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Abstract. In recent years, multiple frame surveys have gained significant attention due to their ap-plicability in capturing special or challenging-to-sample populations. This paper introduces twomethodological advancements, the calibrated multiplicity estimator and without-replacement boot-strap techniques, in the field of multiple frame surveys. A comprehensive simulation study assessestheir performance. The calibrated multiplicity estimator is demonstrated to outperform the multiplicityestimator, particularly in terms of mean squared error, with a ratio ranging from 0.6 to 0.8. Further-more, the study shows that without-replacement bootstrap techniques perform favorably compared totheir with-replacement counterparts. Future research directions include conducting more extensivesimulations with real-world data and establishing the theoretical properties of the proposed estima-tor. This paper contributes to the growing body of knowledge on multiple frame surveys and theirestimation methods.
1. Introduction

In recent years, there has been a significant research focus on multiple frame surveys, as evi-denced by the works of [1], [2], [3], [4], and [5]. While the initial motivation behind the developmentof multiple frame surveys was to reduce survey costs, their current application is primarily centeredaround capturing populations that are special, rare, or challenging to sample accurately.The fundamental concept underlying multiple frame surveys involves the assumption that thetarget population can be effectively covered by a combination of sampling frames, each of whichcovers only a portion of the total population. To obtain estimates, the usual practice involvesindependent sampling from each of these frames, with resulting estimators designed to appropriatelyaccount for the overlapping units.The realm of multiple frame survey research has introduced a plethora of estimators, many ofwhich have been proposed and discussed in works by [3] and [4]. Just as in classical sampling theory,the standard error serves as a crucial measure for assessing the quality of estimators in multipleframe surveys. This field has explored both analytical methods, such as the Taylor linearization, aswell as replication methods like the Jackknife and the with-replacement bootstrap, for estimating
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Eur. J. Stat. 10.28924/ada/stat.4.1 2standard errors. Notably, the bootstrap method holds a distinct advantage over other approachesdue to its applicability to both smooth and non-smooth statistics, in addition to granting users theflexibility to choose the number of replication runs.In the context of contributing to this area of research, this paper introduces two key advancements.First, it proposes the calibrated multiplicity estimator which is an extension of the multiplicityestimator introduced by [4]. Second, it presents without-replacement bootstrap techniques thatbuild upon the methods outlined in [5].The subsequent sections of this paper are structured as follows: Section 2 elaborates on the cal-ibrated multiplicity estimator, while Section 3 delves into the novel without-replacement bootstraptechniques tailored for the multiple frame survey setting. To empirically evaluate the performanceof the proposed bootstrap techniques, Section 4 outlines the design of simulation studies. Finally,Section 5 concludes with closing remarks on the findings and contributions of this study.
2. Calibrated Multiplicity Estimator

In this section, we provide a concise overview of the multiplicity estimator introduced by [4],along with an improved version of this estimator that we refer to as the calibrated multiplicityestimator.Consider a population of interest comprehensively covered by Q(≥ 2) overlapping samplingframes, allowing for the potential inclusion of a unit in one or more frames. Each population unit
i has a corresponding multiplicity, denoted by mi , indicating the number of frames it belongs to.We are interested in the population total of a characteristic variable y , denoted as Ty . Let A(q)signify the q-th sampling frame, where q = 1, . . . , Q. It is evident that:

Ty =

Q∑
q=1

∑
i∈A(q)

yim
−1
i . (1)

For each q, let S(q) be a probability sample independently selected from A(q). Further, let d (q)idenote the design weight associated with frame A(q). The multiplicity estimator takes the form:
ty =

Q∑
q=1

∑
k∈S(q)

d
(q)
k ykm

−1
k . (2)

This estimator, referred to as the multiplicity estimator (for detailed information, consult [4]), canbe represented as a function of weights:
ty = f (d (1), · · · , d (q), · · · , d (Q)), (3)

where d (q) is the weight vector for frame q.
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Eur. J. Stat. 10.28924/ada/stat.4.1 3To simplify, we assume complete auxiliary information is available from each of the Q samplingframes on a known vector variable x. We introduce the following estimator:
tyC =

Q∑
q=1

∑
k∈S(q)

w
(q)
k ykm

−1
k , (4)

where the weights w (q)k are defined to satisfy:∑
k∈S(q)

w
(q)
k xkm−1k =

∑
i∈A(q)

xim−1i for q = 1, · · · , Q. (5)
This constraint can be expressed more compactly as:

Q∑
q=1

∑
k∈S(q)

w
(q)
k xkm−1k =

Q∑
q=1

∑
i∈A(q)

xim−1i . (6)
For each S(q), the aim is to determine weights w (q)k that closely match d (q)k using a distance func-tion Dq(w (q), d (q)) subject to the constraint in (5). It is worth highlighting that w (q) is analagousto d (q), and it can be defined as w (q) = (w

(q)
1 , · · · , w (q)

n(q)
).This problem becomes an optimization task, aiming to minimize:

Lq(w (q),λq) =
∑
k∈S(q)

Dq(w
(q)
k , d

(q)
k ) + λ′q

∑
i∈A(q)

xim−1i −
∑
k∈S(q)

w
(q)
k xkm−1k

 (7)
using the Lagrange multipliers method. We adopt the chi-square distance function, known toyield weights similar to those of the linear generalized regression estimator (GREG).For the optimization, we express the problem as minimizing:

L(w ,λ) =

Q∑
q=1

Lq(w (q),λq) (8)
yielding calibrated weights given by:

w
(q)
k = d

(q)
k

1 +

∑
i∈A(q)

xim−1i −
∑
k∈S(q)

d
(q)
k xkm−1k

′
 ∑
k∈S(q)

d
(q)
k m−2k xkx

′
k

−1 xkm−1k

 (9)
An alternate formulation involves minimizing ∑Qq=1∑k∈S(q) Dq(w

(q)
k , d

(q)
k ) subject to the con-straint in (6). Applying the Lagrange multipliers method leads to the minimized Lagrangian:

L(w ,λ) =

Q∑
q=1

∑
k∈S(q)

Dq(w
(q)
k , d

(q)
k ) + λ′

 Q∑
q=1

∑
i∈A(q)

xim−1i −
Q∑
q=1

∑
k∈S(q)

w
(q)
k xkm−1k

 . (10)
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Applying the chi-square distance function, we minimize (10) with respect to the weights w (q)kand obtain the calibrated weights:
w
(q)
k = d

(q)
k

1 +

 Q∑
q=1

∑
i∈A(q)

xim−1i −
Q∑
q=1

∑
k∈S(q)

d
(q)
k xkm−1k

′
 Q∑
q=1

∑
k∈S(q)

d
(q)
k m−2k xkx

′
k

−1 xkm−1k

 (11)
It is crucial to note that these weights in (9) or (11) serve to estimate various parameters ofinterest. Additionally, the proposed bootstrap variance estimation algorithms can be applied to allmultiple frame survey estimators.

3. Proposed Bootstrap Techniques for Multiple Frame Surveys
In the realm of survey sampling, the selection of primary sampling units (PSUs) often involvesunequal probabilities and is done without replacement. However, when it comes to variance esti-mation during replication, computations are considerably simplified by assuming that these PSUswere chosen with replacement. In this paper, we retain the without-replacement PSU selectionand outline our proposed methodology as follows.To set the stage, we consider Q stratified samples denoted as S = ∪Qq=1S(q), where S(q)represents a stratified sample independently drawn from the q-th sampling frame. Each S(q) iscomposed of H(q) strata, defined as S(q) = ∪H(q)h=1S

(q)
h . It is important to note that S(q)h is the sampleindependently drawn from the h-th stratum of the q-th sampling frame. Additionally, we assumethat S(q)h consists of n(q)h PSUs, and a resample of m(q)h units is drawn from it without replacement.In single-frame surveys, the rescaling bootstrap without replacement weights, as introduced in [7],can be considered an extension of the technique proposed by [8]. These weights, designated forPSU i within stratum h of Sh, are defined as:

d∗hi = dhi

(
1− γh + γh

nh
mh
δ∗hi

) (12)
Here, γh =

√
(1− fh)mh/(nh −mh); fh = nh/Nh, where Nh is the stratum size; δ∗hi = 1 if i ∈ Sbhand 0 otherwise; mh = [nh/(2− fh)], with [·] indicating rounding down to the nearest integer; and

dhi is the original weight associated with PSU i of the h-th stratum. In multiple-frame surveys,these weights are applied to the Q independent samples either individually or simultaneously. Forthe q-th independent sample and b-th simulation run, the following weights are used:
d
(q)
hi [b] = d

(q)
hi

(
1− γ(q)h + γ

(q)
h

n
(q)
h

m
(q)
h

δ
(q)
hi [b]

) (13)
These weights, d (q)i [b], are subsequently adjusted for calibration to obtain the final bootstrapweights and the multiplicity estimator for the parameter of interest.
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Eur. J. Stat. 10.28924/ada/stat.4.1 5When these weights are applied separately to theQ independent samples, the resulting bootstrapvariance estimator is referred to as the separate bootstrap, akin to the approach described in [5].In this case, denoting the multiplicity estimator with the original weights replaced by the finalbootstrap weights for just frame q in the b-th simulation run as θ̂(q)[b], the separate bootstrapestimator is formulated as:
vs =

Q∑
q=1

1

B(q)

B(q)∑
b=1

(
θ̂(q)[b]− θ̂

)2 (14)
Here, B(q) represents the number of simulation runs in the q-th frame.Similarly, when the weights are simultaneously applied to the Q independent samples, theresultant bootstrap variance estimator is termed the combined bootstrap, similar to the approachoutlined in [5]. In this scenario, using θ̂[b] to denote the multiplicity estimator when the originalweights are replaced by the final bootstrap weights across all Q frames, the combined bootstrapestimator is given by:

vc =
1

B

B∑
b=1

(
θ̂[b]− θ̂

)2 (15)
Here, B signifies the number of simulation runs.

4. Simulation
The performance evaluation of the introduced methodologies for multiple frame surveys was con-ducted through a controlled simulation study. In this context, we employed an artificial population,as detailed in [6]. This synthetic population comprises H = 5 strata, each consisting of Nh = 1000units. The model distributions for this population are as follows:

X1i ∼ Γ(2, 1), E1i ∼ N(0, 1),

X2i ∼ Γ(2, 1), E2i ∼ N(0, X2i),

X3i ∼ Γ(2, 1), E3i ∼ t(4 + 3/(X3i + 1)),

X4i ∼ Γ(2, 3), E2i ∼ N(0, X4i),

X5i ∼ Γ(2, 9), E2i ∼ N(0, X5i),

Yhi = Xhi + Ehi , h = 1, · · · , 5

Here, h = 1, · · · , 5 indicates the strata, i = 1, · · · , Nh refers to the units within strata, and Xiand Ei are independent both within observations and across observations.From this artificially constructed population, we generated Q = 3 partially overlapping samplingframes by randomly assigning each pair (Xi , Yi) from the population to one of the sampling framesthrough 3 independent Bernoulli trials, each with a probability αq = N(q)/N for q = 1, 2, 3.We ensured that no sampling frame was devoid of samples, and when combined, they sufficiently
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Eur. J. Stat. 10.28924/ada/stat.4.1 6covered the population of interest. Furthermore, our simulation encompassed various frame coveragesettings, as summarized in Table 1.
Table 1. Frame Coverage Settings

Setting Frame coverage
αq =

N(q)

N

A 0.35 0.35 0.35B 0.60 0.60 0.60C 0.85 0.85 0.85D 0.35 0.60 0.85E 0.60 0.35 0.85F 0.60 0.85 0.35
Subsequently, three independent stratified random samples (S(1), S(2), and S(3)) of sizes n(1),

n(2), and n(3) units were selected from frames A(1), A(2), and A(3), respectively. We focusedon estimating the population total (Ty ) and median (My ) of the variable y . We employed themultiplicity and calibrated multiplicity estimators (denoted as Mest and Mcal, respectively) forthese estimations. We performed a total of 30,000 independent stratified random samples fromeach of the 3 frames to compare the efficiency of the estimators.We compared the estimators under different frame coverage settings (as described in Table 1)and employed a stratum sample size n(q)h that represented 3 percent of the stratum population size
N
(q)
h for q = 1, 2, 3.Furthermore, we examined various variance estimators, including the separate and combinedbootstraps (denoted as BSWR and BCWR) described in [5], as well as the proposed separate andcombined bootstraps (denoted as BSWOR and BCWOR).A total of B = 1000 simulation runs were executed. For each run, a simple random samplewithout replacement of size n(q)h (equivalent to 3 percent of the stratum population size N(q)h) wasdrawn from each stratum of S(q) for q = 1, 2, 3, and variance estimates were computed using the fourvariance estimators. The bootstrap stratified sample size drawn from S(q) was m(q) =

∑Q
q=1m

(q)
h ,where m(q)h = n

(q)
h − 1 for the with-replacement bootstrap methods and m(q)h = [n

(q)
h /2] for thewithout-replacement bootstrap methods. The number of replications was R = 200 for all bootstrapmethods. All computations were performed using the R software (see R Core Team, 2021).The performance assessment of the variance estimators was based on the simulated relativepercentage bias (RB%), coefficient of variation (CV), and empirical coverage probabilities of 95%confidence intervals (CP). The RB% and CV for a given variance estimator v were calculated usingthe formulas:
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RB = 100×
1

B

B∑
b=1

vb −MSE
MSE

(16)
CV =

√√√√ 1

B

B∑
b=1

(vb −MSE)2/MSE (17)
where vb represents the variance estimate of v for the b-th simulated sample. The true meansquared errors (MSEs) were approximated using 10,000 simulation runs.

4.1. Simulation Results for Efficiency Comparison. Table 2 clearly illustrates the superior effi-ciency of the proposed calibrated multiplicity estimator (Mcal) over the conventional multiplicityestimator (Mest). This enhanced efficiency of the calibrated estimator is consistently observedacross various frame coverage setups. Notably, the efficiency enhancement of the calibrated multi-plicity estimator is particularly conspicuous in the context of total estimation compared to medianestimation, with a mean squared error ratio of approximately 0.6 for total estimation and 0.8 formedian estimation.Table 2. Efficiency of Mcal versus Mest for total and median: Six indicative simu-lation runs
Setting Empiricalefficiency ratio

MSE(tyC )

MSE(ty )

Empiricalefficiency ratio
MSE(myC )

MSE(my )

A 0.6457 0.8165B 0.6323 0.8141C 0.6867 0.8775D 0.6518 0.7834E 0.6796 0.8057F 0.6507 0.8030
4.2. Simulation Results for Bootstrap Estimators. Table 3 presents three notable observationsacross a range of settings concerning relative bias. Firstly, the with-replacement bias remainsconsistently slightly positive and generally equivalent. Secondly, the without-replacement biasconsistently remains negligible and exhibits a fair uniformity. It is worth highlighting that the biaswithout replacement is smaller than the bias with replacement. Crucially, these observations remainconsistent regardless of the type of estimator under consideration, whether it is the multiplicityestimator or the calibrated multiplicity estimator.Moreover, Table 3 offers valuable insights into the coefficient of variation across various set-tings. Firstly, the coefficients of variation are approximately equal. Secondly, in scenarios without
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Eur. J. Stat. 10.28924/ada/stat.4.1 8replacement, the coefficients of variation are slightly smaller than those with replacement. Thisnoteworthy pattern is observed in both the multiplicity estimator and the calibrated multiplicityestimator.Furthermore, when considering various methods and estimators in Table 3, the primary observa-tion is their consistent demonstration of similar coverage rates.
5. Conclusion

This paper has introduced several methodological innovations in the domain of multiple framesurveys, with a focus on the calibrated multiplicity estimator and the without-replacement bootstraptechniques. A limited simulation study was carried out, which demonstrated that the calibratedmultiplicity estimator outperforms the multiplicity estimator in terms of mean squared error bya ratio ranging from 0.6 to 0.8. Additionally, the study indicated that the without-replacementbootstrap techniques perform quite favorably when compared to the with-replacement bootstraptechniques.Several potential avenues for future research include conducting more extensive simulation stud-ies involving real-world data and establishing the theoretical properties of the proposed estimator.These endeavors would contribute to a deeper understanding of the practical applications andtheoretical underpinnings of the methodologies introduced in this paper.
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Eur. J. Stat. 10.28924/ada/stat.4.1 9Table 3. Comparison of Variance Estimators
Setting A

Multiplicity for Total Calibrated Multiplicity for Total
RB% CV CP RB% CV CPBSWR 5.82 0.0859 94.9 BSWR 6.87 0.0932 95.3BCWR 5.74 0.1184 95.8 BCWR 6.82 0.1282 94.9BSWOR 0.44 0.0593 94.9 BSWOR 1.43 0.0609 94.6BCWOR 0.60 0.1003 94.5 BCWOR 1.69 0.1016 94.5

Multiplicity for Median Calibrated Multiplicity for Median
RB% CV CP RB% CV CPBSWR 5.50 0.1899 95.6 BSWR 4.63 0.1837 94.9BCWR 5.44 0.1750 95.7 BCWR 4.70 0.1685 95.7BSWOR 0.53 0.1753 95.0 BSWOR -0.31 0.1726 94.5BCWOR 0.56 0.1620 95.6 BCWOR -0.09 0.1583 94.2

Setting B
Multiplicity for Total Calibrated Multiplicity for Total

RB% CV CP RB% CV CPBSWR 7.84 0.1000 96.2 BSWR 6.27 0.0890 95.6BCWR 7.46 0.1296 96.3 BCWR 5.61 0.1204 95.2BSWOR 2.23 0.0647 95.6 BSWOR 0.58 0.0618 95.2BCWOR 2.50 0.1024 96.0 BCWOR 0.74 0.1003 94.9
Multiplicity for Median Calibrated Multiplicity for Median

RB% CV CP RB% CV CPBSWR 9.60 0.2118 94.9 BSWR 5.01 0.1836 94.9BCWR 8.89 0.1959 94.8 BCWR 4.67 0.1746 95.3BSWOR 4.04 0.1881 94.1 BSWOR -0.42 0.1733 94.0BCWOR 3.46 0.1679 94.3 BCWOR -0.60 0.1548 93.7
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Eur. J. Stat. 10.28924/ada/stat.4.1 10Table 4. Comparison of Variance Estimators
Setting C

Multiplicity for Total Calibrated Multiplicity for Total
RB% CV CP RB% CV CPBSWR 7.86 0.0993 96.7 BSWR 6.89 0.0941 96.0BCWR 7.48 0.1330 96.8 BCWR 7.01 0.1273 95.5BSWOR 2.14 0.0622 96.3 BSWOR 1.29 0.0594 95.7BCWOR 1.98 0.1015 96.2 BCWOR 1.53 0.0992 95.3

Multiplicity for Median Calibrated Multiplicity for Median
RB% CV CP RB% CV CPBSWR 6.79 0.1785 94.7 BSWR 2.58 0.1564 94.5BCWR 5.85 0.1661 94.8 BCWR 1.73 0.1499 94.7BSWOR 1.39 0.1578 93.8 BSWOR -2.69 0.1522 93.8BCWOR 0.90 0.1504 94.1 BCWOR -2.97 0.1505 94.1

Setting D
Multiplicity for Total Calibrated Multiplicity for Total

RB% CV CP RB% CV CPBSWR 2.25 0.0815 95.8 BSWR 2.91 0.0866 96.2BCWR 2.60 0.1042 95.6 BCWR 2.80 0.1040 96.5BSWOR -2.17 0.0779 95.3 BSWOR -1.98 0.0779 95.7BCWOR -3.19 0.1020 94.6 BCWOR -2.71 0.1032 95.3
Multiplicity for Median Calibrated Multiplicity for Median

RB% CV CP RB% CV CPBSWR 4.09 0.1723 95.2 BSWR 4.07 0.1749 94.7BCWR 3.97 0.1647 95.2 BCWR 3.87 0.1637 95.3BSWOR -0.77 0.1633 94.8 BSWOR -0.71 0.1636 94.6BCWOR -1.48 0.1520 95.0 BCWOR -1.54 0.1501 94.2
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Eur. J. Stat. 10.28924/ada/stat.4.1 11Table 5. Comparison of Variance Estimators
Setting E

Multiplicity for Total Calibrated Multiplicity for Total
RB% CV CP RB% CV CPBSWR 6.22 0.1035 94.2 BSWR 6.02 0.1002 94.3BCWR 6.67 0.1316 94.1 BCWR 6.03 0.1248 94.0BSWOR 0.82 0.0755 93.8 BSWOR 0.42 0.0748 93.7BCWOR 1.00 0.1069 94.5 BCWOR 0.62 0.1037 93.7

Multiplicity for Median Calibrated Multiplicity for Median
RB% CV CP RB% CV CPBSWR 5.86 0.1905 95.0 BSWR 4.87 0.1935 94.6BCWR 5.21 0.1754 95.3 BCWR 3.95 0.1728 94.9BSWOR 0.56 0.1711 94.6 BSWOR -0.31 0.1766 93.8BCWOR 0.15 0.1657 94.8 BCWOR -0.73 0.1655 94.1

Setting F
Multiplicity for Total Calibrated Multiplicity for Total

RB% CV CP RB% CV CPBSWR 7.78 0.1141 95.9 BSWR 6.16 0.1021 94.9BCWR 8.28 0.1357 95.7 BCWR 6.95 0.1267 95.5BSWOR 2.54 0.0822 95.6 BSWOR 1.22 0.0766 94.3BCWOR 2.49 0.1036 95.3 BCWOR 0.85 0.0982 93.9
Multiplicity for Median Calibrated Multiplicity for Median

RB% CV CP RB% CV CPBSWR 7.67 0.1912 94.1 BSWR 7.43 0.1866 93.9BCWR 7.06 0.1831 93.5 BCWR 6.72 0.1779 94.1BSWOR 2.70 0.1716 93.4 BSWOR 2.25 0.1672 93.8BCWOR 1.31 0.1624 92.9 BCWOR 1.01 0.1572 94.0
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