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ABSTRACT. We study the quasi-likelihood and quasi Bayes estimator of the drift parameter in the
stochastic partial differential equations when the process is observed at the arrival times of a Poisson
process. Unlike the previous work, no commutativity condition is assumed between the operators in
the equation. We use a two stage estimation procedure. We first estimate the intensity of the Poisson
process. Then we plug-in this estimate in the quasi-likelihood to estimate the drift parameter. Under
certain non-degeneracy assumptions on the operators, we obtain the consistency and the asymptotic

normality of the estimators.

1. Introduction

A stochastic partial differential equation (SPDE) is a continuous version of simultaneous cross-
section time series model. For a fixed spatial mode, it is an autoregressive time series (recall
that an Ornstein-Uhlenbeck process is a continuous limit of Gaussian AR(1) process) and for a
fixed time, it is a regression model. One can study asymptotic estimation for one fixed time point
with large number of spatial observations or at a fixed spatial mode with large number of discrete
time points, or simultaneous large spatial and temporal observations. We consider the estimation
based on a fixed spatial mode with large number of randomly spaced time points, where the inter
arrival times are exponentially distributed. Thus we have a random time sampling at a fixed space
point. What mainly distinguishes SPDE from classical models is the type of sampling and the
unusual rate of convergence of the estimators. Applications of SPDE model is numerous, e.g, in cell
biology, neurophysiology, turbulence, oceanography and finance: see It6 [42], Walsh [61], Kallianpur
and Xiong [44], Holden et al. [32], Adler et al. [1], Carmona and Rozovskii [23] and Bishwal [15].
Bishwal [15] studied asymptotic inference for fractional SPDE model for neurobiology. Recently
SPDE has been used to model cell repolarization (stochastic Meinhardt model) and parameter
estimation techniques developed for linear SPDE models have been applied to this model when

the space resolution is finer, see Altmeyer et al. [2].
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Types of operators appearing in SPDE makes the estimation problem simple or difficult. Commut-
ing operators have the same system of eigenvectors and make the corresponding finite dimensional
projections as diffusion processes. The case is not so for noncommuting operators. Noncommuting
operators appear in quantum mechanics. According to Heisenberg's uncertainty principle, if two
operators representing a pair of variables do not commute, then the par of varibles are mutually
complementary, which means they can not be simultaneously measured or known precisely.

Parameter estimation is an inverse problem. Loges (1984) initiated the study of parameter
estimation in infinite dimensional stochastic differential equations. When the length of the ob-
servation time becomes large, he obtained consistency and asymptotic normality of the maximum
likelihood estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski
and Loges [51] extended the work of Loges (1984) to minimum contrast estimators. Koski and
Loges [50] applied the work to a stochastic heat flow problem. See Bishwal [11] for recent results
on likelihood asymptotics and Bayesian asymptotics for drift estimation of finite and infinite di-
mensional stochastic differential equations. See Bishwal [10] for asymptotic statistical results for
discretely sampled diffusions. For the finite dimensional fractional Ornstein-Uhlenbeck process,
Berry-Esseen inequalities of minimum contrast estimators based on continuous and discrete ob-
servations was studied in Bishwal [13]. Bishwal [17] studied estimation and hypothesis testing on
nonlinear SPDEs from both continuous and discrete observations. Bishwal [19] studied estimation
by the mixingale estimation function method for SPDEs with random sampling. Discrete observa-
tions in time of continuous models are important for practical applications,e.g. stochastic volatility
models, see Bishwal [18].

Huebner, Khasminskii and Rozovskii [36] started statistical investigation in SPDEs. They gave
two contrast examples of parabolic SPDEs in one of which they obtained consistency, asymptotic
normality and asymptotic efficiency of the MLE as noise intensity decreases to zero under the
condition of absolute continuity of measures generated by the process for different parameters (the
situation is similar to the classical finite dimensional case) and in the other they obtained these
properties as the finite dimensional projection becomes large under the condition of sinqularity of
the measures generated by the process for different parameters. The second example was extended
by Huebner and Rozovskii [38] and the first example was extended by Huebner [35] to MLE for
general parabolic SPDEs where the partial differential operators commute and satisfy different
order conditions in the two cases.

Huebner [37] extended the problem to the ML estimation of multidimensional parameter. Lototsky
and Rozovskit [55] studied the same problem without the commutativity condition. Small noise
asymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov and
Khasminskii (1998).

The Bernstein-von Mises theorem (BVT, in short), concerning the convergence of suitably nor-
malized and centered posterior distribution to normal distribution, plays a fundamental role in

asymptotic Bayesian inference, see Le Cam and Yang (1990). Borwanker et al. [21] obtained the
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BVT for discrete time Markov processes. Bose [22] extended the BVT to the homogeneous non-
linear diffusions. As a further refinement in BVT, Bishwal [8] obtained sharp rates of convergence
to normality of the posterior distribution and the Bayes estimators for the Ornstein-Uhlenbeck
process.

All these above work on BVT are concerned with finite dimensional SDEs. Bishwal [7] proved
the BVT and obtained asymptotic properties of reqular Bayes estimator of the drift parameter
in a Hilbert space valued SDE when the corresponding ergodic diffusion process is observed
continuously over a time interval [0, T]. The asymptotics are studied as T — oo under the condition
of absolute continuity of measures generated by the process. Results are illustrated for the example
of an SPDE.

Bishwal (2002) obtained BVT and spectral asymptotics of Bayes estimators for parabolic SPDEs
when the number of Fourier coefficients becomes large. In that case, the measures generated by
the process for different parameters are singular. Here we treat the case when the measures
generated by the process for different parameters are absolutely continuous under some conditions
on the order of the partial differential operators. Bishwal [16] studied the asymptotic properties
of the posterior distributions and Bayes estimators when we have either fully observed process or
finite-dimensional projections. The asymptotic parameter is only the intensity of noise. Recently
Cheng et al. [24] studied BVT and Bayesian estimation for a large class of prior distributions
and loss functions (of at most polynomial growth) for diagonalizable bilinear SPDEs driven by
a multiplicative noise. In this paper we treat the more general model and study estimation by
martingale estimation function method.

The rest of the paper is organized as follows : Section 2 contains model, assumptions and
preliminaries. In Section 3 we prove the asymptotic properties of the discretely sampled quasi-
likelihood estimator. In Section 4, we prove the Bernstein-von Mises theorem. In section 5, we
study the asymptotics of quasi-Bayes estimators for smooth priors are loss functions. In section 6,
we study fixed accuracy sequential estimation. Section 7 provides several examples of noncommu-
tative SPDEs.

2. Model and Preliminaries
Let G be a smooth bounded domain in RY. We assume that the boundary 8G of this domain is a

C°-manifold of dimension (d — 1) and locally G is totally on one side of 0G. For a multi-index

vy=(7 ..., Y4) we write
all

D7f(x) = W
where [y =71 +72 + ... +7q.

Let Ao and A; be partial differential operators of order mg and mj (the order of the highest
derivative in it) respectively, written in the form

Ai(xX)u = — Z (—D‘alDa(a?B(X)Dﬁ(U))

|, 18] <m;


https://doi.org/10.28924/ada/stat.4.6

Eur. J. Stat.

where a”(x) € C>(G). For 6 € R, write A% = 0A; + Ag and a®(8, x) = 0a%F(x) + a3P(x). Let
us fix By, the unknown true value of the parameter 8. Let (2, F, P) be a complete probability space
and W(t, x) be a cylindrical Brownian motion on this space with values in the Schwarz space of
distributions D'(G).

A cylindrical fractional Brownian motion (C.F.B.M) is W = WH(t, x) is a distribution valued
process such that for every such that for every ¢ € C5°(G) with [[¢[[;2(gy = 1 the inner product
(W(t,-),®(-)) is a one dimensional fractional Brownian motion and for every ¢1, ¢>» € C3°(G),

E(WH(s,), o1 (N (L, ), d2())) = (s A t)(d1, d2) 12(c).
The C.F.B.M. WH can be expanded in the series W (t, x) = 7%, W/ (t)hi(x) where {WH (£)}2,

are independent one dimensional fractional Brownian motions and {h;}7°; is complete orthonormal
system in Lo(G). The latter series converges P-a.s.

Recall that a fractional Brownian motion (fBM) has the covariance
~ 1
Ch(s. t) =5 [s°H + t2 —|s — t]?H"], s, t>0.

For H > 0.5 the process has long range dependence or long memory and the process is self-similar.
For H # 0.5, the process is neither a Markov process nor a semimartingale. For H = 0.5, the
process reduces to standard Brownian motion. Fractional Brownian motion can be represented as
a Riemann-Liouville (fractional) derivative of Gaussian white noise, see Decreusefond and Ustunel
[26] and Jumarie [43]. For deterministic fractional calculus, see Samko et al. [59].

We will consider the Dirichlet problem for a parabolic SPDE associated with the operator A?,
and driven by the CF.BM. W' :

a“gt' X) (Ao + 6A ) u(t x) + %WH(t,x) (2.1)
u(0, x) = up(x) (2.2)
DYu(t, x)loc = 0 (2.3)

for all multi-indices v with |y] < m—1.

The problem (2.1) - (2.3) is understood in the sense of distributions.
We assume that
1
order(Ay) > §order(Ao +0A1) —d (2.4)

For non-diagonalizable case, one can use Galerkin approximation of the solution of the SPDE. We
do not assume anything about the eigenfunctions of the operators in the equation. The equation is
considered in a compact d-dimensional manifold so that there are no boundary conditions involved.
The main assumption is that the operators Ag and A; are of different orders and the operator
Ao + 0A; is elliptic for admissible values of 6.

Let M be a d-dimensional compact orientable C* manifold with a smooth positive measure dx.
Let L be a elliptic positive definite self-adjoint differential operator of order 2m on M. Let A, B, N
be differential operators on M with max(order(A), order(B), order(N)) < 2m.
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Consider the random field u defined by the evolution equation
du(t, x) + [01(L + A) + 628 + N]u(t, x)dt = dW"(t,x), 0<t<T, u(0,x)=0

where 61 > 0 and 6> > 0. We estimate 8; when 85 is known and we estimate 6, when 61 is known.

If 65 is known, then Ag = 6,B+ N,0 =01,0 = (0,00), A1 = L+ A. If 01 is known, Ag = 01(L +
A)+ N0 =60 =R, A = B. Forevery f € Lo(M, dx) the representation f =} -, ¥;i(f)e
holds, where 9;(f) = [,,f(x)ei(x)dx and ¥ (WH(t)) = W/ (t). Let the finite dimensional
projection operator be MX. For every f = {;(f)};>1,

K
N =5 wi(fe;. (2.5)
=1

The finite dimensional processes N¥u, NKAu, MXA;u will be used to estimate the unknown

parameter. By (2.1)
dN®u(t) + NKAP () u(t)dt = dwkH(t) (2.6)

where WHKH(t) = TKWH(1). Let NXu(t) := uy ¢

Now we focus on the fundamental semimartingale behind the SPDE model. Define

ki = 2HT(3/2— H)T(H+1/2), ku(ts):= ki (s(t—s))2~ ",
. 2HT(3 = 2H)I'(H + %) — H. —142-2H H . ' H
>\/—[ = |_(3/2 — H) y Mt = Ve = >\H t , Mt = /0 kH(t, S)dWS .

From Norros et al. [57] it is well known that M,’j’t is a Gaussian martingale, called the fundamental
martingale whose variance function (M/’jh is v/’. Moreover, the natural filtration of the martingale
MH coincides with the natural filtration of the fBm W since W/', := [ K(t,s)d M/ holds for
H € (1/2,1) where Ky(t,s) := H2H — 1) [f = 2(r — s)#~2dr, 0<s<tandfor H=1/2,
the convention Ky,5 =1 is used.
Define Qx ¢ = divtfot ky(t, s)uk.sds. Define the process Zy = (Zks t € [0,T],k > 1) by
Zkt = [y ku(t,s)dugs. It is easy to see that Qx ¢ = ﬁ {t2Hlek,t + [ rQHflekvs} :
The following facts are known from Kleptsyna and Le Breton [46]:
(i) Zx is the fundamental semimartingale associated with the process wuy. (i) Zx is a (Fy) -
semimartingale with the decomposition Zj ; = Qfot Qk.sdvs + Mﬁt. (iil) vk admits the represen-
tation vy r = fot Ku(t,s)dZgs. (iv) The natural filtration (Z¢) of Zx and (U;) of uk coincide.

We have

d t . d t _ _
Qrr = TW ; kH(tvS)Uk,stZKHldvt/O si/2 H(t_s)l/z HUk,st

d t
— K’E1>\Ht2H—1dtlor s1/2—H(t_5)1/2—Hukvsds

t

d

= KHlkHt2H1/ —dt51/27H(t—5)1/27Huk,5d5
0
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t
= KQIAHFH_I/O SY2H(t —5) T2 H Yy, (ds.

The process Qf depends continuously on v, and therefore, the discrete observations of ux does

not allow one to obtain the discrete observations of Q. The process Qx can be approximated by

n—1
@k‘n _ K#)\anH—l 211/2—/4(” _J-)—l/2—HukJ_
j=0
where 0 < t; < tp < ... < t, =1 Itis easy to show that (5;(,,7 — Qg + almost surely as n — oo,
see Tudor and Viens (2007).
Define a new partition 0 < <n < < -+ <ry =t k=12---,n Define for each

i>1,

My

Qilt) = syt = 3 i — 1) () (1 1),

j=1
k =1,2,---,n. It is easy to show that @,-(tk) — Q;(t) almost surely as mx — oo for each
k=1,2,---,nand /i >1, see Tudor and Viens (2007).

We use this approximate observation in the calculation of our estimators. Thus our observations

are
ui(t) z/Ot Ku(t,s)dZi(s) where Z(t) :G/Oté,-(s)dvs—i—/\/lﬁt
observed at ty, to, ..., ty.
Note that for equally spaced data Avy, = v, — v , = A;,l (%)2_2H [i°72H — (i — 1)272H].
For H=05, vi —vi,, = At (2)° 727 [22H — (i—1)22" = L j=1,2,. .., n the standard

equispaced partition. In this paper we do not need to assume T /n — 0 unlike the finite dimensional
diffusion models as we take advantage of the increasing spatial dimension K — oo in this paper.
The process MXu is finite dimensional, continuous in the mean, and Gaussian process but not

in general a diffusion process because the operators Ag and A; need not commute with M%. Let
67" (N"Q) = E(N"A’Q|F/)

where F/ is the sigma-algebra generated by M<Q(s),0 < s < t. But ¢Z*(NMXu) is not known
explicitly. One can apply Kitagawa algorithm for the computation of the estimator.
By Theorem 7.12 in Liptser and Shiryayev [54], MK u satisfies

dniQ(t) = gX(NXQ)dt + dW H(t), N*Q0) =0 (2.7)

where WHKH(t) = Z,Kzl WH(t)e; and Wi(t),i = 1,2,..., K are independent one-dimensional
fractional Wiener processes in general different for different 6. Since {I—IKAGQ, WK'H} ts a Gauss-
tan system for every 6 € ©, from Theorem 7.16 and Lemma 4.10 in Liptser and Shiryayev [54], the
likelihood is given by

N(Q) = FE(M7Q) = exp { 7 (0¥ (N%Q) - g (N*Q), dn*Q)

0 (2.8)
3 [ U1K (M5 Q)I3 ~ g  (M*@)[13)dve }
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The maximum likelihood estimate (MLE) is defined as

A~ dP,
6" = arg max dP:O(I'IKQ).

But since the function ¢%X(MXQ) is not known explicitly, this estimate can not be computed.
The situation is much simpler if the operators Ag and A; commute with MK so that MNXA; =
NKANK, i =0,1, and UtK(X) = I_IKAQX(t), that is, they have a common set of eigenfunctions. In
this case the MLE is computable and is given by

5 _ Jo (MFAIQ(D), dN¥Q(r) — MM AV ()Q(t)dve)o

Jo INKAQ(D)[3dve
Of course this expression (2.9) is well defined when the operators Ap and A; do not commute
with MK, and if the whole trajectory of u is observed, then the values of MXA;Q(t) and MXA;Q(t)

can be evaluated, making (2.9) computable. Even though (2.9) is not in general maximum likelihood

(2.9)

estimate of 6, it looks like a natural estimate to consider.

For sufficiently large K, note that P (fOT INKALQ(t)|13d v > O) = 1. Since the operator A; is
not identically zero, (I_IKA;LWH)t>0
(fot NKAL[61(L + A) + 62B]Q(s) dvs) is a continuous process with bounded variation. Then

>0
it follows that

is a continuous nonzero square integrable martingale, while

S (MK ALQ(E), dWKH (1))
Jo INKAQIZd v

In order that fOT IMKA1Q(t)||2dve — o0 as K — oo, the operator A; should be essentially

0K =0y + ° Pas. (2.10)

non-degenerate.

Recall that the random field u defined on M satisfies the evolution equation
du(t, x) + [61(L + A) + 628 + Nu(t, x)dt = dW"(t,x),0 <t < T,u(0,x) =0

where 87 > 0 and 6> € R. We estimate 6; when 6> is known and we estimate 6> when 07 is known.

We supress the dependence of Q@ and W on x. According to (2.10)

s _ Jo (M(L+A)Q(1). dN*Z(1) — dN¥(6,6 + N)Q(1)dve)o

K
i o INK(L + A)Q(1)3dve (2.11)
g — Jo (MBQ(), dN*Z(t) — dN"6u(L + A) + N)Q(D)dve)o (2.12)

JJ INKBQ(t)[2d v

Theorem 2.1 The operator L is a positive definite self-adjoint elliptic operator of order 2m and
c .= max(order(A), order(B), order(N)) < 2m. When 65 is known, 6% is consistent and asymp-
totically normal :

a) O =P 6, as K —
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b) Wiﬁ(é{{ —61) =P N(0,1) as K —

where W}ﬁ = \/(T/291) Z/K:1 I;.
Let B be essentially non-degenerate and order(B) = b > m — d/2. When 6 is known, 85 is

consistent and asymptotically normal:
C) é£<—>P92 as K — oo
d) W}@(éﬁ( —6) =P N(0,1) as K —

where \U%éx y K lbmm/m.

=17

Remarks Since [} < 2m/d the rate of convergence for éf is \U}ﬁ = KM/d+1/2 and for 9A£< is
Kb=m)/d+1/2 - h> m—d/2
{ vVinK © b=m-—d/2
Theorem 2.2 If 01 is known and order(B) = b < m — d/2, the estimator X is inconsistent:
p g, 1 Jo (BRU. WX (D)o
Jo 11BQt)[3dve

/2 _
Vs =

§£<—> s K — oo.

Remark éf is consistent and asymptotically normal for b > m —d/2 and b < m— d/2. But 9A§ is

consistent and asymptotically normal for b > m — d/2 and inconsistent b < m — d/2.

Proof. If ¥, (t) := ¥k (u(t)), then
dk(t) = =01l (t)dt — Y ((B1A + 628 + N)u(t))dt + dW{ (t), ¥x(0) = 0.

The solution of this equation is given by ¥k (t) = (k(t) + nk(t) where

t t
Ce(t) ::/ e =) gWH (s),  mi(t) ::—/ e (=94 ((61A+ 628 + N))u(t)dt
0 0

Thus the solution process can be written as u(t) = ((t) + n(t) where {(t) is defined by the
sequence {(x(t)}k>1 and n(t) defined by the sequence {Mx(t)}i>1.

It can be shown by direct computation that if P is an essentially nondegenerate operator of order
p > m — d/2, then the asymptotics of EfOT INKA;Pu(t)||3dv: is determined by the asymptotics
of E [ INKAPC(t)|3dvs.

Specifically

T T K
E/ INKALPQ(L)|3dv: =< E/ INKALTPE(E)Gdve < ) JP=MIm K s o
0 0

i=1

which implies

-
pP— Iim/ INKALPQ(L)|2dve = o0
K—oo Jo
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and also

Efo INAPn(OIRdve _ o Jo ITFAPC() 3w,

m , — =1
Koo £ [T |INK A PE(E)|2dve Koo £ [T INKALPL()|2dve

which imply
o i Jo INAPQIRdve _
Koo £ [T MK A PQ(E)[3dve

Hence by the martingale LLN the following result holds:

- Jo (MKAPQ(t), dM g
Koo [ INKALPQ(E) [3dve
and by the martingale CLT the following result holds:
i JJ (MKALPQ(L), dM)o
K= JE [T INKAPQ(E) [3dve

in distribution. Thus the statement of the theorem follows by setting P =L +Aand P=B.

=N(0,1)

Remark The coefficients ¥ (u(t)) for different k are dependent processes because the eigenfunc-
tions of the operators are different. This is the noncommutative case.
If the operators A, B, N have the same eigenfunctions as L, then the coefficients 1 (uy) for dif-

ferent k are independent OU processes. This is the well studied commutative case.

3. Quasi-Likelihood Estimation
The computation of the estimators 8% and 65 requires the knowledge of the whole field v rather
than its projection. One option is to replace u by MXwu. This can simplify the computation but
the estimators are far from the maximum likelihood estimators because some information is lost
and asymptotic properties of the resulting estimators are more difficult to study. In general, the
construction of the estimate depending only on the projection MXu is equivalent to the parameter
estimation for a partially observed system with observations being given by (2.6). This is the
reason we take the alternative route of estimating function approach so that the estimators will
be computable. We take random sampling as it produces optimal discretization, see Gobet and
Stazhynski [30] who consider observations at random stopping times for multidimensional diffusion
processes which include Poisson-like random times. Another motivation of using random times
is from mathematical finance where one can do almost sure optimal hedging when the discrete
rebalancing dates (or trading dates) are stopping times, see Gobet and Landon [29]. Their scheme
also includes Karandikar scheme of discretization of stochastic integrals.

If an operator A; in the equation does not commute with the corresponding projection operator
Nk, then to evaluate I_IkA,-u, it is not enough to know only MNku. Another approach is to assume

Galerkin approximation of the solution is observed, see Huebner (1997) and Huebner et al.  (1997).
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The ideas behind of martingale estimation function, (see Bibby and Srensen [4]), quasi-likelihood
and M-estimation are similar. We consider mixingale estimation function.
We need some preliminary results in this section. The following is the strong law of large num-

bers for triangular array of mixingales.

Lemma 3.1 (Mixingale SLLN) (De Jong [27]) : Suppose the triangular array {Xp i, Fn i} is a Lo-
mixingale and for a positive integer-valued sequence my,, we have Y 2 (n™1Y 1 ¢y im,)? < <.

Then X, — 0 almost surely as n — oo.

Lemma 3.2 Mixing CLT (Peligrad and Utev [58)): Let {X,;, 1 < i < k,} be a tringular array of
random variables satisfying:
a) var(ZJb:a Xnj) < CZJ[-’:a var(Xy,j) for every 0 < a < b < k, where C is a universal

constant; .
Var(Zjll Xn.j) S

b) liminf 0,
n—oo 3 iy var(Xag)
b c c
c) |cov | exp /'tZXnJ ,oexp | it Z Xnj §ht(u)Zvar(XnJ)
Jj=a Jj=b+u Jj=a

for every 0 < a < b < ¢ < k, where ht(u) > O,th(2f) < oo and u is of the form u =
[(c — a)t™¢] for certain 0 < € < 1;

d) 0,2 j—il EX,%J/(|X,,J-| > €0p,) as n — oo for every € > 0 where o2 denotes var(Zj—il Xnj)-
Then S, /o, =P N(0,1) as n — oo where S, = Zj—il Xnj-

The following is the central limit theorem for triangular array of mixingales.

Lemma 3.3 (Mixingale CLT) (lkeda [41]) : Suppose the triangular array {X, ;, Fn i} is a uniformly

integrable L1-mixingale. Then
nt t
> Xni —>D/ 52 dw,
i=1 0

2
as n — oo where h™*E [(Z}Zﬁ&h” Xny,-) ‘fn,LnsJ] — 6 =P 0as n7t+ h+ (nh)™t — 0 for
some s, t such that 0 <'s <t < t+ h <1 with (6t)¢c[0,1] iS non-negative, t-continuous, uniformly
integrable and F-measurable and [01 0sds is uniformly bounded away from zero, and W is standard

Brownian motion

For simplicity of presentation, we assume 6, =0 and A=0,B =/, N =0 and we estimate the
parameter 6. We denote 6; by 6. We keep k = 1 fixed. Thus

di(t) = =0l (t)dt + dWH (), ¥, (0) =0, k> 1.
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Consider the Fourier expansion of the process

o0

u(t,x) =Y u(t)k(x) (3.1)

k=1
corresponding to some orthogonal basis {¢x(x)}22 ;.

Note that {uf(t), k > 1} are dependent one dimensional Ornstein-Uhlenbeck processes
dul () = WGl (1) dt + A X(O)aWL (), uf(0) = uf (32)

Recall that ux = —X2" + k().
Thus
dud(t) = (k(8) — \Z™Mup(t)dt + X\ *(0)dW( (t), k > 1. (3.3)

The Fourier coefficients ui(t) are observed at discrete time points. As an alternative approach,
random field tf(t, x) could be observed at discrete time points t and discrete positions x. Thus
the spatial resolution could be an stochastic interacting particle system, see Ligget [53]. Recently
Hu et al. [33] studied existence and uniqueness of interacting system of SPDEs. However, we do
not pursue this approach here.

We have random temporal discretization. We study the parameter estimation in two steps: The
rate A of the Poisson process can be estimated given the jump times t;, therefore it is done at a
first step. Since we observe total number of jumps n of the Poisson process over the T intervals of
length one, the MLE of X is given by A, := +.

Theorem 3.12a) A\, = A as.as n— oo.
b) vn(An—X) =P N(0, e}M1—e?)) as n — .

Proof. Let V; be the number of jumps in the interval (i — 1,/]. Then Vj, i =1,2,..., n are i.id.
Poisson distributed with parameter X. Since ® is continuous, we have /101 (Vi) = I{0}(Qy;), a.s. | =
1,2,..., n. Note that

1 n
- > 1oy (Quy) =7 E(liph) = P(h =0) = e > as n — cc.
=1

LLN, CLT and delta method applied to the sequence /{0}(Qti), i=1,2,..., n produce the results.

The CLT result above allows us to construct confidence interval for the jump rate A. A 100(1—a)%

. . . . n 1 1 n 1 1 H
confidence interval for A is given by [7— —€1—2\/n— T, T tEi-2\/ 5~ T] where €1_a is the

n 2

(1 — %)-quantile of the standard normal distribution.

We have a time series representation of the model. It is well known that the discretized version

of the O-U process is an first order autoregressive process (AR(1)). Hence we have

—u(0)AL
Quty, =€ mOBEQ, ey
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where
1— 6_2/~L(9)Atr

v(6)

Define p := %Jre. Mixingale estimation function (MEF) estimator, which is also the quasi maximum

fk,/NN(O, a?), i>1,k>1.

likelihood estimator (QMLE) is the solution of the estimating equation: G}, ,(0) = O where

2a 2
Gk (0) = Z Z Bk M;\)(;\Q o) Qut s [(Qu 10000 0))2 + A" [Qu, — PN 8) Qi .
k=1i=1

We call the solution of the estimating equation the quasi maximum likelihood estimator (QMLE).
There is no explicit solution for this equation.

The optimal estimating function for estimation of the unknown parameter 6 is given by

K n
Gnk(0) = Z Z.B/%an,t,,l[Qk,t, —p(A, Q)Qk,t,,l]-

k=1 i=1
The mixingale estimation function (MEF) estimator of p is the solution of G, n(6) = 0 and is

given by

~ . Zf:]. Z;q:l katllekrtl
PK,n = K n > . (34)
D k=1 i1 Qk,t,,l

We obtain the strong consistency and asymptotic normality of the estimator.

Theorem 3.2 a) px., =" pas n— oo and K — oo, such that £ — 0.

b) VNV (pxn—p) =P N0, A7'(1—e"P)) asn— oo and K — oo such that % - 0.

Proof: By using the fact that every stationary mixing process is ergodic, it is easy to show that
if Qk(t) is a stationary ergodic O-U Markov process and t; is a process with nonnegative i.i.d.
increments which is independent of Q,(t), then {Qy ¢, i > 1, kK > 1} is a stationary ergodic Markov
process. Hence {Q;+,/ > 1} is a stationary ergodic Markov process. Thus the extra randomness
of the sampling instants preserves the stationarity and ergodicity of the Markov process in order
for the law of large numbers to be applicable.

Observe that QJ‘?(t) := v, is a stationary ergodic Markov chain and v; ~ N(0,0?) where o2
is the variance of Q1 ¢,. Thus by SLLN for zero mean square integrable mixingales (Lemma 3.1),

Peligrad and Utev ( [58], Theorem B) and arguments in Bibinger and Trabs ( [5], Proposition 7.6),

we have p
> Y Qi Qup =% E(Qui Q) = PE(QT 1) (3.5)
k=1 i=1
and
n\UK ; ; Qk ti_1 E(Ql to) (36)

Further Qx ;(t) := S; is a stationary ergodic Markov chain and S; ~ N(0, 0?) where o2 is the

variance of Q0. SLLN for martingales proves the result.
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Thus Z”
i—1 Qut Pkt
=1 Li—1 i P
— 3.7
Z:?:l Qi,t,;l ( )
Further,
T‘Uk(ﬁ _ p) B (nWK)_1/2 Z/’le Z?:l Qk’tf—l(Qk-ti - Qkati—l) (3 8)
n — . .
(nbk)—1 Zszl Z/n:l Qi,r,-_l
Since
E(Qut,Qu.t;1Qk.t,) = QQ%Q (3.9)

it follows by Lemma 3.3 and Lemma 3.2 which an generalization of Peligrad and Utev ([58], Theorem

B), along with the arguments in Bibinger and Trabs [6], that

K n
(M) 2y Y Quty (Qut, — 0Qks, )

k=1 i=1

converges in distribution to normal distribution with mean zero and variance equal to
El(QutsQkta) = E(Qht, Qus Q)P = (1= 2N 20 —)(\ + D} (3.10)

Applying delta method, the result follows. 0O

In the next step, we use the estimator of A to estimate 6. Note that

K
1 Zk:l Z?:l Qﬁt,,l

— = —7 - ) (3.11)
Pn.K Zk:l Zi:l ijti—levti
Thus p
%m — /{(9) ZkZI Z:?:l Qi,t,;1
1+ = —% - : (3.12)
A Zk:l Zizl kati—levti
Hence
K
2m — k(9) _ > ket i1 Qi,t,,l 1= _25:1 > 1 Qi1 [Qrt, — Qi (3.13)
A Y ket X1 Qrots Qe ket i1 Que Qi
Now replace X by its estimator MLE X, = -
1 Y Qi [Qut — Qs ]
%m _ Kl(e) — k=1 ;'(:l Jitic1 k. ti Jitica (314)
% Zkzl Z?:l Qk,t,lek,ti
Thus p
n p—
éK,n — ! ﬁ%m i 2 k=12 i=1 kati—l[Qk:tl kati—l] (3.15)

K
LY o1 21 Quot, Quert
Since the function k71(-) is a continuous differentiable function, applying delta method the follow-

ing result follows is a consequence of Theorem 3.2.

Theorem 3.3 a) GAK,,, —P 6 as n— oo and K — oo such that % — 0.
b) AWk (Bkn—60) =P N(0, (K'(6))2A2(1 — e '(K(O)=Bi™))) as n — oo and K — oo such
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that % — 0. In the second stage, we substitute X by its estimator X,.

4. Bernstein-von Mises Theorem
The Bernstein-von Mises theorem states that the posterior distribution of the normalized distance
between the randomized parameter 6 and the corresponding MLE is asymptotically normal. This
implies that the posterior distribution measure approaches the Dirac measure as the data size
increases. It also serves as an essential tool in derivation of some asymptotic properties of Bayes
estimators. It also gives the equivalence of the MLE and the Bayes estimator. Recently Cheng
et al. [24] studied BVT and Bayesian estimation for diagonalizable bilinear SPDEs driven by a
multiplicative noise.

Here Wy = Wy for 6 = 6; and Wi = Wy, for 6 = 6. Also X = X1 for § = 6; and
oK = 02 for 6 = 6,.

Suppose that 1 is a prior probability measure on (©, D), where D is the o-algebra of Borel
subsets of ©. Assume that 1 has a density 7(-) w.r.t. the Lebesgue measure and the density is
continuous and positive in an open neighbourhood of 6.

The posterior density of 8 given in Q" is given by
N (u)m(6)
0|QF) = —K . 4.1
p(61Q™) T2 A% (u)m(8)d8 (4.1)

Let T = w}f(e — 6K). Then the posterior density of \U%z(é — 6K is given by

P (TIQK) = W 2p(6K 4 v, 21 QK).

Let
dPX JdPE  dPK
9K+\U71/2‘r 90 9K+1p71/27_ o0 Ak _1/2
vi(T) = K = L — Ck = / v(T)m(0" + WV, oT)dT.
dPK [dP dPK o
Clearly

pH(TIQF) = Ciluw (T)m(BX + Wi PT).

Let k(-) be a non-negative measurable function satisfying the following two conditions :

(K1) There exists a number , 0 <n < 1, for which

o0 1
| sment-5ra-midr < o
(K2) For every e >0and 6 >0
ee\l/K/ k(TWY )T +7)dT — 0 as. [Py] as K — o
7|>6

We need the following Lemma to prove the Bernstein-von Mises theorem.
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Lemma 4.1 Under the assumptions (K1) — (K2),
(i) There exists a dp > 0 such that

~ _ 1
vi (T)m (0K + WK1/2T) — m(6p) exp(—§7'2) dT =0 as. [Py,].

lim / k(T)
Koo Jir|<ow/?

(i) For every 6 > 0,

" _ 1
vi(T)m(6F + \IJKl/zT) — m(6p) exp(—ETz) dr =0 as. [Py,].

lim / k(T)
K—o00 |T|25\Ui</2

Proof. From (2.7) and (2.8), it is easy to check that

1 T
0gu(r) = 57 [ 1AQ (s) o
0

Now (i) follows by an application of dominated convergence theorem.

For every 0 > 0, there exists € > 0 depending on § and 3 such that

~ _ 1
/ k(T) UK(T)W(GK + \|/K1/2'r) —m(6o) exp(—fTQ) dr
[ >6w}/2 2
~ _ 1
< / K,(T)I/K(T)’H'(QK + \UKl/z‘T)d’T —i—/ 7(00) eXp(—*’T2)d’T
[ >6wy/> 26w}/ 2

o _ 1
< e / |, K8+ W 2r)dr 4 m(8o) exp(—572)dT
IT|>09Y IT1>

N >6wi/?
= Fx+ Gk

By condition (K2), it follows that Fx — 0 a.s. [Py, as K — oo for every § > 0. Condition K(1)
implies that Gk — 0 as K — oo. This completes the proof of the Lemma. 0

Now we are ready to prove the generalized version of the Bernstein-von Mises theorem for
parabolic SPDEs.

Theorem 4.1 Under the assumptions (K1) - (K2), we have

> 1 1
- * Ky _ ( *N\1/2 10 _
KlanO/OO k(T) |p*(T|QR"™) (27r) exp( 2'r )| dT =0 as. [Pg,].
Proof From Lemma 4.1, we have
) o0 ~ _ 1
Jim / K (T) [k (T)m (6% + W, M 27) — w(@o)exp(—§T2) dT =0 as. [Py,]. (4.2)
—00 J_o

Putting k(7) = 1 which trivially satisfies (K1) and (K2), we have

Cro= [ ulrym(@ + v Prydr > w@o) [ ew(—prer as [Pl (43)

—0o0
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Therefore, by (4.2) and (4.3), we have

JS
<[ Z k(1)
+ /_Z k(T)

Theorem 4.2 Suppose for some non-negative integer r [*_[6]"m(6)d6 < oo holds. Then

o0
Iim/ "
K—oo J_

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from Theorem
3.1. Suppose r > 1. Let k(7) = |7|",6 > 0 and € > 0. Using |a+ b|" < 2'1(]a|” + |b|"), we have

* Ky _ i 1/2 _l 2
p(rIQ) — (5) V2 exp(—57)| dr

~ _ 1
C;luK(’r)'rr(GK + \UKl/Q’r) — C;lw(eo) exp(—§T2) dt

1 1 1
C;lw(eo)exp(—?ﬂ) - (g)l/2 exp(—§7'2) dT — 0 as. [Pyl as K = c0. o

1

1
p*(T|QK) — (27r)1/2 exp(—ifrz) dT =0 as. [Py,].

—ev / K(TUY2) (8K 4 T)dT < W2 eeV / n(r)ir — 0K | dr
"T|>5 "T*OAK|>6
< oo [ i+ [ n(r)e<an]
|T—6K|>6 |T—6K|>6

< 2f1w£{2e€w[/ m(7)|7|"dT + |6%|"] = 0 a.s. [Py] as K — o0

from the strong consistency of 8% and hypothesis of the theorem. Thus the theorem follows from
Theorem 3.1. 0

Remark 4.1 For r =0 in Theorem 4.2, we have

oo
lim
K—o0 J_

This is the classical form of Bernstein-von Mises theorem for parabolic SPDEs in its simplest

1 1
p*(T|QF) — (E)l/2 exp(—ETQ) dT =0 as. [Pa,).

form.
As a special case of Theorem 4.2, we obtain Ego[\l!}f(QAK —60)]" = E[§] as K — oo where

£~ N(0,1).

5. Quasi-Bayes Estimation

As an application of Theorem 4.1, we obtain the asymptotic properties of a reqular Bayes estimator
of 6. Suppose /(0, ¢) is a loss function defined on © x ©. Assume that /(6,¢) = (|6 — ¢|) > 0
and /(-) is non decreasing. Suppose that J is a non-negative function on N and (-) and G(-) are
functions on R such that

(B1) J(K)I(TW,M?) < G(7) for all K,

(B2) J(K)/(T\U;l/z) — k(T) as K — oo uniformly on bounded subsets of R.

(B3) [ k(T +5) exp{—372}dT has a strict minimum at s = 0.
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(B4) G(-) satisfies (K1) and (K2).
Let
Bic(0) = [ 16, 4)0(610" ).

A regular Bayes estimator 6" based on QX is defined as
0" :=arg inf Bk(¢).
arg Inf k(¢)

Assume that such an estimator exists. The following Theorem shows that MLE and Bayes estima-

tors are asymptotically equivalent as n — oo.

Theorem 5.1 Assume that (K1) - (K2) and (B1) - (B4) hold. Then we have
(i) W25 — 65) = 0 a.s-[Py] as K — oo,
1

(i) nli_>mooJ(K)BK(§K) = lim J(K)B(65) = (%)1/2 /OO K(T) exp(—%’rz)d’r a.s. [Pa,].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We omit the details.

Corollary 5.2 Under the assumptions of Theorem 5.1, we have
(i) 65 — 6o a.s. [Pa,] as K — oc.
(i) WY2(8F — 00)5N(0,1) as K — co.

Proof. (i) and (ii) follow easily by combining Theorem 5.1 and the strong consistency and asymptotic
normality results of the QMLE in Theorem 2.1 and 2.2. 0O
The following theorem shows that Bayes estimators are locally asymptotically minimax in the

Hajek-Le Cam sense, i.e., equality is achieved in Hajek-Le Cam inequality.

Theorem 5.3 Under the assumptions of Theorem 5.1, we have

im lim  sup Ew (zp}(/Q(éK—eo)):Ew(g), L(€) = N(0,1),

d—00 K—00 |9_gy| <5

where w(+) is a bowl shaped loss function.
Proof. The Theorem follows from Theorem I11.2.1 in Ibragimov-Has'minskii (1981) since here condi-
tions (N1) - (N4) of the said theorem are satisfied using Lemma 3.1 and local asymptotic normality

(LAN) property obtained in Huebner and Rozovskii [38]. 0

6. Sequential Estimation
Sequential estimation in Hilbert space valued SDE was first studied in Bishwal [7] based on
continuous stopping time.

Consider the stopping time

-
T=1Tr =inf{r: / ||I_IrA1Q(t)||%dvt > R} (6.1)
0

where 0 < R < oo is a preassigned level of precision.
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Thus we observe the process until the observed Fisher information of the process reaches a
preassigned level of precision.

The random vector (Tr, 8F) is called the sequential plan in which 7x is the special stopping rule
and 6 is the estimate of the parameter 8 at the moment 7.

We show that the sequential plan is closed, i.e, P(Tr < o0) = 1.

Then
T T K T 2
g7 — Jo (MALu(1), dQ (f))/g+5R|||_| AR llgdvr (62)
Then
5 _ gy + Jo (AR AW (0o [ (6.3)

R
because of the discrete nature of the stopping time, it may not reach the precision at 7. We adjust

the stopping time using the bias adjustment procedure of Konev and Pergamenshchikov (1990) used
for the least squares method in autoregressive model to reach the precision R.

Let 0 be a fraction of the observed Fisher information such that

)
]O I ALQ(8)]Bdve + S8lIM7 A1Q(7e) Ve = R (6.4)

giving

5. R Lo ITAQ(0)Fdv:
INT A1 Q(TR)IGvre

The proof of the following theorem is standard.

(6.5)

Theorem 6.1 The sequential estimator 6 is an unbiased estimator of 8 and vR(6R — 8y) is uni-
formly (in the parameter) N'(0, 1) distributed for fixed R.

7. Examples
Example 1 Complex-valued OU Process

Arato, Kolmogorov and Sinai [3] studied parameter estimation in the complex valued Ornstein-
Uhlenbeck process. They used the model for geophysical problem. Remember that Kolmogorov [47]
was the founder of fractional Brownian motion. Hence their model can be extended to fractional

Brownian motion. The complex valued fractional Ornstein-Uhlenbeck process is given by
du(t) = —[(a1 +iB1)0 + (ao + iBo)Olu(t)dt + o[dW{' (t) + idWs' (1)] (7.1)

where W{?, W4 are independent fractional Brownian motions, u(t) = (u1(t), u2(t)) where u; and
up are the real and imaginary parts of u(t). So this paper is an infinite dimensional generalization

of Kolmogorov's model. In the paper they used a time transformation to reduce the general problem
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to a fixed time case and the asymptotics were studied in large parameter case, see also Bishwal [12]
in this context.

Let Atj = h,i =1,2,..., n, a(f) = ap + a16. The Fisher information based on the data
u(ty), u(ta), ..., u(ty) is given by

2

2 1— —2ha(6) — 2ha(6 —2ha(6) 2ha(0))2 —2ha(6)

1(0) = i 41+ (n—1) ‘ xi6)e 4 (2holB))e
a(9)2 1 — e—2ha(0) 1 — e—2ha(0)

- e—2a(9)
+Blh (n — 1)m

It is easy to verify the results of the previous sections.

Example 2 Heat Balance Equation

82
du®(t, x) = Olﬁue(t, x)dt 4+ 6,u°(t, x)dt + dWH(t, x) (7.2)
Here d =2, A=0,B =1/,order(L) = 2 so that m=1, order(A) =0, order(B) = 0 so that b=0,

and order(N) = 1. The rates are Vi 1 = K and Vx> = VInK, since b=0=m — d/2.
KO —6;) =P N(0,1) as K — oo,

VInK (85 —62) =P N(0,1) as K — 0.
Example 3 Stochastic Heat Equation

Consider the stochastic heat equation

2

due(t,x) zé%ue(t,x)dt—i—dwh’(t,x) (7.3)

for 0 <t <T and x € (0,1) and 6 > 0 with periodic boundary conditions.
Here 2m = my =2 and u; = =072, v > 1/2. Y« = K3.

VK3 (85 — ) =P N (0, (£/(6))2N3(1 — e (<O FM))

as n—ooand K — oo.

Es-Sebaiy et al. [28] obtained Berry-Esseen bound of the order O(K~3/2) for the MLE there
by improving the bound O(K™1!) of Kim and Park [45].

Example 4 Linear Parabolic Equation

As another example of the evolution equation consider the linear parabolic equation

du®(t,x) = 0u8(t, x) + ;jzue(t,x)dt + dWh(t,x), t >0, x€[0,1] (7.4)
u(0,x) = uo(x) € L2([0,1]) (7.5)

uf(t,0) = d®(t, 1), te [0,T], (7.6)
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If d =2, then we have

Vnlog KBk — 6) =P N(0, (K'(8)) 222(1 — e~ 2 (K(EO)-F™)y)

as n—ooand K — oo.
If d > 2, then we have

nK(d=2/d(6, « —0) =P N(0, (k'(8))2A%(1 — e~ 2> "((O)=B1")y)

as n—ooand K — oo.

Concluding Remarks We considered fractional Brownian motion driving term in this paper whose
increments are stationary. Using fractional Levy process as the driving term which include jumps,
maximum quasi-likelihood estimation in fractional Levy stochastic volatility model was studied in
Bishwal [14]. Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussian

process with covariance function
1
Ch(s, t) = s?H 4 21 — 5 [(s+ )" +]s—t?"], s,t>0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk [20] has received some attention
recently in finite dimensional models. The interesting feature of this process is that this process
has some of the main properties of FBM, but the increments of the process are nonstationary,
more weakly correlated on non-overlapping time intervals than that of FBM, and its covariance
decays polynomially at a higher rate as the distance between the intervals tends to infinity. It
would be interesting to see extension of this paper to sub-FBM case. We generalize sub-fBM to
Sub-fractional Levy process (sub-FLP).
Sub-fractional Levy process (SFLP) is defined as

1 H-1/2 H-1/2
SHt = / t—s —(—s dMs, teR
H,t |‘(H+ %) R[( )+ ( )+ ] s

where Mg, t € R is a Levy process on R with E(M;) = 0, E(M?) < oo and without Brownian
component. SFLP has the following properties:
1) The covariance of the process is given by

E[L(1)?]
2[(2H + 1) sin(mH)

2) Sy is not a martingale. For a large class of Levy processes, Sy is neither a semimartingale

Cov(Sht Shs) = s2H 4+ 12H 4 [[£127 + |s|?H — |t — s]?H].

nor a Markov process. 3) Sy is Holder continuous of any order 3 less than H — % 4) Sy has
nonstationary increments. 5) Sy is symmetric. 6) Sy is self similar. 7) Sy has infinite total
variation on compacts.

It would be interesting to investigate QML estimation in SPDE driven by subfractional Levy
processes which incorporate both jumps and long memory apart from nonstationarity.

Recently Ichiba et al. [39,40] studied generalized fractional Brownian motion (GFBM). A gen-

eralized fractional Brownian motion is a Gaussian self-similar process whose increments are not
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necessarily stationary. It appears in the scaling limit of a shot-noise process with a power law
shape function and non-stationary noises with a power law variance function. They studied semi-
martingale properties of the mixed process made up of an independent Brownian motion and a
GFBM for the persistent Hurst parameter. It would be interesting to extend the current paper to
GFBM noise.
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