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Quasi-likelihood and Quasi-Bayes Estimation in Noncommutative Fractional SPDEs
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Abstract. We study the quasi-likelihood and quasi Bayes estimator of the drift parameter in thestochastic partial differential equations when the process is observed at the arrival times of a Poissonprocess. Unlike the previous work, no commutativity condition is assumed between the operators inthe equation. We use a two stage estimation procedure. We first estimate the intensity of the Poissonprocess. Then we plug-in this estimate in the quasi-likelihood to estimate the drift parameter. Undercertain non-degeneracy assumptions on the operators, we obtain the consistency and the asymptoticnormality of the estimators.
1. IntroductionA stochastic partial differential equation (SPDE) is a continuous version of simultaneous cross-section time series model. For a fixed spatial mode, it is an autoregressive time series (recallthat an Ornstein-Uhlenbeck process is a continuous limit of Gaussian AR(1) process) and for afixed time, it is a regression model. One can study asymptotic estimation for one fixed time pointwith large number of spatial observations or at a fixed spatial mode with large number of discretetime points, or simultaneous large spatial and temporal observations. We consider the estimationbased on a fixed spatial mode with large number of randomly spaced time points, where the interarrival times are exponentially distributed. Thus we have a random time sampling at a fixed spacepoint. What mainly distinguishes SPDE from classical models is the type of sampling and theunusual rate of convergence of the estimators. Applications of SPDE model is numerous, e.g, in cellbiology, neurophysiology, turbulence, oceanography and finance: see Itô [42], Walsh [61], Kallianpurand Xiong [44], Holden et al. [32], Adler et al. [1], Carmona and Rozovskii [23] and Bishwal [15].Bishwal [15] studied asymptotic inference for fractional SPDE model for neurobiology. RecentlySPDE has been used to model cell repolarization (stochastic Meinhardt model) and parameterestimation techniques developed for linear SPDE models have been applied to this model whenthe space resolution is finer, see Altmeyer et al. [2].
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Eur. J. Stat. 10.28924/ada/stat.4.6 2Types of operators appearing in SPDE makes the estimation problem simple or difficult. Commut-ing operators have the same system of eigenvectors and make the corresponding finite dimensionalprojections as diffusion processes. The case is not so for noncommuting operators. Noncommutingoperators appear in quantum mechanics. According to Heisenberg’s uncertainty principle, if twooperators representing a pair of variables do not commute, then the par of varibles are mutuallycomplementary, which means they can not be simultaneously measured or known precisely.Parameter estimation is an inverse problem. Loges (1984) initiated the study of parameterestimation in infinite dimensional stochastic differential equations. When the length of the ob-servation time becomes large, he obtained consistency and asymptotic normality of the maximumlikelihood estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koskiand Loges [51] extended the work of Loges (1984) to minimum contrast estimators. Koski andLoges [50] applied the work to a stochastic heat flow problem. See Bishwal [11] for recent resultson likelihood asymptotics and Bayesian asymptotics for drift estimation of finite and infinite di-mensional stochastic differential equations. See Bishwal [10] for asymptotic statistical results fordiscretely sampled diffusions. For the finite dimensional fractional Ornstein-Uhlenbeck process,Berry-Esseen inequalities of minimum contrast estimators based on continuous and discrete ob-servations was studied in Bishwal [13]. Bishwal [17] studied estimation and hypothesis testing onnonlinear SPDEs from both continuous and discrete observations. Bishwal [19] studied estimationby the mixingale estimation function method for SPDEs with random sampling. Discrete observa-tions in time of continuous models are important for practical applications,e.g. stochastic volatilitymodels, see Bishwal [18].Huebner, Khasminskii and Rozovskii [36] started statistical investigation in SPDEs. They gavetwo contrast examples of parabolic SPDEs in one of which they obtained consistency, asymptoticnormality and asymptotic efficiency of the MLE as noise intensity decreases to zero under thecondition of absolute continuity of measures generated by the process for different parameters (thesituation is similar to the classical finite dimensional case) and in the other they obtained theseproperties as the finite dimensional projection becomes large under the condition of singularity ofthe measures generated by the process for different parameters. The second example was extendedby Huebner and Rozovskii [38] and the first example was extended by Huebner [35] to MLE forgeneral parabolic SPDEs where the partial differential operators commute and satisfy differentorder conditions in the two cases.Huebner [37] extended the problem to the ML estimation of multidimensional parameter. Lototskyand Rozovskii [55] studied the same problem without the commutativity condition. Small noiseasymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov andKhasminskii (1998).The Bernstein-von Mises theorem (BVT, in short), concerning the convergence of suitably nor-malized and centered posterior distribution to normal distribution, plays a fundamental role inasymptotic Bayesian inference, see Le Cam and Yang (1990). Borwanker et al. [21] obtained the

https://doi.org/10.28924/ada/stat.4.6


Eur. J. Stat. 10.28924/ada/stat.4.6 3BVT for discrete time Markov processes. Bose [22] extended the BVT to the homogeneous non-linear diffusions. As a further refinement in BVT, Bishwal [8] obtained sharp rates of convergenceto normality of the posterior distribution and the Bayes estimators for the Ornstein-Uhlenbeckprocess.All these above work on BVT are concerned with finite dimensional SDEs. Bishwal [7] provedthe BVT and obtained asymptotic properties of regular Bayes estimator of the drift parameterin a Hilbert space valued SDE when the corresponding ergodic diffusion process is observedcontinuously over a time interval [0, T ]. The asymptotics are studied as T →∞ under the conditionof absolute continuity of measures generated by the process. Results are illustrated for the exampleof an SPDE.Bishwal (2002) obtained BVT and spectral asymptotics of Bayes estimators for parabolic SPDEswhen the number of Fourier coefficients becomes large. In that case, the measures generated bythe process for different parameters are singular. Here we treat the case when the measuresgenerated by the process for different parameters are absolutely continuous under some conditionson the order of the partial differential operators. Bishwal [16] studied the asymptotic propertiesof the posterior distributions and Bayes estimators when we have either fully observed process orfinite-dimensional projections. The asymptotic parameter is only the intensity of noise. RecentlyCheng et al. [24] studied BVT and Bayesian estimation for a large class of prior distributionsand loss functions (of at most polynomial growth) for diagonalizable bilinear SPDEs driven bya multiplicative noise. In this paper we treat the more general model and study estimation bymartingale estimation function method.The rest of the paper is organized as follows : Section 2 contains model, assumptions andpreliminaries. In Section 3 we prove the asymptotic properties of the discretely sampled quasi-likelihood estimator. In Section 4, we prove the Bernstein-von Mises theorem. In section 5, westudy the asymptotics of quasi-Bayes estimators for smooth priors are loss functions. In section 6,we study fixed accuracy sequential estimation. Section 7 provides several examples of noncommu-tative SPDEs.
2. Model and PreliminariesLet G be a smooth bounded domain in Rd . We assume that the boundary ∂G of this domain is a
C∞-manifold of dimension (d − 1) and locally G is totally on one side of ∂G. For a multi-index
γ = (γ1, . . . , γd) we write

Dγf (x) :=
∂|γ|

∂xγ1
1 . . . ∂xγdd

f (x)

where |γ| = γ1 + γ2 + . . .+ γd .Let A0 and A1 be partial differential operators of order m0 and m1 (the order of the highestderivative in it) respectively, written in the form
Ai(x)u := −

∑
|α|,|β|≤mi

(−1)|α|Dα(aαβi (x)Dβ(u))
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where aαβi (x) ∈ C∞(G). For θ ∈ R, write Aθ = θA1 + A0 and aαβ(θ, x) = θaαβ1 (x) + aαβ0 (x). Letus fix θ0, the unknown true value of the parameter θ. Let (Ω,F , P ) be a complete probability spaceand W (t, x) be a cylindrical Brownian motion on this space with values in the Schwarz space ofdistributions D′(G).A cylindrical fractional Brownian motion (C.F.B.M) is W = WH(t, x) is a distribution valuedprocess such that for every such that for every φ ∈ C∞0 (G) with ‖φ‖L2(G) = 1 the inner product
〈W (t, ·), φ(·)〉 is a one dimensional fractional Brownian motion and for every φ1, φ2 ∈ C∞0 (G),

E(〈WH(s, ·), φ1(·)〉〈WH(t, ·), φ2(·)〉) = (s ∧ t)(φ1, φ2)L2(G).The C.F.B.M.WH can be expanded in the seriesWH(t, x) =
∑∞
i=1W

H
i (t)hi(x) where {WH

i (t)}∞i=1are independent one dimensional fractional Brownian motions and {hi}∞i=1 is complete orthonormalsystem in L2(G). The latter series converges P -a.s.Recall that a fractional Brownian motion (fBM) has the covariance
C̃H(s, t) =

1

2

[
s2H + t2H − |s − t|2H

]
, s, t > 0.

For H > 0.5 the process has long range dependence or long memory and the process is self-similar.For H 6= 0.5, the process is neither a Markov process nor a semimartingale. For H = 0.5, theprocess reduces to standard Brownian motion. Fractional Brownian motion can be represented asa Riemann-Liouville (fractional) derivative of Gaussian white noise, see Decreusefond and Ustunel[26] and Jumarie [43]. For deterministic fractional calculus, see Samko et al. [59].We will consider the Dirichlet problem for a parabolic SPDE associated with the operator Aθ ,and driven by the C.F.B.M. WH :
∂u(t, x)

∂t
= (A0 + θA1)u(t, x) +

∂

∂t
WH(t, x) (2.1)

u(0, x) = u0(x) (2.2)

Dγu(t, x)|∂G = 0 (2.3)for all multi-indices γ with |γ| ≤ m − 1.The problem (2.1) - (2.3) is understood in the sense of distributions.We assume that
order(A1) ≥

1

2
order(A0 + θA1)− d (2.4)For non-diagonalizable case, one can use Galerkin approximation of the solution of the SPDE. Wedo not assume anything about the eigenfunctions of the operators in the equation. The equation isconsidered in a compact d-dimensional manifold so that there are no boundary conditions involved.The main assumption is that the operators A0 and A1 are of different orders and the operator

A0 + θA1 is elliptic for admissible values of θ.Let M be a d-dimensional compact orientable C∞ manifold with a smooth positive measure dx .Let L be a elliptic positive definite self-adjoint differential operator of order 2m on M . Let A,B,Nbe differential operators on M with max(order(A), order(B), order(N)) < 2m.
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Eur. J. Stat. 10.28924/ada/stat.4.6 5Consider the random field u defined by the evolution equation
du(t, x) + [θ1(L+ A) + θ2B + N]u(t, x)dt = dWH(t, x), 0 ≤ t ≤ T, u(0, x) = 0

where θ1 > 0 and θ2 > 0. We estimate θ1 when θ2 is known and we estimate θ2 when θ1 is known.If θ2 is known, then A0 = θ2B+N, θ = θ1,Θ = (0,∞), A1 = L+A. If θ1 is known, A0 = θ1(L+

A) + N, θ = θ2,Θ = R, A1 = B. For every f ∈ L2(M, dx) the representation f =
∑
i≥1 ψi(f )eiholds, where ψi(f ) =

∫
M f (x)ei(x)dx and ψk(WH(t)) = WH

k (t). Let the finite dimensionalprojection operator be ΠK . For every f = {ψi(f )}i≥1,
ΠK(f ) =

K∑
i=1

ψi(f )ei . (2.5)

The finite dimensional processes ΠKu, ΠKA0u, ΠKA1u will be used to estimate the unknownparameter. By (2.1)
dΠKu(t) + ΠKAθ(x)u(t)dt = dWK,H(t) (2.6)

where WK,H(t) = ΠKWH(t). Let ΠKu(t) := uk,t .Now we focus on the fundamental semimartingale behind the SPDE model. Define
κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1

H (s(t − s))
1
2
−H,

λH :=
2HΓ(3− 2H)Γ(H + 1

2 )

Γ(3/2−H)
, vt ≡ vHt := λ−1

H t2−2H, MH
t :=

∫ t

0

kH(t, s)dWH
s .

From Norros et al. [57] it is well known thatMH
k,t is a Gaussian martingale, called the fundamentalmartingale whose variance function 〈MH

k 〉t is vHt . Moreover, the natural filtration of the martingale
MH coincides with the natural filtration of the fBm WH since WH

k,t :=
∫ t

0 K(t, s)dMH
k,s holds for

H ∈ (1/2, 1) where KH(t, s) := H(2H − 1)
∫ t
s r

H− 1
2 (r − s)H−

3
2 dr, 0 ≤ s ≤ t and for H = 1/2,the convention K1/2 ≡ 1 is used.Define Qk,t := d

dvt

∫ t
0 kH(t, s)uk,sds. Define the process Zk = (Zk,t , t ∈ [0, T ], k ≥ 1) by

Zk,t :=
∫ t

0 kH(t, s)duk,s . It is easy to see that Qk,t = λH
2(2−2H)

{
t2H−1Zk,t +

∫ t
0 r

2H−1dZk,s

}
.The following facts are known from Kleptsyna and Le Breton [46]:(i) Zk is the fundamental semimartingale associated with the process uk . (ii) Zk is a (Ft) -semimartingale with the decomposition Zk,t = θ

∫ t
0 Qk,sdvs +MH

k,t . (iii) uk admits the represen-tation uk,t =
∫ t

0 KH(t, s)dZk,s . (iv) The natural filtration (Zt) of Zk and (Ut) of uk coincide.
We have

Qk,t =
d

dvt

∫ t

0

kH(t, s)uk,sds = κ−1
H

d

dvt

∫ t

0

s1/2−H(t − s)1/2−Huk,sds

= κ−1
H λHt

2H−1 d

dt

∫ t

0

s1/2−H(t − s)1/2−Huk,sds

= κ−1
H λHt

2H−1

∫ t

0

d

dt
s1/2−H(t − s)1/2−Huk,sds
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= κ−1
H λHt

2H−1

∫ t

0

s1/2−H(t − s)−1/2−Huk,sds.

The process Qk depends continuously on uk and therefore, the discrete observations of uk doesnot allow one to obtain the discrete observations of Q. The process Qk can be approximated by
Q̃k,n = κ−1

H λHn
2H−1

n−1∑
j=0

j1/2−H(n − j)−1/2−Huk,j

where 0 ≤ t1 < t2 < . . . < tn = t . It is easy to show that Q̃k,n → Qk,t almost surely as n → ∞,see Tudor and Viens (2007).Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk = tk , k = 1, 2, · · · , n. Define for each
i ≥ 1,

Q̃i(tk) = κ−1
H ηHt

2H−1
k

mk∑
j=1

r
1/2−H
j (rmk − rj)

−1/2−Hui(rj)(rj − rj−1),

k = 1, 2, · · · , n. It is easy to show that Q̃i(tk) → Qi(t) almost surely as mk → ∞ for each
k = 1, 2, · · · , n and i ≥ 1, see Tudor and Viens (2007).We use this approximate observation in the calculation of our estimators. Thus our observationsare

ui(t) ≈
∫ t

0

KH(t, s)dZ̃i(s) where Z̃i(t) = θ

∫ t

0

Q̃i(s)dvs +MH
i,tobserved at t1, t2, . . . , tn.Note that for equally spaced data ∆vti := vti − vti−1

= λ−1
H

(
T
n

)2−2H
[i2−2H − (i − 1)2−2H].For H = 0.5, vti − vti−1

= λ−1
H

(
T
n

)2−2H
[i2−2H − (i − 1)2−2H] = T

n , i = 1, 2, . . . , n the standardequispaced partition. In this paper we do not need to assume T/n → 0 unlike the finite dimensionaldiffusion models as we take advantage of the increasing spatial dimension K →∞ in this paper.The process ΠKu is finite dimensional, continuous in the mean, and Gaussian process but not
in general a diffusion process because the operators A0 and A1 need not commute with ΠK . Let

qθ,Kt (ΠKQ) = E(ΠKAθQ|FKt )

where FKt is the sigma-algebra generated by ΠKQ(s), 0 ≤ s ≤ t . But qθ,Kt (ΠKu) is not knownexplicitly. One can apply Kitagawa algorithm for the computation of the estimator.By Theorem 7.12 in Liptser and Shiryayev [54], ΠKu satisfies
dΠKQ(t) = qKt (ΠKQ)dt + dW̃K,H(t), ΠKQ(0) = 0 (2.7)

where W̃K,H(t) =
∑K
i=1 W̃

H
i (t)ei and W̃i(t), i = 1, 2, . . . , K are independent one-dimensionalfractional Wiener processes in general different for different θ. Since {ΠKAθQ, WK,H

} is a Gauss-ian system for every θ ∈ Θ, from Theorem 7.16 and Lemma 4.10 in Liptser and Shiryayev [54], thelikelihood is given by
ΛθK(Q) := dPθ

dPθ0
(ΠKQ) = exp

{∫ T
0

(
qθ,Kt (ΠKQ)− qθ0,K

t (ΠKQ), dΠKQ
)

0

−1
2

∫ T
0 (‖qθ,Kt (ΠKQ)‖2

0 − ‖q
θ0,K
t (ΠKQ)‖2

0)dvt

}
.

(2.8)
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Eur. J. Stat. 10.28924/ada/stat.4.6 7The maximum likelihood estimate (MLE) is defined as
θ̂K = arg max

θ

dPθ
dPθ0

(ΠKQ).

But since the function qθ,K(ΠKQ) is not known explicitly, this estimate can not be computed.The situation is much simpler if the operators A0 and A1 commute with ΠK so that ΠKAi =

ΠKAiΠ
K , i = 0, 1, and UKt (X) = ΠKAθX(t), that is, they have a common set of eigenfunctions. Inthis case the MLE is computable and is given by

θ̂K =

∫ T
0 (ΠKA1Q(t), dΠKQ(t)− ΠKA0(x)Q(t)dvt)0∫ T

0 ‖ΠKA1Q(t)‖2
0dvt

. (2.9)

Of course this expression (2.9) is well defined when the operators A0 and A1 do not commutewith ΠK , and if the whole trajectory of u is observed, then the values of ΠKA1Q(t) and ΠKA1Q(t)can be evaluated, making (2.9) computable. Even though (2.9) is not in general maximum likelihoodestimate of θ, it looks like a natural estimate to consider.For sufficiently large K, note that P (∫ T0 ‖ΠKA1Q(t)‖2
0dvt > 0

)
= 1. Since the operator A1 isnot identically zero, (ΠKA1W

H
)
t≥0

is a continuous nonzero square integrable martingale, while(∫ t
0 ΠKA1[θ1(L+ A) + θ2B]Q(s) dvs

)
t≥0

is a continuous process with bounded variation. Thenit follows that
θ̂K = θ0 +

∫ T
0 (ΠKA1Q(t), dWK,H(t))0∫ T

0 ‖ΠKA1Q‖2
0dvt

P-a.s. (2.10)

In order that ∫ T0 ‖ΠKA1Q(t)‖2
0dvt → ∞ as K → ∞, the operator A1 should be essentiallynon-degenerate.Recall that the random field u defined on M satisfies the evolution equation

du(t, x) + [θ1(L+ A) + θ2B + N]u(t, x)dt = dWH(t, x), 0 ≤ t ≤ T, u(0, x) = 0

where θ1 > 0 and θ2 ∈ R. We estimate θ1 when θ2 is known and we estimate θ2 when θ1 is known.We supress the dependence of Q and W on x . According to (2.10)
θ̂K1 =

∫ T
0 (ΠK(L+ A)Q(t), dΠKZ(t)− dΠK(θ2B + N)Q(t)dvt)0∫ T

0 ‖ΠK(L+ A)Q(t)‖2
0dvt

, (2.11)

θ̂K2 =

∫ T
0 (ΠKBQ(t), dΠKZ(t)− dΠKθ1(L+ A) + N)Q(t)dvt)0∫ T

0 ‖ΠKBQ(t)‖2
0dvt

. (2.12)

Theorem 2.1 The operator L is a positive definite self-adjoint elliptic operator of order 2m and
c := max(order(A), order(B), order(N)) < 2m. When θ2 is known, θ̂K1 is consistent and asymp-
totically normal :

a) θ̂K1 →P θ1 as K →∞
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b) Ψ
1/2
K,1(θ̂K1 − θ1)→D N (0, 1) as K →∞

where Ψ
1/2
K,1 =:

√
(T/2θ1)

∑K
i=1 li .

Let B be essentially non-degenerate and order(B) = b ≥ m − d/2. When θ1 is known, θ̂K2 is
consistent and asymptotically normal:

c) θ̂K2 →P θ2 as K →∞

d) Ψ
1/2
K,2(θ̂K2 − θ2)→D N (0, 1) as K →∞

where Ψ
1/2
K,2 �

√∑K
i=1 l

(b−m)/m
i .

Remarks Since li � i2m/d , the rate of convergence for θ̂K1 is Ψ
1/2
K,1 � K

m/d+1/2, and for θ̂K2 is
Ψ

1/2
K,2 �

{
K(b−m)/d+1/2 : b > m − d/2

√
lnK : b = m − d/2

Theorem 2.2 If θ1 is known and order(B) = b < m − d/2, the estimator θ̂K2 is inconsistent:

θ̂K2 →P θ2 +

∫ T
0 (BQ(t), dWH(t))0∫ T

0 ‖BQ(t)‖2
0dvt

as K →∞.

Remark θ̂K1 is consistent and asymptotically normal for b ≥ m− d/2 and b < m− d/2. But θ̂K2 isconsistent and asymptotically normal for b ≥ m − d/2 and inconsistent b < m − d/2.
Proof. If ψk(t) := ψk(u(t)), then

dψk(t) = −θ1lkψk(t)dt − ψk((θ1A+ θ2B + N)u(t))dt + dWH
k (t), ψk(0) = 0.

The solution of this equation is given by ψk(t) = ζk(t) + ηk(t) where
ζk(t) :=

∫ t

0

e−θ1lk(t−s)dWH
k (s), ηk(t) := −

∫ t

0

e−θ1lk(t−s)ψk((θ1A+ θ2B + N))u(t)dt

Thus the solution process can be written as u(t) = ζ(t) + η(t) where ζ(t) is defined by thesequence {ζk(t)}k≥1 and η(t) defined by the sequence {ηk(t)}k≥1.It can be shown by direct computation that if P is an essentially nondegenerate operator of order
p ≥ m − d/2, then the asymptotics of E ∫ T0 ‖ΠKA1Pu(t)‖2

0dvt is determined by the asymptoticsof E ∫ T0 ‖ΠKA1Pζ(t)‖2
0dvt .Specifically

E

∫ T

0

‖ΠKA1PQ(t)‖2
0dvt � E

∫ T

0

‖ΠKA1Pζ(t)‖2
0dvt �

K∑
i=1

l
(p−m)/m
i , K →∞

which implies
P − lim

K→∞

∫ T

0

‖ΠKA1PQ(t)‖2
0dvt =∞
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Eur. J. Stat. 10.28924/ada/stat.4.6 9and also
lim
K→∞

E
∫ T

0 ‖Π
KA1Pη(t)‖2

0dvt

E
∫ T

0 ‖ΠKA1Pζ(t)‖2
0dvt

= 0, P − lim
K→∞

∫ T
0 ‖Π

KA1Pζ(t)‖2
0dvt

E
∫ T

0 ‖ΠKA1Pζ(t)‖2
0dvt

= 1

which imply
P − lim

K→∞

∫ T
0 ‖Π

KA1PQ(t)‖2
0dvt

E
∫ T

0 ‖ΠKA1PQ(t)‖2
0dvt

= 1.

Hence by the martingale LLN the following result holds:
P − lim

K→∞

∫ T
0 (ΠKA1PQ(t), dMH

k )0∫ T
0 ‖ΠKA1PQ(t)‖2

0dvt
= 0

and by the martingale CLT the following result holds:
lim
K→∞

∫ T
0 (ΠKA1PQ(t), dMH

k )0√
E
∫ T

0 ‖ΠKA1PQ(t)‖2
0dvt

= N (0, 1)

in distribution. Thus the statement of the theorem follows by setting P = L+ A and P = B.

Remark The coefficients ψk(u(t)) for different k are dependent processes because the eigenfunc-tions of the operators are different. This is the noncommutative case.If the operators A,B,N have the same eigenfunctions as L, then the coefficients ψ(uk) for dif-ferent k are independent OU processes. This is the well studied commutative case.
3. Quasi-Likelihood EstimationThe computation of the estimators θ̂K1 and θ̂K2 requires the knowledge of the whole field u ratherthan its projection. One option is to replace u by ΠKu. This can simplify the computation butthe estimators are far from the maximum likelihood estimators because some information is lostand asymptotic properties of the resulting estimators are more difficult to study. In general, theconstruction of the estimate depending only on the projection ΠKu is equivalent to the parameterestimation for a partially observed system with observations being given by (2.6). This is thereason we take the alternative route of estimating function approach so that the estimators willbe computable. We take random sampling as it produces optimal discretization, see Gobet andStazhynski [30] who consider observations at random stopping times for multidimensional diffusionprocesses which include Poisson-like random times. Another motivation of using random timesis from mathematical finance where one can do almost sure optimal hedging when the discreterebalancing dates (or trading dates) are stopping times, see Gobet and Landon [29]. Their schemealso includes Karandikar scheme of discretization of stochastic integrals.If an operator Ai in the equation does not commute with the corresponding projection operator

ΠK , then to evaluate ΠkAiu, it is not enough to know only Πku. Another approach is to assumeGalerkin approximation of the solution is observed, see Huebner (1997) and Huebner et al. (1997).
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Eur. J. Stat. 10.28924/ada/stat.4.6 10The ideas behind of martingale estimation function, (see Bibby and Srensen [4]), quasi-likelihoodand M-estimation are similar. We consider mixingale estimation function.We need some preliminary results in this section. The following is the strong law of large num-bers for triangular array of mixingales.
Lemma 3.1 (Mixingale SLLN) (De Jong [27]) : Suppose the triangular array {Xn,i ,Fn,i} is a L2-
mixingale and for a positive integer-valued sequence mn, we have

∑∞
n=1(n−1

∑n
i=1 cn,iψmn)2 <∞.

Then X̄n → 0 almost surely as n →∞.

Lemma 3.2 Mixing CLT (Peligrad and Utev [58]): Let {Xn,i , 1 ≤ i ≤ kn} be a tringular array of
random variables satisfying:

a) var(
∑b
j=a Xn,j) ≤ C

∑b
j=a var(Xn,j) for every 0 ≤ a ≤ b ≤ kn where C is a universal

constant;

b) lim inf
n→∞

var(
∑kn
j=1Xn,j)∑kn

j=1 var(Xn,j)
> 0;

c)

∣∣∣∣∣∣cov
exp

i t b∑
j=a

Xn,j

 , exp

i t c∑
j=b+u

Xn,j

∣∣∣∣∣∣ ≤ ht(u)

c∑
j=a

var(Xn,j)

for every 0 ≤ a ≤ b ≤ c ≤ kn where ht(u) ≥ 0,
∑
ht(2j) < ∞ and u is of the form u =

[(c − a)1−ε] for certain 0 < ε < 1;
d) σ−2

n

∑kn
j=1 EX

2
n,j I(|Xn,j | > εσn) as n →∞ for every ε > 0 where σ2

n denotes var(
∑kn
j=1Xn,j).

Then Sn/σn →D N (0, 1) as n →∞ where Sn =
∑kn
j=1Xn,j .

The following is the central limit theorem for triangular array of mixingales.
Lemma 3.3 (Mixingale CLT) (Ikeda [41]) : Suppose the triangular array {Xn,i ,Fn,i} is a uniformly
integrable L1-mixingale. Then

nt∑
i=1

Xn,i →D
∫ t

0

δ
1/2
v dWv

as n → ∞ where h−1E

[(∑bn(t+h)c
i=bntc Xn,i

)2
|Fn,bnsc

]
− δt →P 0 as n−1 + h + (nh)−1 → 0 for

some s, t such that 0 ≤ s < t < t + h < 1 with (δt)t∈[0,1] is non-negative, t-continuous, uniformly
integrable and F-measurable and

∫ 1
0 δsds is uniformly bounded away from zero, and W is standard

Brownian motion

For simplicity of presentation, we assume θ2 = 0 and A = 0, B = I, N = 0 and we estimate theparameter θ1. We denote θ1 by θ. We keep k = 1 fixed. Thus
dψk(t) = −θlkψk(t)dt + dWH

k (t), ψk(0) = 0, k ≥ 1.
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Eur. J. Stat. 10.28924/ada/stat.4.6 11Consider the Fourier expansion of the process
u(t, x) =

∞∑
k=1

uk(t)φk(x) (3.1)

corresponding to some orthogonal basis {φk(x)}∞k=1.Note that {uθk(t), k ≥ 1} are dependent one dimensional Ornstein-Uhlenbeck processes
duθk(t) = µθku

θ
k(t)dt + λ−αk (θ)dWH

k (t), uθk(0) = uθ0k (3.2)

Recall that µk = −λ2m
k + κ(θ).Thus
duθk(t) = (κ(θ)− λ2m

k )uθk(t)dt + λ−αk (θ)dWH
k (t), k ≥ 1. (3.3)The Fourier coefficients uθk(t) are observed at discrete time points. As an alternative approach,random field uθ(t, x) could be observed at discrete time points t and discrete positions x . Thusthe spatial resolution could be an stochastic interacting particle system, see Ligget [53]. RecentlyHu et al. [33] studied existence and uniqueness of interacting system of SPDEs. However, we donot pursue this approach here.We have random temporal discretization. We study the parameter estimation in two steps: Therate λ of the Poisson process can be estimated given the jump times ti , therefore it is done at afirst step. Since we observe total number of jumps n of the Poisson process over the T intervals oflength one, the MLE of λ is given by λ̂n := n

T .

Theorem 3.1 a) λ̂n → λ a.s. as n →∞.
b)
√
n(λ̂n − λ)→D N (0, eλ(1− e−λ)) as n →∞.

Proof. Let Vi be the number of jumps in the interval (i − 1, i ]. Then Vi , i = 1, 2, . . . , n are i.i.d.Poisson distributed with parameter λ. Since Φ is continuous, we have I{0}(Vi) = I{0}(Qti ), a.s. i =

1, 2, . . . , n. Note that
1

n

n∑
i=1

I{0}(Qk,ti )→
a.s. E(I{0}V1) = P (V1 = 0) = e−λ as n →∞.

LLN, CLT and delta method applied to the sequence I{0}(Qti ), i = 1, 2, . . . , n produce the results.
The CLT result above allows us to construct confidence interval for the jump rate λ. A 100(1−α)%confidence interval for λ is given by [ nT − ε1−α

2

√
1
n −

1
T ,

n
T + ε1−α

2

√
1
n −

1
T

] where ε1−α
2

is the
(1− α

2 )-quantile of the standard normal distribution.
We have a time series representation of the model. It is well known that the discretized versionof the O-U process is an first order autoregressive process (AR(1)). Hence we have

Qk,ti+1
= e−µk(θ)∆tiQk,ti + εk,i
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εk,i ∼ N

(
0,

1− e−2µ(θ)∆ti

ν(θ)
σ2
i

)
, i ≥ 1, k ≥ 1.

Define ρ := λ
λ+θ . Mixingale estimation function (MEF) estimator, which is also the quasi maximumlikelihood estimator (QMLE) is the solution of the estimating equation: G∗n,K(θ) = 0 where

G∗n,K(θ) =

K∑
k=1

n∑
i=1

β2α
k λ(ρ(λ, θ))2

ρ(λ, 2θ)
Qk,ti−1

[
(Qk,ti−1

θρ(λ, θ))2 + λ
]−1

[Qk,ti − ρ(λ, θ)Qk,ti−1
].

We call the solution of the estimating equation the quasi maximum likelihood estimator (QMLE).There is no explicit solution for this equation.The optimal estimating function for estimation of the unknown parameter θ is given by
Gn,K(θ) =

K∑
k=1

n∑
i=1

β2α
k Qk,ti−1

[Qk,ti − ρ(λ, θ)Qk,ti−1
].

The mixingale estimation function (MEF) estimator of ρ is the solution of Gn,N(θ) = 0 and isgiven by
ρ̂K,n :=

∑K
k=1

∑n
i=1Qk,ti−1

Qk,ti∑K
k=1

∑n
i=1Q

2
k,ti−1

. (3.4)

We obtain the strong consistency and asymptotic normality of the estimator.
Theorem 3.2 a) ρ̂K,n →P ρ as n →∞ and K →∞, such that K

n → 0.

b)
√
nΨK(ρ̂K,n − ρ)→D N (0, λ−i(1− e−ρ)) as n →∞ and K →∞ such that K√

n
→ 0.

Proof: By using the fact that every stationary mixing process is ergodic, it is easy to show thatif Qk(t) is a stationary ergodic O-U Markov process and ti is a process with nonnegative i.i.d.increments which is independent of Qk(t), then {Qk,ti , i ≥ 1, k ≥ 1} is a stationary ergodic Markovprocess. Hence {Qj,ti , i ≥ 1} is a stationary ergodic Markov process. Thus the extra randomnessof the sampling instants preserves the stationarity and ergodicity of the Markov process in orderfor the law of large numbers to be applicable.Observe that Qθj (t) := vj is a stationary ergodic Markov chain and vj ∼ N (0, σ2) where σ2is the variance of Q1,t0 . Thus by SLLN for zero mean square integrable mixingales (Lemma 3.1),Peligrad and Utev ( [58], Theorem B) and arguments in Bibinger and Trabs ( [5], Proposition 7.6),we have
K∑
k=1

n∑
i=1

Qk,ti−1
Qk,ti →

a.s. E(Q1,t1Qk,t0 ) = ρE(Q2
1,t0 ) (3.5)

and
1

nΨK

K∑
k=1

n∑
i=1

Q2
k,ti−1

→a.s. E(Q2
1,t0 ). (3.6)

Further Qk,i(t) := Si is a stationary ergodic Markov chain and Si ∼ N (0, σ2) where σ2 is thevariance of Qk,0. SLLN for martingales proves the result.
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i=1Qk,ti−1

Qk,ti∑n
i=1Q

2
k,ti−1

→P ρ. (3.7)

Further, √
nΨk(ρ̂n − ρ) =

(nΨK)−1/2
∑K
k=1

∑n
i=1Qk,ti−1

(Qk,ti − θQk,ti−1
)

(nΨK)−1
∑K
k=1

∑n
i=1Q

2
k,ti−1

. (3.8)

Since
E(Qk,t2Qk,t1 |Qk,t1 ) = θQ2

k,t1
(3.9)it follows by Lemma 3.3 and Lemma 3.2 which an generalization of Peligrad and Utev ( [58], TheoremB), along with the arguments in Bibinger and Trabs [6], that

(nΨK)−1/2
K∑
k=1

n∑
i=1

Qk,ti−1
(Qk,ti − θQk,ti−1

)

converges in distribution to normal distribution with mean zero and variance equal to
E[(Qk,t1Qk,t2 )− E(Qk,t1Qk,t2 |Qk,t1 )]2 = (1− e2(θ−λiδ)){2(λi − θ)(λi + 1)}−1. (3.10)

Applying delta method, the result follows.
In the next step, we use the estimator of λ to estimate θ. Note that

1

ρ̂n,K
=

∑K
k=1

∑n
i=1Q

2
j,ti−1∑K

k=1

∑n
i=1Qj,ti−1

Qj,ti
. (3.11)

Thus
1 +

β2m
1 − κ(θ)

λ
=

∑K
k=1

∑n
i=1Q

2
k,ti−1∑K

k=1

∑n
i=1Qk,ti−1

Qk,ti
. (3.12)

Hence
β2m

1 − κ(θ)

λ
=

∑K
k=1

∑n
i=1Q

2
k,ti−1∑K

k=1

∑n
i=1Qk,ti−1

Qk,ti
− 1 = −

∑K
k=1

∑n
i=1Qk,ti−1

[Qk,ti −Qk,ti−1
]∑K

k=1

∑n
i=1Qk,ti−1

Qj,ti
(3.13)

Now replace λ by its estimator MLE λ̂n = n
T .

β2m
1 − κ(θ) = −

∑K
k=1

∑n
i=1Qj,ti−1

[Qk,ti −Qj,ti−1
]

T
n

∑K
k=1

∑n
i=1Qk,ti−1

Qk,ti
(3.14)

Thus
θ̂K,n = κ−1

(
β2m

1 +

∑K
k=1

∑n
i=1Qk,ti−1

[Qk,ti −Qk,ti−1
]

T
n

∑K
k=1

∑n
i=1Qk,ti−1

Qk,ti

)
. (3.15)

Since the function κ−1(·) is a continuous differentiable function, applying delta method the follow-ing result follows is a consequence of Theorem 3.2.
Theorem 3.3 a) θ̂K,n →P θ as n →∞ and K →∞ such that K

n → 0.

b)
√
nΨK(θ̂K,n − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−β2m

1 ))) as n →∞ and K →∞ such
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that K√
n
→ 0. In the second stage, we substitute λ by its estimator λ̂n.

4. Bernstein-von Mises TheoremThe Bernstein-von Mises theorem states that the posterior distribution of the normalized distancebetween the randomized parameter θ and the corresponding MLE is asymptotically normal. Thisimplies that the posterior distribution measure approaches the Dirac measure as the data sizeincreases. It also serves as an essential tool in derivation of some asymptotic properties of Bayesestimators. It also gives the equivalence of the MLE and the Bayes estimator. Recently Cheng
et al. [24] studied BVT and Bayesian estimation for diagonalizable bilinear SPDEs driven by amultiplicative noise.Here ΨK = ΨK,1 for θ = θ1 and ΨK = ΨK,2 for θ = θ2. Also θ̂K = θ̂K,1 for θ = θ1 and
θ̂K = θ̂K,2 for θ = θ2.Suppose that Π is a prior probability measure on (Θ,D), where D is the σ-algebra of Borelsubsets of Θ. Assume that Π has a density π(·) w.r.t. the Lebesgue measure and the density iscontinuous and positive in an open neighbourhood of θ0.The posterior density of θ given in Qn is given by

p(θ|QK) :=
ΛθK(u)π(θ)∫

Θ ΛθK(u)π(θ)dθ
. (4.1)

Let τ = Ψ
1/2
K (θ − θ̂K). Then the posterior density of Ψ

1/2
K (θ − θ̂K) is given by

p∗(τ |QK) := Ψ
−1/2
K p(θ̂K + Ψ

−1/2
K τ |QK).

Let
νK(τ) :=

dPK
θ̂K+Ψ

−1/2
K τ

/dPKθ0

dPK
θ̂K
/dPKθ0

=

dPK
θ̂K+ψ

−1/2
K τ

dPK
θ̂K

, CK :=

∫ ∞
−∞

νK(τ)π(θ̂K + Ψ
−1/2
K τ)dτ.

Clearly
p∗(τ |QK) = C−1

K νK(τ)π(θ̂K + Ψ
−1/2
K τ).

Let κ(·) be a non-negative measurable function satisfying the following two conditions :
(K1) There exists a number η, 0 < η < 1, for which∫ ∞

−∞
κ(τ) exp{−

1

2
τ2(1− η)}dτ <∞.

(K2) For every ε > 0 and δ > 0

e−εΨK

∫
|τ |>δ

κ(τΨ
1/2
K )π(θ̂K + τ)dτ → 0 a.s. [Pθ0

] as K →∞.
We need the following Lemma to prove the Bernstein-von Mises theorem.
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Lemma 4.1 Under the assumptions (K1) – (K2),(i) There exists a δ0 > 0 such that
lim
K→∞

∫
|τ |≤δ0Ψ

1/2
K

κ(τ)

∣∣∣∣νK(τ)π(θ̂K + Ψ
−1/2
K τ)− π(θ0) exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

(ii) For every δ > 0,
lim
K→∞

∫
|τ |≥δΨ

1/2
K

κ(τ)

∣∣∣∣νK(τ)π(θ̂K + Ψ
−1/2
K τ)− π(θ0) exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof. From (2.7) and (2.8), it is easy to check that
log νK(τ) = −

1

2
τ2Ψ−1

K

∫ T

0

‖A1Q
K(s)‖2

0dvs .

Now (i) follows by an application of dominated convergence theorem.For every δ > 0, there exists ε > 0 depending on δ and β such that∫
|τ |≥δΨ

1/2
K

κ(τ)

∣∣∣∣νK(τ)π(θ̂K + Ψ
−1/2
K τ)− π(θ0) exp(−

1

2
τ2)

∣∣∣∣ dτ
≤

∫
|τ |≥δΨ

1/2
K

κ(τ)νK(τ)π(θ̂K + Ψ
−1/2
K τ)dτ +

∫
|τ |≥δΨ

1/2
K

π(θ0) exp(−
1

2
τ2)dτ

≤ e−εΨK

∫
|τ |≥δψ1/2

K

κ(τ)π(θ̂K + Ψ
−1/2
K τ)dτ + π(θ0)

∫
|τ |≥δΨ

1/2
K

exp(−
1

2
τ2)dτ

=: FK + GK

By condition (K2), it follows that FK → 0 a.s. [Pθ0] as K →∞ for every δ > 0. Condition K(1)implies that GK → 0 as K →∞. This completes the proof of the Lemma.Now we are ready to prove the generalized version of the Bernstein-von Mises theorem forparabolic SPDEs.
Theorem 4.1 Under the assumptions (K1) - (K2), we have

lim
K→∞

∫ ∞
−∞

κ(τ)

∣∣∣∣p∗(τ |QK)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof From Lemma 4.1, we have
lim
K→∞

∫ ∞
−∞

κ(τ)

∣∣∣∣νK(τ)π(θ̂K + Ψ
−1/2
K τ)− π(θ0) exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
]. (4.2)

Putting κ(τ) = 1 which trivially satisfies (K1) and (K2), we have
CK =

∫ ∞
−∞

νK(τ)π(θ̂K + Ψ
−1/2
K τ)dτ → π(θ0)

∫ ∞
−∞

exp(−
1

2
τ2)dτ a.s. [Pθ0

]. (4.3)
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−∞

κ(τ)

∣∣∣∣p∗(τ |QK)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ
≤

∫ ∞
−∞

κ(τ)

∣∣∣∣C−1
K νK(τ)π(θ̂K + Ψ

−1/2
K τ)− C−1

K π(θ0) exp(−
1

2
τ2)

∣∣∣∣ dτ
+

∫ ∞
−∞

κ(τ)

∣∣∣∣C−1
K π(θ0) exp(−

1

2
τ2)− (

1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ → 0 a.s. [Pθ0
] as K →∞.

Theorem 4.2 Suppose for some non-negative integer r ∫∞−∞ |θ|rπ(θ)dθ <∞ holds. Then
lim
K→∞

∫ ∞
−∞
|τ |r

∣∣∣∣p∗(τ |QK)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from Theorem3.1. Suppose r ≥ 1. Let κ(τ) = |τ |r , δ > 0 and ε > 0. Using |a + b|r ≤ 2r−1(|a|r + |b|r ), we have
e−εΨK

∫
|τ |>δ

κ(τΨ
1/2
K )π(θ̂K + τ)dτ ≤ Ψ

r/2
K e−εΨK

∫
|τ−θ̂K |>δ

π(τ)|τ − θ̂K |rdτ

≤ 2r−1Ψ
r/2
K e−εΨK [

∫
|τ−θ̂K |>δ

π(τ)|τ |rdτ +

∫
|τ−θ̂K |>δ

π(τ)|θ̂K |rdτ ]

≤ 2r−1Ψ
r/2
K e−εΨK [

∫ ∞
−∞

π(τ)|τ |rdτ + |θ̂K |r ]→ 0 a.s. [Pθ0
] as K →∞

from the strong consistency of θ̂K and hypothesis of the theorem. Thus the theorem follows fromTheorem 3.1.
Remark 4.1 For r = 0 in Theorem 4.2, we have

lim
K→∞

∫ ∞
−∞

∣∣∣∣p∗(τ |QK)− (
1

2π
)1/2 exp(−

1

2
τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0
].

This is the classical form of Bernstein-von Mises theorem for parabolic SPDEs in its simplestform.As a special case of Theorem 4.2, we obtain Eθ0
[Ψ

1/2
K (θ̂K − θ0)]r → E[ξr ] as K → ∞ where

ξ ∼ N (0, 1).

5. Quasi-Bayes Estimation

As an application of Theorem 4.1, we obtain the asymptotic properties of a regular Bayes estimatorof θ. Suppose l(θ, φ) is a loss function defined on Θ × Θ. Assume that l(θ, φ) = l(|θ − φ|) ≥ 0and l(·) is non decreasing. Suppose that J is a non-negative function on N and κ(·) and G̃(·) arefunctions on R such that
(B1) J(K)l(τΨ

−1/2
K ) ≤ G̃(τ) for all K,

(B2) J(K)l(τΨ
−1/2
K )→ κ(τ) as K →∞ uniformly on bounded subsets of R.

(B3)
∫∞
−∞ κ(τ + s) exp{−1

2τ
2}dτ has a strict minimum at s = 0.
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(B4) G̃(·) satisfies (K1) and (K2).Let
BK(φ) =

∫
θ

l(θ, φ)p(θ|QK)dθ.

A regular Bayes estimator θ̃n based on QK is defined as
θ̃K := arg inf

φ∈Θ
BK(φ).

Assume that such an estimator exists. The following Theorem shows that MLE and Bayes estima-tors are asymptotically equivalent as n →∞.
Theorem 5.1 Assume that (K1) - (K2) and (B1) - (B4) hold. Then we have(i) Ψ

1/2
K (θ̃K − θ̂K)→ 0 a.s.-[Pθ0

] as K →∞,(ii) lim
n→∞

J(K)BK(θ̃K) = lim
n→∞

J(K)BK(θ̂K) = (
1

2π
)1/2

∫ ∞
−∞

κ(τ) exp(−
1

2
τ2)dτ a.s. [Pθ0

].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We omit the details.
Corollary 5.2 Under the assumptions of Theorem 5.1, we have(i) θ̃K → θ0 a.s. [Pθ0

] as K →∞.(ii) Ψ
1/2
K (θ̃K − θ0)

L→N (0, 1) as K →∞.
Proof. (i) and (ii) follow easily by combining Theorem 5.1 and the strong consistency and asymptoticnormality results of the QMLE in Theorem 2.1 and 2.2.The following theorem shows that Bayes estimators are locally asymptotically minimax in theHajek-Le Cam sense, i.e., equality is achieved in Hajek-Le Cam inequality.
Theorem 5.3 Under the assumptions of Theorem 5.1, we have

lim
δ→∞

lim
K→∞

sup
|θ−θ0|<δ

Eω
(
ψ

1/2
K (θ̃K − θ0)

)
= Eω(ξ), L(ξ) = N (0, 1),

where ω(·) is a bowl shaped loss function.
Proof. The Theorem follows from Theorem III.2.1 in Ibragimov-Has’minskii (1981) since here condi-tions (N1) - (N4) of the said theorem are satisfied using Lemma 3.1 and local asymptotic normality(LAN) property obtained in Huebner and Rozovskii [38].
6. Sequential EstimationSequential estimation in Hilbert space valued SDE was first studied in Bishwal [7] based oncontinuous stopping time.Consider the stopping time

τ = τR = inf{r :

∫ T

0

‖ΠrA1Q(t)‖2
0dvt ≥ R} (6.1)

where 0 < R <∞ is a preassigned level of precision.
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Eur. J. Stat. 10.28924/ada/stat.4.6 18Thus we observe the process until the observed Fisher information of the process reaches apreassigned level of precision.The random vector (τR, θ̂R) is called the sequential plan in which τR is the special stopping ruleand θ̂R is the estimate of the parameter θ at the moment τR.We show that the sequential plan is closed, i.e, P (τR <∞) = 1.Then
θ̂R =

∫ T
0 (ΠτA1u(t), dQK(t))0 + δR‖ΠτA1Q(τ)‖2

0dvτ

R
P-a.s. (6.2)

Then
θ̂R = θ0 +

∫ T
0 (ΠτA1Q(t), dWK(t))0

R
P-a.s. (6.3)

because of the discrete nature of the stopping time, it may not reach the precision at τ . We adjustthe stopping time using the bias adjustment procedure of Konev and Pergamenshchikov (1990) usedfor the least squares method in autoregressive model to reach the precision R.Let δR be a fraction of the observed Fisher information such that∫ T

0

‖ΠτA1Q(t)‖2
0dvt + δR‖ΠτA1Q(τR)‖2

0vτR = R (6.4)

giving
δR =

R −
∫ T

0 ‖Π
τA1Q(t)‖2

0dvt

‖ΠτA1Q(τR)‖2
0vτR

. (6.5)

The proof of the following theorem is standard.
Theorem 6.1 The sequential estimator θ̂R is an unbiased estimator of θ and

√
R(θ̂R − θ0) is uni-

formly (in the parameter) N (0, 1) distributed for fixed R.

7. Examples

Example 1 Complex-valued OU Process

Arato, Kolmogorov and Sinai [3] studied parameter estimation in the complex valued Ornstein-Uhlenbeck process. They used the model for geophysical problem. Remember that Kolmogorov [47]was the founder of fractional Brownian motion. Hence their model can be extended to fractionalBrownian motion. The complex valued fractional Ornstein-Uhlenbeck process is given by
du(t) = −[(α1 + iβ1)θ + (α0 + iβ0)θ]u(t)dt + σ[dWH

1 (t) + idWH
2 (t)] (7.1)

where WH
1 ,W

H
2 are independent fractional Brownian motions, u(t) = (u1(t), u2(t)) where u1 and

u2 are the real and imaginary parts of u(t). So this paper is an infinite dimensional generalizationof Kolmogorov’s model. In the paper they used a time transformation to reduce the general problem
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Eur. J. Stat. 10.28924/ada/stat.4.6 19to a fixed time case and the asymptotics were studied in large parameter case, see also Bishwal [12]in this context.Let ∆ti = h, i = 1, 2, . . . , n, α(θ) = α0 + α1θ. The Fisher information based on the data
u(t1), u(t2), . . . , u(tn) is given by

I(θ) =
α2

1

α(θ)2

1 + (n − 1)

(1− e−2hα(θ) − 2hα(θ)e−2hα(θ)

1− e−2hα(θ)

)2

+
(2hα(θ))2e−2hα(θ)

1− e−2hα(θ)


+β2

1h
2(n − 1)

e−2α(θ)

1− e−2α(θ)It is easy to verify the results of the previous sections.
Example 2 Heat Balance Equation

duθ(t, x) = θ1
∂2

∂x2
uθ(t, x)dt + θ2u

θ(t, x)dt + dWH(t, x) (7.2)

Here d = 2, A = 0, B = I, order(L) = 2 so that m=1, order(A) = 0, order(B) = 0 so that b=0,and order(N) = 1. The rates are ΨK,1 = K and ΨK,2 =
√

lnK, since b = 0 = m − d/2.

K(θ̂K1 − θ1)→D N (0, 1) as K →∞,
√

lnK(θ̂K2 − θ2)→D N (0, 1) as K →∞.

Example 3 Stochastic Heat EquationConsider the stochastic heat equation
duθ(t, x) = θ

∂2

∂x2
uθ(t, x)dt + dWH(t, x) (7.3)

for 0 ≤ t ≤ T and x ∈ (0, 1) and θ > 0 with periodic boundary conditions.Here 2m = m1 = 2 and µj = −θπ2j2, γ > 1/2. ψK = K3.

√
nK3(θ̂n,K − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−β2m

1 )))

as n →∞ and K →∞.

Es-Sebaiy et al. [28] obtained Berry-Esseen bound of the order O(K−3/2) for the MLE thereby improving the bound O(K−1) of Kim and Park [45].
Example 4 Linear Parabolic Equation

As another example of the evolution equation consider the linear parabolic equation
duθ(t, x) = θuθ(t, x) +

∂2

∂x2
uθ(t, x)dt + dWH(t, x), t ≥ 0, x ∈ [0, 1] (7.4)

u(0, x) = u0(x) ∈ L2([0, 1]) (7.5)

uθ(t, 0) = uθ(t, 1), t ∈ [0, T ], (7.6)
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Eur. J. Stat. 10.28924/ada/stat.4.6 20If d = 2, then we have√
n logK(θ̂n,K − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−β2m

i )))

as n →∞ and K →∞.If d > 2, then we have√
nK(d−2)/d(θ̂n,K − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ−1(κ(θ)−β2m

1 )))

as n →∞ and K →∞.

Concluding Remarks We considered fractional Brownian motion driving term in this paper whoseincrements are stationary. Using fractional Levy process as the driving term which include jumps,maximum quasi-likelihood estimation in fractional Levy stochastic volatility model was studied inBishwal [14]. Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussianprocess with covariance function
CH(s, t) = s2H + t2H −

1

2

[
(s + t)2H + |s − t|2H

]
, s, t > 0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk [20] has received some attentionrecently in finite dimensional models. The interesting feature of this process is that this processhas some of the main properties of FBM, but the increments of the process are nonstationary,more weakly correlated on non-overlapping time intervals than that of FBM, and its covariancedecays polynomially at a higher rate as the distance between the intervals tends to infinity. Itwould be interesting to see extension of this paper to sub-FBM case. We generalize sub-fBM toSub-fractional Levy process (sub-FLP).Sub-fractional Levy process (SFLP) is defined as
SH,t =

1

Γ(H + 1
2 )

∫
R

[(t − s)
H−1/2
+ − (−s)

H−1/2
+ ]dMs , t ∈ R

where Mt , t ∈ R is a Levy process on R with E(M1) = 0, E(M2
1 ) < ∞ and without Browniancomponent. SFLP has the following properties:1) The covariance of the process is given by

Cov(SH,t , SH,s) = s2H + t2H +
E[L(1)2]

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t − s|2H].

2) SH is not a martingale. For a large class of Levy processes, SH is neither a semimartingalenor a Markov process. 3) SH is Hölder continuous of any order β less than H − 1
2 . 4) SH hasnonstationary increments. 5) SH is symmetric. 6) SH is self similar. 7) SH has infinite totalvariation on compacts.It would be interesting to investigate QML estimation in SPDE driven by subfractional Levyprocesses which incorporate both jumps and long memory apart from nonstationarity.Recently Ichiba et al. [39, 40] studied generalized fractional Brownian motion (GFBM). A gen-eralized fractional Brownian motion is a Gaussian self-similar process whose increments are not
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Eur. J. Stat. 10.28924/ada/stat.4.6 21necessarily stationary. It appears in the scaling limit of a shot-noise process with a power lawshape function and non-stationary noises with a power law variance function. They studied semi-martingale properties of the mixed process made up of an independent Brownian motion and aGFBM for the persistent Hurst parameter. It would be interesting to extend the current paper toGFBM noise.
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