat.3.14 2large number of spatial observations or at a fixed spatial mode with large number of discrete timepoints, or simultaneous large spatial and temporal observations. We consider the estimation basedon a fixed spatial mode with large number of randomly spaced time points, where the inter arrivaltimes are exponentially distributed. Thus we have a random time sampling at a fixed space point.What mainly distinguishes SPDE from classical models is the type of sampling and the unusualrate of convergence of the estimators. Applications of SPDE model is numerous, e.g, in cell biology,neurophysiology, turbulence, oceanography and finance: see Itô [1], Walsh [2], Kallianpur and Xiong[3], Holden et al. [4], Adler et al. [5], Carmona and Rozovskii [6] and Bishwal [7]. Bishwal [7] studiedasymptotic inference for fractional SPDE model for neurobiology. Recently SPDE has been usedto model cell repolarization (stochastic Meinhardt model) and parameter estimation techniquesdeveloped for linear SPDE models have been applied to this model when the space resolutionis finer, see Altmeyer et al. [8]. In this paper we study the model used in climate variability andpredictability. Bishwal [9] studied estimation and hypothesis testing on nonlinear SPDEs from bothcontinuous and discrete observations. Bishwal [10] studied estimation by the mixingale estimationfunction method for SPDEs with random sampling. Discrete observations in time of continuousmodels are important for practical applications, e.g. stochastic volatility models, see Bishwal [11].Types of operators appearing in SPDE makes the estimation problem simple or difficult. Commut-ing operators have the same system of eigenvectors and make the corresponding finite dimensionalprojections as diffusion processes. The case is not so for noncommuting operators. Noncommutingoperators appear in quantum mechanics. According to Heisenberg’s uncertainty principle, if twooperators representing a pair of variables do not commute, then the part of variables are mutuallycomplementary, which means they can not be simultaneously measured or known precisely.Parameter estimation is an inverse problem. Loges [12] initiated the study of parameter estima-tion in infinite dimensional stochastic differential equations. When the length of the observationtime becomes large, he obtained consistency and asymptotic normality of the maximum likelihoodestimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski and Loges[13] extended the work of Loges [12] to minimum contrast estimators. Koski and Loges [14] appliedthe work to a stochastic heat flow problem. See Bishwal [15] for estimation results on likelihoodasymptotics and Bayesian asymptotics for drift estimation of finite and infinite dimensional stochas-tic differential equations. See Bishwal [16] for asymptotic statistical results for discretely sampleddiffusions.Huebner et al. [17] started statistical investigation in SPDEs. They gave two contrast examplesof parabolic SPDEs in one of which they obtained consistency, asymptotic normality and asymptoticefficiency of the MLE as noise intensity decreases to zero under the condition of absolute continuityof measures generated by the process for different parameters (the situation is similar to the classicalfinite dimensional case) and in the other they obtained these properties as the finite dimensionalprojection becomes large under the condition of singularity of the measures generated by theprocess for different parameters. The second example was extended by Huebner and Rozovskii [18]
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Eur. J. Stat. 10.28924/ada/stat.3.14 3and the first example was extended by Huebner [19] to MLE for general parabolic SPDEs wherethe partial differential operators commute and satisfy different order conditions in the two cases.Huebner [20] extended the problem to the ML estimation of multidimensional parameter. Lototskyand Rozovskii [21] studied the same problem without the commutativity condition. Small noiseasymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov andKhasminskii [22].The Bernstein-von Mises theorem (BVT, in short), concerning the convergence of suitably nor-malized and centered posterior distribution to normal distribution, plays a fundamental role inasymptotic Bayesian inference, see Le Cam and Yang [23]. Borwanker et al. [24] obtained theBVT for discrete time Markov processes. Bose [25] extended the BVT to the homogeneous nonlin-ear diffusions. As a further refinement in BVT, Bishwal [26] obtained sharp rates of convergenceto normality of the posterior distribution and the Bayes estimators for the Ornstein-Uhlenbeckprocess.All these above work on BVT are concerned with finite dimensional SDEs. Bishwal [27] provedthe BVT and obtained asymptotic properties of regular Bayes estimator of the drift parameterin a Hilbert space valued SDE when the corresponding ergodic diffusion process is observedcontinuously over a time interval [0, T ]. The asymptotics are studied as T →∞ under the conditionof absolute continuity of measures generated by the process. Results are illustrated for the exampleof an SPDE.Bishwal [28] obtained BVT and spectral asymptotics of Bayes estimators for parabolic SPDEswhen the number of Fourier coefficients becomes large. In that case, the measures generated by theprocess for different parameters are singular. Here we treat the case when the measures generatedby the process for different parameters are absolutely continuous under some conditions on theorder of the partial differential operators. Bishwal [29] studied the asymptotic properties of theposterior distributions and Bayes estimators when we have either fully observed process or finite-dimensional projections. The asymptotic parameter is only the intensity of noise. In this paper weconsider estimation for the fractional stochastic transport equation by the maximum likelihood andthe minimum contrast method. Note that for the finite dimensional fractional Ornstein-Uhlenbeckprocess, Berry-Esseen inequalities of minimum contrast estimators based on continuous and dis-crete observations was studied in Bishwal [30].We need the following preliminary results on LLN and CLT to prove our main theorems.
Lemma 1.1 (LLN)
Let ξn, n ≥ 1 be a sequence of random variables and bn, n ≥ 1 be an increasing sequence of
positive numbers such that limn→∞ bn =∞ and

∞∑
n=1

V ar(ξn)

b2
n

<∞.
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i) If the random variables ξn are independent then,

lim
n→∞

∑n
k=1(ξk − Eξk)

bn
= 0 a.s.

ii) If the random variables ξn are uncorrelated then,

lim
n→∞

∑n
k=1(ξk − Eξk)

bn
= 0 in probabi l i ty .

Part (i) is from Shiryayev [31]. Part (ii) can be proved by using Markov inequality.
Lemma 1.2 (CLT for Stochastic Integrals)
Let S = (Ω,F , P, {F}t≥0, {Wk}k≥1) be a stochastic basis. Suppose that σk ∈ L2(Ω;L2([0, T ]))

be a sequence of real valued predictable processes such that

∑n
k=1

∫ T
0 σkdWk(t)(∑n

k=1 E
∫ T

0 σ2
kdt
)1/2

→ 1 in probabi l i ty as n →∞.

Then ∑n
k=1

∫ T
0 σkdWt(∑n

k=1 E
∫ T

0 σ2
kdt
)1/2

→D N (0, 1) as n →∞.

2. Approximate Maximum Likelihood Estimation
Consider the fractional stochastic transport equation (fSTE) which governs the transport of a sub-stance which is dispersing in a moving medium in the d-dimensional space:

dUt(x) = (−νu − (v · ∇)Ut(x) +D∇2Ut(x))dt + dWH
t (x)

where the average velocity v = (v1, v2, . . . , vd), diffusivity D > 0, the leakage rate (Newton’scooling coefficient or feedback factor) ν > 0 are constants, ∇ is the gradient, ∇2 is the horizontalLaplacian and WH
t (x) is a cylindrical fractional Brownian motion with Hurst parameter H > 0.5.A fractional Brownian motion (fBM) has the covariance

C̃H(s, t) =
1

2

[
s2H + t2H − |s − t|2H

]
, s, t > 0.

For H > 0.5 the process has long range dependence or long memory and the process is self-similar.For H 6= 0.5, the process is neither a Markov process nor a semimartingale. For H = 0.5, theprocess reduces to standard Brownian motion. Fractional Brownian motion can be represented asa Riemann-Liouville (fractional) derivative of Gaussian white noise, see Decreusefond and Ustunel[32] and Jumarie [33]. For deterministic fractional calculus, see Samko et al. [34].The process WH
t (x) is the total heat flux through the upper and lower boundaries of the oceanmixed layer. The process Ut(x) = U(t, x) denotes the concentration of the substance at time t at
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Eur. J. Stat. 10.28924/ada/stat.3.14 5the point x in a bounded domain G. ∆ is the Laplacian and ∇ is the gradient with respect to thespatial variable x .The problem is to estimate a component of the velocity v, diffusivityD and the feedback parameter
ν under observations of the field U(t, x) in some region for few time moments. In other words, theproblem is how to evaluate the current and lateral and vertical heat interchange from a smallnumber of satellite images of sea surface temperature (SST).Let us introduce the partial differential operators. Let

Akφm := νkmφm, k = 0, 1

where
ν0m = α0m + iβ0m, ν1m = α1m + iβ1m, i =

√
−1and set

αm(θ) := α0m + α1mθ, m ≥ 1.where {φm, m ≥ 1} is a fixed orthogonal basis The most important observation we will focus on isthat roughly speaking the condition
∞∑
m=1

[
α2

1m

αm(θ)2
+ h2β2

1me
−2hαm(θ)

]
=∞

is necessary and sufficient for the consistency of the minimum contrast estimator (MCE) where thetime interval h = min1≤j≤N−1(tj+1 − tj). In particular, for self-adjoint operators this becomes
∞∑
m=1

α2
1m

αm(θ)2
=∞.

If A0 and A1 are elliptic differential operators then this is equivalent to
order(A0 + θ1)− order(A1) ≤ d/2.

MCE of D is consistent because order(Aθ) = order(A1) = d = 2 while the MCE of ν is notconsistent because in this case order(A1) = 0.Here Aν := ν+v ·∇−D∇2. Our aim is to estimate ν by the maximum likelihood and minimumcontrast method based on continuous and discrete observations of the amplitudes when v and Dare known. The amplitudes
Um(t) :=

∫
G

U(t, x)φm(x)dx

are independent complex-valued processes obeying the Ornstein-Uhlenbeck equations
U̇m + νm(θ)Um = σmẇm, m ≥ 1.

where ẇm is color noise. The random field U(t, x) is observed at discrete time points t and discretepositions x . Equivalently, the Fourier coefficients Um(t) are observed at discrete time points. Thusthe spatial resolution is a stochastic interacting particle system, see Ligget [35]. We obtain theasymptotics with increasing space resolution provided the time interval is finite.
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U1
m(tj) := Re(Um(t)), U2

m(tj) := Im(Um(t)).The invariant distribution is given by
Um|t=0 ∼ N

(
0,

σ2
m

2αm(θ)

)
.

Now we focus on the fundamental semimartingale behind the fSTE model. Define
κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1

H (s(t − s))
1
2
−H,

λH :=
2HΓ(3− 2H)Γ(H + 1

2 )

Γ(3/2−H)
, vt ≡ vHt := λ−1

H t2−2H, MH
t :=

∫ t

0

kH(t, s)dWH
s .

From Norros et al. [36] it is well known thatMH
t is a Gaussian martingale, called the fundamentalmartingale whose variance function 〈MH〉t is vHt . Moreover, the natural filtration of the martingale

MH coincides with the natural filtration of the fBm WH since
WH
t :=

∫ t

0

K(t, s)dMH
s

holds for H ∈ (1/2, 1) where
KH(t, s) := H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H−

3
2 dr, 0 ≤ s ≤ t

and for H = 1/2, the convention K1/2 ≡ 1 is used.
Define

Qt :=
d

dvt

∫ t

0

kH(t, s)Usds.It is easy to see that
Qt =

λH
2(2− 2H)

{
t2H−1Zt +

∫ t

0

r2H−1dZs

}
.

Define the process Z = (Zt , t ∈ [0, T ]) by
Zt :=

∫ t

0

kH(t, s)dUs .

The following facts are known from Kleptsyna and Le Breton [37]:
(i) Z is the fundamental semimartingale associated with the process X .(ii) Z is a (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0

Qsdvs +MH
t .(iii) U admits the representation

Ut =

∫ t

0

KH(t, s)dZs .

(iv) The natural filtration (Zt) of Z and (Ut) of U coincide.
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Qt =

d

dvt

∫ t

0

kH(t, s)Usds

= κ−1
H

d

dvt

∫ t

0

s1/2−H(t − s)1/2−HUsds

= κ−1
H λHt

2H−1 d

dt

∫ t

0

s1/2−H(t − s)1/2−HUsds

= κ−1
H λHt

2H−1

∫ t

0

d

dt
s1/2−H(t − s)1/2−HUsds

= κ−1
H λHt

2H−1

∫ t

0

s1/2−H(t − s)−1/2−HUsds.

The process Q depends continuously on U and therefore, the discrete observations of U doesnot allow one to obtain the discrete observations of Q. The process Q can be approximated by
Q̃n = κ−1

H λHn
2H−1

n−1∑
j=0

j1/2−H(n − j)−1/2−HUj .

It is easy to show that Q̃n → Qt almost surely as n →∞, see Tudor and Viens [38].Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk = tk , k = 1, 2, · · · , n.Define
Q̃i(tk) = κ−1

H ηHt
2H−1
k

mk∑
j=1

r
1/2−H
j (rmk − rj)

−1/2−Hui(rj)(rj − rj−1),

k = 1, 2, · · · , n.It is easy to show that Q̃i(tk)→ Qi(t) almost surely as mk →∞ for each k = 1, 2, · · · , n.We use this approximate observation in the calculation of our estimators. Thus our observationsare
Ui(t) ≈

∫ t

0

KH(t, s)dZ̃i(s) where Z̃i(t) = θ

∫ t

0

Q̃i(s)dvs +MH
tobserved at t1, t2, . . . , tn.Note that for equally spaced data

∆vti := vti − vti−1
= λ−1

H

(
T

n

)2−2H

[i2−2H − (i − 1)2−2H].

For H = 0.5,
vti − vti−1

= λ−1
H

(
T

n

)2−2H

[i2−2H − (i − 1)2−2H] =
T

n
, i = 1, 2, . . . , n

the standard equispaced partition. In this paper we do not need to assume T/n → 0 unlikethe finite dimensional diffusion models as we take advantage of the increasing spatial dimension
M →∞ in this paper.
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Eur. J. Stat. 10.28924/ada/stat.3.14 8The following is the fractional Girsanov theorem (see Decreusefond and Ustunel [32, 39]) whichwill be useful for the calculation of the likelihood ratio.
Theorem 2.1 Let T > 0 and let u : [0, T ]→ R be continuous. Suppose K satisfies the equation∫ T

0

K(s)φ(s, t)ds = u(t); 0 ≤ t ≤ T

and extend K to R by putting K(s) = 0 outside [0, T ]. Define the probability measure µ̂H on F (H)
T

by

dµ̂H(ω) = exp

{
−
∫ T

0

K(s)dWH
s −

1

2
|K|2φ

}
dµH(ω).

Then

ŴH(t) :=

∫ t

0

u(s)ds +WH(t)

is a fractional Brownian motion with respect to µ̂H.

Let the observations QNM := {(Q1
m(tj), Q

2
m(tj)), m = 1, . . . ,M, j = 1, . . . , N} be the discretedata set. The measures P θM and P θ0

M generated by the observations QNM corresponding to θ and θ0respectively are singular if and only if
∞∑
m=1

[
α2

1m

αm(θ)2
+ sin2[β1mh(θ − θ0)]e−h(αm(θ)+αm(θ0))

]
=∞.

So consistency follows from the singularity of the measures and is equivalent to it for a wide classof elliptic operators. Main contribution of the paper is that we have a time series representationof the model. It is well known that the discretized version of the O-U process is an first orderautoregressive process (AR(1)). Hence we have
Qm(tn+1) = e−νm(θ)∆tnQm(tn) + εn

where
εn ∼ N

(
0,

1− e−2νm(θ)∆tn

ν(θ)
σ2
m

)
, m ≥ 1.

Based on the discrete observations Qm(tn), m = 1, 2, . . . ,M, n = 1, 2, . . . , N , the likelihoodratio is given by
LM,N(θ, θ0) =

M∑
m=1

{
N ln

νm(θ)

νm(θ0)
−
N−1∑
n=1

ln
1− e−2νm(θ)∆vtn

1− eνm(θ0)∆vtn
− (θ − θ0)

ν1m

σ2
m

Qm(t1)

−
1

σ2
m

N−1∑
n=1

[
ν(θ)

1− e−2νm(θ)∆vtn

(
Qm(tn+1)− e−νm(θ)∆vtnQm(tn)

)2

−
ν(θ0)

1− e−2νm(θ0)∆vtn

(
Qm(tn+1)− e−νm(θ0)∆tnQm(tn)

)2
]}

.
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Eur. J. Stat. 10.28924/ada/stat.3.14 9where ∆tn = tn+1 − tn, n = 1, 2, . . . , N − 1 and t1 = 0. The MLE is defined as
θ̂M,N = armaxθLM,N(θ, θ0).

The MLE θ̂M,N can not be expressed as an explicit form. It can be computed by numerically solvingthe likelihood equation
∂LM,N(θ, θ0)

∂θ
= 0.If

∞∑
m=1

ν2
1m

ν2
m(θ)

=∞,

then the MLE θ̂M,N is consistent.Another advantage of minimum contrast estimator over MLE is it is easier to simulate as it doesnot involve the stochastic integral like the MLE. Also MCE is efficient and robust.We consider observations at one single time point {Qm(t1), m = 1, . . . ,M} for some t1 > t0.The observation Qm(t1) is Gaussian with zero mean and variance
V ar(Qm(t1)) =

σ2
m

2νm(θ)
.

Let P θM be the measure generated by the sample UNM = (Q1
m(tj), Q

2
m(tj)), m = 1, . . . ,M, j =

1, . . . , N with the parameter θ and let θ0 be the true value. Using sample independence of
Q1, Q2, . . . , QM and their Gaussianity, one can obtain that the likelihood is given by the Radon-Nikodym derivative

dP θM

dP θ0
M

= exp

{
−

1

2

[
2(θ − θ0)

M∑
m=1

ν1mQ
2
m

σ2
m

−
M∑
m=1

ln
νm(θ)

νm(θ0)

]}
where Qm = Qm(t1).Let the corresponding MLE be denoted by θ̂M , i.e.,

θ̂M = arg max
dP θM

dP θ0
M

(Qθ0
M).

Note that P θM goes to the measure P θ generated by Q(t1, x) as M → ∞. From the generalresults concerning the absolute continuity of Gaussian measures, it follows that P θ and P θ0 areabsolutely continuous (θ 6= θ0) if and only if
∞∑
m=1

ν2
1m

νm(θ)νm(θ0)
<∞.

In this case
dP θ

dP θ0
= exp

{
−

1

2

[
2(θ − θ0)

∞∑
m=1

ν1mQ
2
m

σ2
m

−
∞∑
m=1

ln
νm(θ)

νm(θ0)

]}
.

If
∞∑
m=1

ν2
1m

ν2
m(θ)

=∞,
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Eur. J. Stat. 10.28924/ada/stat.3.14 10then extending Piterbarg and Rozovskii [40, 41] it can be shown that
θ̂M → θ0 a.s. as M →∞

and if additionally
lim
M→∞

max1≤m≤M
ν2

1m

ν2
m(θ)

∞∑
m=1

ν2
1m

ν2
m(θ)

= 0,

then √√√√2

M∑
m=1

ν2
1m

ν2
m

(θ̂M − θ0)→D N (0, 1) as M →∞

since
qM(θ̂M , θ0)(θ̂M − θ0)

√√√√2

M∑
m=1

ν2
1m

νm(θ0)2
=

∑M
m=1 ζm√∑M
m=1 Eζ

2
m

.

But qM(θ̂M , θ0) → 1 almost surely as M → ∞. By the central limit theorem for i.i.d. randomvariables, we obtain the result.Let θ∗ be the MLE with respect to dP θ

dP θ0
, i.e.,

θ∗ = arg max
θ∈Θ

dP θ

dP θ0which is given by
θ∗ = G−1

θ0

( ∞∑
m=1

ν1m(Q2
m − EQ2

m)

)
where

Gθ0
(θ) = (θ − θ0)

∞∑
m=1

ν2
1m

νm(θ)νm(θ0)which is a continuously differentiable function of θ ∈ Θ for any fixed θ0.
dGθ0

(θ)

dθ
≥ δ > 0

where δ is independent of θ and θ0.Indeed,
0 < C1 < νm(θ)/νm(θ0) < C2 ∀ θ, θ0, m,it follows that the series converges uniformly with respect to θ ∈ Θ and can be differentiatedbecause the series

dGθ(θ)

dθ
=

∞∑
m=1

ν2
1m

νm(θ)2converges uniformly as well. We can set
δ = inf

θ

∞∑
m=1

ν2
1m

νm(θ)2
.

Then θ̂M → θ∗ as M →∞.
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Eur. J. Stat. 10.28924/ada/stat.3.14 11In the case of continuous observation QTM := {Qm(t), m = 1, . . . ,M, 0 ≤ t ≤ T}, the likelihoodfunction is given by
LM,T (θ, θ0) =

dP θM

dP θ0
M

= exp

{[
(θ − θ0)

M∑
m=1

∫ T

0

(
ν1mν0m

σ2
m

Qm(t)dZm(t)−
ν1mν0m

σ2
m

Q2
m(t)dvt

)

−
1

2
(θ2 − θ2

0)

M∑
m=1

∫ T

0

ν2
1m

σ2
m

Q2
m(t)dvt

]}
.

The MLE is given by
θ̂M,T =

M∑
m=1

ν1m

σ2
m

∫ T

0

Qm(t)dZm(t)−
M∑
m=1

ν1mν0m

σ2
m

∫ T

0

Q2
m(t)dvt

M∑
m=1

∫ T

0

ν2
1m

σ2
m

Q2
m(t)dvt

.

In the case of continuous observation, the contrast function is given by
KM,T (θ, θ0) =

{[
(θ − θ0)

M∑
m=1

(
ν1mν0m

σ2
m

T

2
+
ν1mλ0m

σ2
m

∫ T

0

Q2
m(t)dvt

)

+
1

2
(θ2 − θ2

0)

M∑
m=1

∫ T

0

ν2
1m

σ2
m

Q2
m(t)dvt

]}
.

The minimum contrast estimator (MCE) is defined as
θ̃M,T := arg min

θ∈Θ
KM,T (θ, θ0)

which is given by
θ̃M,T =

−
T

2

M∑
m=1

ν1mν0m

σ2
m

−
M∑
m=1

ν1mν0m

σ2
m

∫ T

0

Q2
m(t)dvt

M∑
m=1

∫ T

0

ν2
1m

σ2
m

Q2
m(t)dvt

.

Using the approximation ex ≈ 1 + x (Euler scheme) for small x , we construct the approximatecontrast function.In the case of discrete observations {Qm(tn), m = 1, 2, . . . ,M, n = 1, 2, . . . , N}, the contrastfunction is given by
KM,N(θ, θ0) =

M∑
m=1

{
−(θ − θ0)

ν1m

σ2
m

Qm(t1) −
1

σ2
m

N−1∑
n=1

[
ν(θ)

νm(θ)∆vtn
(Qm(tn+1) + νm(θ)∆vtnQm(tn))2

−
ν(θ0)

νm(θ0)∆vtn
(Qm(tn+1) + νm(θ0)∆vtnQm(tn))2

]}
.

The approximate minimum contrast estimator (AMCE) is defined as
θ̃M,N := arg min

θ∈Θ
KM,N(θ, θ0)
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θ̃M,N =

∑M
m=1[ν1m

σ2
m
Qm(t1) +

∑N−1
n=1 Qm(tn)(Qm(tn+1)−Qm(tn))]∑M

m=1
ν2

1m

σ2
m

∑N−1
n=1 Q

2
m(tn)∆vtn

.

We study the asymptotic behavior of θ̃M,T and θ̃M,N as M →∞.
Remark: Suppose that the diffusivity D is given. Then the MCE ν̃M,T is consistent for ν if andonly if d ≥ 4 for continuous observation and the AMCE ν̃M,N is consistent for ν if and only if d ≥ 2for discrete observations. By passing to discrete observations, we lose two units of dimension. If
D = 0, then the MCE is consistent for any d . The condition of zero diffusivity D = 0 is necessaryand sufficient for the consistency of the MCE of the velocity component when other componentswith ν and D are given.Suppose the velocity v is given. In this case p = 2 and p1 = 0. The MCE ν̃M,T is consistentfor ν if and only if d ≥ 2 for continuous observation and the AMCE ν̃M,N is consistent for ν ifand only if d ≥ 4 for discrete observations. Thus passing to the discrete observations, we lose twounits of dimension.In the purely dissipative case v = 0, the MLE of the diffusivity is consistent for all dimensions,and for all kinds of observations, both continuous and discrete.For discrete observations, we have the strong consistency and the asymptotic normality of theAMLE:
Theorem 2.2 a) For d ≥ 2(p − p1) and fixed N ≥ 1, θ̂M → θ0 almost surely as M →∞.b) For d = 2(p − p1) and fixed N ≥ 1, we have

(logM)1/2(θ̂M − θ)→D N (0, 1) as M →∞.

c) For d > 2(p − p1) and fixed N ≥ 1, we have
M

2p1−p+d

2d (θ̂M − θ)→D N (0, 1) as M →∞.

Proof. Recall that we have the likelihood ratio which is the Radon-Nikodym derivative of P θM withrespect to P θ0
M given by

ln
dP θM

dP θ0
M

=

{
−

1

2

[
2(θ − θ0)

M∑
m=1

ν1mU
2
m

σ2
m

−
M∑
m=1

ln
νm(θ)

νm(θ0)

]}
.

Differentiating with respect to θ, we obtain that θ̂M is the solution of the equation
2

M∑
m=1

ν1mQ
2
m

σ2
m

=

M∑
m=1

ν1m

νm(θ)
.

Put
ξm :=

Q2
m − EQ2

m√
V ar(Q2

m − EQ2
m)

=

√
2Q2

mνm(θ0)

σ2
m

−
1√
2
.
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E(ξm) = 0, E(ξ2

m) = 1, Eξ4
m <∞and

2Q2
m

σ2
m

=
1 + ξm

√
2

λm(θ0)
.On substitution

M∑
m=1

ν1m

√
2

νm(θ0)
ξm = (θ − θ0)

M∑
m=1

ν2
1m

νm(θ)νm(θ0)
.

where ξm are i.i.d. random variables satisfying the previous conditions. Dividing both sides by∑M
m=1

2ν1m

νm(θ0)2 , we have ∑M
m=1 ζm∑M
m=1 Eζ

2
m

= (θ − θ0)qM(θ, θ0)

where
ζm :=

ν1m

√
2

νm(θ0)
ξm, qM(θ, θ0) :=

∑M
m=1

ν2
1m

νm(θ)νm(θ0)∑M
m=1

ν2
1m

νm(θ0)2

.

By the law of large numbers for i.i.d. random variables (ζm, m ≥ 1) , we obtain the result.Further,
(θ̂M − θ0)qM(θ̂M , θ0)

∞∑
m=1

ν2
1m

νm(θ0)2
=

∑M
m=1 ζm∑M
m=1 Eζ

2
m

.

By the central limit theorem for i.i.d. random variables (ζm, m ≥ 1), we obtain the result since
qM(θ, θ0) = 1 and ∂qM/∂θ is uniformly bounded as shown below:

∂qM
∂θ

= −
M∑
m=1

ν3
1m

νm(θ)2νm(θ0)
/

M∑
m=1

2ν2
m

νm(θ0)2
.

Hence ∣∣∣∣∂qM∂θ
∣∣∣∣ ≤ (2C1)−1 max

m

|ν1m|
νm(θ)

.

Let θ1 ∈ Θ be arbitrary. Then
|ν1m|
νm(θ)

= (θ1 − θ)−1

∣∣∣∣ ν1m

νm(θ)
− 1

∣∣∣∣ .It follows that
|ν1m|
νm(θ)

< |θ1 − θ|−1(C2 + 1).

The arbitrariness of θ1 and the boundedness of |∂qM/∂θ| imply the uniform boundedness of
|∂qM/∂θ|.Let

GM(θ) := (θ − θ0)

M∑
m=1

ν2
1m

νm(θ)νm(θ0)
.

As earlier for Gθ0
(θ), one can show that∣∣∣∣dGM(θ)

dθ

∣∣∣∣ ≥ δ1 > 0
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Assuming that the series ∑∞m=1
ν2

1m
νm(θ) converges and M →∞, we get

2

∞∑
m=1

√
2ν1m

νm(θ0)
ξm = (θ∗ − θ0)

∞∑
m=M

ν2
1m

νm(θ∗)νm(θ0)
+ GM(θ∗).

2

∞∑
m=1

√
2ν1m

νm(θ0)
ξm − (θ∗ − θ0)

∞∑
m=M

ν2
1m

νm(θ)νm(θ0)
= GM(θ∗)− GM(θ̂M).

Since the left side of the above equation goes to zero and the derivative of GM(θ) is positive,by Theorem 2 in Kasonga [42] (which is similar to Theorem 1 in Frydman [43]), we conclude that
θ̂M → θ∗ almost surely as M →∞.

The proofs of the following theorems are similar to the previous theorem. We omit the details.
For discrete observations, we have the asymptotic normality for the MLE:
Theorem 2.3 a) For d ≥ 2(p−p1) and fixed N ≥ 1, we have θ̃M,N → θ0 almost surely as M →∞.b) For d = 2(p − p1) and fixed N ≥ 1, we have

(logM)1/2(θ̂M,N − θ)→D N (0, 1) as M →∞.

c) For d > 2(p − p1) and fixed N ≥ 1, we have
M

2p1−p+d

2d (θ̂M,N − θ)→D N (0, 1) as M →∞.

In the case of continuous observation, for fixed T > 0, we have the strong consistency and theasymptotic normality of the MCE:
Theorem 2.4 a) For d ≥ p− 2p1 and fixed T > 0, we have θ̃M,T → θ0 almost surely as M →∞.b) For d = p − 2p1 and fixed T > 0, we have

(logM)1/2(θ̃M,T − θ)→D N (0, 1) as M →∞.

c) ) For d > p − 2p1, we have
M

2p1−p+d

2d (θ̃M,T − θ)→D N (0, 1) as M →∞.

Note that for d = 3, p = 2, p1 = 0, the rate is M1/6.
For discrete observations, we have the strong consistency and the asymptotic normality of the MCE:
Theorem 2.5 a) For d ≥ 2(p−p1) and fixed N ≥ 1, we have θ̃M,N → θ0 almost surely as M →∞.b) For d = 2(p − p1) and fixed N ≥ 1, we have

(logM)1/2(θ̃M,N − θ)→D N (0, 1) as M →∞.
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M

2p1−2p+d

2d (θ̃M,N − θ)→D N (0, 1) as M →∞.

Note that for d = 5, p = 2, p1 = 0, the rate is M1/8.
3. Example: Complex-valued Fractional Ornstein-Uhlenbeck Process

Arato et al. [44] studied parameter estimation in the complex valued Ornstein-Uhlenbeck process.They used the model for geophysical problem. Remember that Kolmogorov [45] was the founderof fractional Brownian motion. Hence their model can be extended to fractional Brownian motion.The complex valued fractional Ornstein-Uhlenbeck process is given by
dU(t) = −[(α1 + iβ1)θ + (α0 + iβ0)θ]U(t)dt + σ[dWH

1 (t) + idWH
2 (t)]

where WH
1 ,W

H
2 are independent fractional Brownian motions, U(t) = (U1(t), U2(t)) where U1 and

U2 are the real and imaginary parts of U(t). So this paper is infinite dimensional generalization ofKolmogorov’s model. In the paper they used a time transformation to reduce the general problemto a fixed time case and the asymptotics were studied in large parameter case, see also Bishwal[46] in this context.Let ∆ti = h, i = 1, 2, . . . , n, α(θ) = α0 +α1θ. For H = 0.5, the Fisher information based on thedata U(t1), U(t2), . . . , U(tn) is given by
I(θ) =

α2
1

α(θ)2

1 + (n − 1)

(1− e−2hα(θ) − 2hα(θ)e−2hα(θ)

1− e−2hα(θ)

)2

+
(2hα(θ))2e−2hα(θ)

1− e−2hα(θ)


+β2

1h
2(n − 1)

e−2α(θ)

1− e−2α(θ)
.

It is easy to verify results of Theorems 2.1 – 2.4 showing the consistency and asymptotic normalityof the estimators.
Remarks We considered fractional Brownian motion driving term in this paper whose incrementsare stationary. Using fractional Levy process as the driving term which include jumps, maximumquasi-likelihood estimation in fractional Levy stochastic volatility model was studied in Bishwal[47]. Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussian processwith covariance function

CH(s, t) = s2H + t2H −
1

2

[
(s + t)2H + |s − t|2H

]
, s, t > 0

for 0 < H < 1 introduced by Bojdecki et al. [48] has received some attention recently in finitedimensional models. The interesting feature of this process is that this process has some of the mainproperties of FBM, but the increments of the process are nonstationary, more weakly correlatedon non-overlapping time intervals than that of FBM, and its covariance decays polynomially at ahigher rate as the distance between the intervals tends to infinity. It would be interesting to see
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Eur. J. Stat. 10.28924/ada/stat.3.14 16extension of this paper to sub-FBM case. We generalize sub-fBM to Sub-fractional Levy process(sub-FLP).Sub-fractional Levy process (SFLP) is defined as
SH,t =

1

Γ(H + 1
2 )

∫
R

[(t − s)
H−1/2
+ − (−s)

H−1/2
+ ]dMs , t ∈ R

where Mt , t ∈ R is a Levy process on R with E(M1) = 0, E(M2
1 ) < ∞ and without Browniancomponent. SFLP has the following properties:1) The covariance of the process is given by

Cov(SH,t , SH,s) = s2H + t2H +
E[L(1)2]

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t − s|2H].

2) SH is not a martingale. For a large class of Levy processes, SH is neither a semimartingalenor a Markov process. 3) SH is Hölder continuous of any order β less than H − 1
2 . 4) SH hasnonstationary increments. 5) SH is symmetric. 6) SH is self similar. 7) SH has infinite totalvariation on compacts.It would be interesting to investigate QML estimation in SPDE driven by subfractional Levyprocesses which incorporate both jumps and long memory apart from nonstationarity.Funaki [49] studied random transport equation in bounded domains with regular coefficients.Flandoli et al. [50] studied linear stochastic transport equation. Fang and Luo [51] studied Wong-Zakai type approximations of the stochastic transport equation. Guillet et al. [52] studied extreme-value statistics of STE. Another application is in nuclear physics. Recently Chapron et al. [53]studied stochastic transport in upper ocean dynamics. Tian and Tang [54] studied stochastic entropysolutions for stochastic nonlinear transport equations.Another possible generalization is the following: Hawkes processes (see Hawkes [55]) are anefficient generalization of the Poisson processes to model a sequence of arrivals over time of sometypes of events, that present self-exciting feature, in the sense that each arrival increases the rateof future arrivals for some period of time. This class of counting processes allows one to captureself-exciting phenomena in a more accurate way compared to inhomogeneous Poisson processesor Cox processes. This is the case with aftershocks of earthquakes; an earthquake increases thegeophysical tension in the region and can cause a second earthquake. In finance, they are accurateto model for example credit risk contagion, order book or microstructure noises’s feature of financialmarkets.A Hawkes process is a counting process At with stochastic intensity λt given by λt = µ +∫ t

0 Φ(t − s)dAs where µ > 0 and Φ : R→ R+ are two parameters. The parameter µ > 0 is calledthe background intensity and the function Φ is called the excitation function. When Φ = 0, this ahomogeneous Poisson process.A fractional Hawkes process {AH(t), t > 0} with Hurst parameter H ∈ (1/2, 1) is defined as
AH(t) =

1

Γ(H − 1
2 )

∫ t

0

u
1
2
−H
(∫ t

u

τH−
1
2 (τ − u)H−

3
2 dτ

)
dR(u)
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where R(u) = A(u)√
λt
−
√
λtu and A(u) is a Hawkes process with stochastic intensity λt .It would be interesting to investigate QML estimation in SPDE driven by fractional Hawkesprocess which would incorporate self-excitation, jumps and long memory of sea surface temperature.

Concluding Remarks: In this paper we studied the estimation of the component of velocity, diffusiv-ity and the feedback parameter of the fractional STE. Also results on long range dependence in ourmodel would be useful for measuring sea surface temperature which in general are non-Markovian.Strong consistency and asymptotic normality of the estimators were studied. The rates of conver-gence to normality depends on the dimension of the space, and for some special cases, the rates areone sixth in the case of continuous observation and one eighth on the case of discrete observationswhich are unusual in classical statistics. Results in this paper very useful as we have studiedthe discrete approximations of the STE which are spatial autoregressive processes. Also we havegeneralised asymptotic results on real-valued Ornstein-Uhlenbeck processes, which has been abenchmark for short-term interest rate modeling in finance, to complex-valued Ornstein-Uhlenbeckprocesses, which in turn are continuous analogues of Gaussian autoregressive processes. Thus ourmodel is infinite dimensional generalization of Kolmogorov’s model [44] in geophysics.
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