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ABSTRACT: The New Sine Inverted Exponential Distribution, a new distribution model
with just one parameter, is suggested in this study. The suggested model has several
statistical qualities and reliability properties that have been constructed and explored.
The MLE estimations of the parameters were determined using R's adequacy model
package. To calculate the bias of the model parameter and the root mean square
error, a simulation study was done. The simulation study revealed that the proposed
model is well-behaved. The findings also showed that the suggested model
outperforms the current listed models on two real datasets when performance was

compared.

INTRODUCTION
Probability models stand as indispensable tools in the realm of statistical research,
enabling the representation of random processes. Recent decades have witnessed
significant advancements in the development of flexible models, discussed and presented
extensively in the literature. This progression has significantly empowered researchers to
delve deeper into the analysis of real-world phenomena. The growing diversity of data
generation processes across various fields, including medicine, genetics, agronomy,
hydrology, engineering, economics, and more, has spurred statisticians to explore more
adaptable probability distributions [1]. The aim is to enhance the modeling of diverse data

types for practical applications and to bolster the precision of predictions.
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In the pursuit of increased flexibility in statistical models, a majority of recent proposals in
literature involve the introduction of one or more parameters to an existing probability
model. For instance, [2] introduced the Exponentiated Exponential Distribution, while [3]
proposed the Transmuted-G family of distribution. [4] proposed the Weibull-G family of
distribution, and [5] contributed research on the Logistic-X family of distribution, among
others. The addition of parameters may seem at odds with the principle of parsimony.
However, maintaining parsimony remains essential when modifying probability
distributions, as it is preferable to construct models with a minimal number of parameters
while preserving high flexibility in data modeling [6].

In line with this perspective, recent scholars, including [7] have introduced a way of
modifying a density function without adding more parameter(s) In the context of enhancing
reliability analysis and modeling, this study endeavors to introduce a novel probability
model, the New Sine Inverted Exponential distribution by implementing the New Sine G
modification, as recommended by [7]. The cumulative density function (CDF), which is

based on this method is represented by the relationship

Fv*(v):sin(7Z4_lG(v)|:G(v)+1:|) (1)
and upon differentiation, produces the new distribution's probability density function
(PDF).
As presented by [8], a random variable v is said to follow an inverted exponential

distribution if its probability density function (PDF) and cumulative density function (CDF)
is in the form presented (2) and (3).

1 1
g(V)=5 exp[—aj 2)

1
G(v)=exp| ——
(v) p[ Uvj ()
For v>0and GelR
Therefore, the New Sine G family of distribution has CDF in the form presented below;
F (v):sin(ﬂ4’lG(v)[G(v)+1]) (4)
where G(v) is the cumulative density of the distribution to be transformed.

For the New Sine Inverted Exponential Distribution (NSIVED), the CDF is obtained by
substituting (3) into (4) as presented below;

el )
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To obtain the density function, the above equation (5) is differentiated with respect to v as

follows;

=
~~~
<
N—"
I
S~
—~
e}
—
<
N—
N—
|
<
/\
@
=
7 N\
N
=
S
o
|
c:|_.
<
N—
1
(@]
X
o
VR
Gl
N—
+
o
1
N
—

e e e 9 B e | o

For v>0and UeR

PDF of N-5ine inverted Exponential Distribution

Figure I: PDF and CDF of NSIVED

MIXTURE REPRESENTATION
To establish some of the statistical properties, we have derived a mixture representation for
the Probability Density Function (PDF) of the NSIVED in this section (for a
comprehensive explanation, please refer to [7]). A random variable v (v~ NSIVED) which is a
member of the family of New Sine family of probability models, a general representation

for the PDF is given as;

X+

0o
‘<

i > 1+2y+x)[ (2y+1) '] ( )2y+1(G(v))2y+xg(v) (7)
Let
A,=3 3 (1) [(ve)] (a ) @)

then,
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fv* (v):Ae (1+2y+x)(G(v))2y+xg(v) 9)

Substituting (2) and (3) for G(v) and g(v) in (9), yields the following,

£ (v)= A, (1+2+ x)[exp(—éj}zyﬂ (ﬁexp(—én

£ (V)= 4, (1+ 2y +x)(0v?) [exp(—é(2y+x+l))) (10)

DERIVED PROPERTIES OF NSIVED
Reliability Properties
i Survival function
The survival function only shows the likelihood of that an event will not have happened by

time t. This can determine its value by subtracting the CDF from one as follows.
S(v)=1-F (v) (11)

Substituting for F~ (v) in the above, we get

S(v)=1 —sin[ﬂ41 exp(—éj{exp(—é} +1D (12)

S(v) of W-Sine Inverted Exponential Distribution

Figure Il: S(v) of NSIVED
ii. Hazard function
In order to model the failure rate in a survival study, the hazard function is utilized. The

immediate risk that the desired occurrence will occur in a very short period of time. The


https://doi.org/10.28924/ada/stat.4.5

Eur. J. Stat. 4 (2024) 10.28924/ada/stat 4.5 B

hazard function is, more specifically, the ratio of the PDF to the random variable's survival

function as shown below;

£ (v)
H(v)=
=50 (13)
Substituting for fv*(v) and S(v), we obtain the hazard function as
74! (621‘}4 exp(—(;vn cos(7r4’1 {exp(—&}j{exp(—@l‘}} +1ﬂj
H(v)= (14)
1-sin| 74™ exp(—lj exp(—ljJrl
Ov Ov
. Quantile Function

The quantile function of a random variable is obtained by inverting the CDF of the

distribution of the random variable. This can be illustrated as follows. Let v~NSIvED(U),
then the quantile function of v is obtained by solving the equation;

O, =F " (v) (15)
For the family of N-Sine Distribution, the quantile function is given by the expression

below;
D, (v)=, ((472_1 arcsin(v)+4_2)% —Z’IJ (16)

where @, =—| Ulog(qg “is the quantile function of the distribution being transformed (for
G q g

a comprehensive explanation, please refer to [7]).

Therefore, the quantile function of the NSIVED is thus given as,

N (v) = —[U log (q)]_l ((47[1 arcsin (v) +47 )% -2 ) (17)

STATISTICAL PROPERTIES
i. Raw moments
The raw moments of v~NS]vED(U) is derived as;

B = E(V’)z Tv”fv* (v)af, (v)= ]Zv’Aa (1+2y+x)(15v2 )71 (exp[—é(2y+x+l)ndv (18)
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C1+2y+x %__(1+2y+x) (19)

k:(1+2y+x)(25v)_1 =2 TRy o

Substituting and simplifying (19) into (18), we have that:
5 1+2y+x

Z—Ag(1+2y+sz(l+2y+xjr2(CXP(—k))- ((Uk} Jk

O Ok 1+2y+x)

1+2y+ xjr-z T(k)_(,_z) (exp(—k)). (1 +2y+ x)

=—A6(1+2y+x)£ 0 (Uk)2

4 (1+2y+sz(l+2y+xjr2T(k)(r2)2(ex (—k))dk
0 5 5 J p

O

e OO

[1]

"=AH(—1)"(2y%x+ler(l—r) 20)

ii. Moment Generating Function
For v~ NSIVED(U), the MGF is derived as follows;

M (¢)=E[exp(r)]

. L . = (tv)”
Using Taylor’s series, it is known that the expansion of exp(tv):z '
p=0 p

Therefore,

p=0 p'

o0 p o0
SR By
Since E[vp}zE’ then it implies that

M ()= 32, (2 r-r) &

_' Y
szp'

tit. Characteristic function

The characteristic function (QV (t)) also known as a characteristic generating function, as

a concept in probability theory and statistics is used to describe the probability

distribution of a random variable. The function is particularly useful in the analysis of sums
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of random variables as they provide a compact and convenient way to work with

probability distributions. For a random variable with NSIVED, the O, (t) is given as;

o0

O, ()=E[e"]=[e" £ (v)av (22)

0

Q

o0

(zt?”vn;: E[em} _ i (it

Using the Taylors series, it can be shown that ™ :Z '
j=0 n! =0 n'

Where E[v"]is the raw moment of the random variable v. Therefore;

=i ‘?nE[ "] (23)

Where M, ( t— Ay (- (Mj I(1-r)
p! O

0
iv. PDF of the n order statistics of ETAD
Suppose v,,v,, -+, v, from the NSIVED are ordered in the form Viy SV S-SV, of random

th

samples from the density, then the PDF of the »™ order statistics can be defined as

follows:
ﬂk’”)(v):mﬁ(vm‘(v)’“ [1-£ ()]

where,F(v) and f(v) are the CDF and PDF of the NSIVED. For simplicity,

* n—k . . . .
[1 —F, (v)] can be represented using the binomial series as;

[1-F (v)]" = 2[: _kj(—l)c [F/(v)] . Thus,

c=

c=1 c

e TG LU RS i PO} 25)

Using the above, the n"” order statistic for a random variable with NSIVED is thus obtained

by substituting (6) and (5) into (25) as follows:
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f(k,n>(V)=W(!n_k)! ”41[621v4 e(“‘j]cos[m1 {e[“] [e[bjﬂm .

e ]

&
n! e ™’
f(k,n)(v): (k—l)!(n—k)! 45%*

Where 3, = i(” _kJ(—l)".

c=1 c

The expression in equation (26) presents the n™ order statistic for a random variable with
NSIVED. To obtain the smallest and n” order statistic, 1 and n will be substituted into (26)

and simplified.

MEASURES OF INFORMATION
Entropy
Entropy is a metric indicating how much information or uncertainty there is in a random
observation of a population's real composition. For a continuous random variable v with
NSIVED, the Renyi entropy is can be derived as follows:

R = %log{T( 1) dv] (27)

-7 0

Substituting for (10) for fv*(v) in (27), yields the following;

T

1 A (]
R = lo RO dv
e [ (28)

Where Ay, = A4, (1+2y+x)
By transformation, let

2 2
e yrx+l | _2y+x+lde  2y+x+1 Ov
Ov cO

On substituting (29) into (28), the following is obtained.

—————dc 29
dv o’ 2y+x+1 (29)
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T

5 2y+x+1 ?
1 ARGT e’ 3 cO

T_I—T (8) 0 2y+x+1 2 2y+x+l
cO

0

27 ©
R = log[— AR?? (2y+x+1)HT J'CZH e’ ch

27
R = —log(— AR%? (2y+x+1)"" F(Zr)} (30)

PARAMETER ESTIMATION
Using the method of maximum likelihood, the parameter of the NSIVED will be estimated
as follows. The likelihood function L(Q) is given by (31).

L(0)=1i[ff (v) (1)

For a random variable with NSIVED, L(H)’ls obtained by making the substitution of (10)
for £ (v) in (31). Thus; (27)

S togl Lo oo i [T
I|L(0)|=nlo +Y logd| —e' ©/ [cos| 747 |e* O/ |t O +1
[£(0)] g[mz] 2. log [w ] L ! (33)
Differentiating (33) with respect to the unknown parameter U, it can be observed (in (34))
that the parameter estimate does not exist in a closed form. Thus, a numerical estimation

will be used to obtain the parameter estimate.

#gﬂ _ %n m(%) " %Zlog {{%“ e(UIVchos[ﬂ4l [eu] {e(ﬁlvh 1m} =0 (34)
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SIMULATION STUDY
In this part, we use simulations to evaluate the relative bias and relative mean square error
for the estimates. The "Adequacy models" package of the R program is used to create the
sample parameter estimations. For various sample sizes n = [20, 40, 60, 80, 100, 150, 300,
600 and 1000] and various values of the parameter [0.3, 0.5, 0.7 and 0.9], the sampling

distributions are obtained.

(6-0) (35)
A 2

(6-0) (36)

Table 1 contains a summary of the evaluation of the bias and RMSE features of the MLE
parameter estimates. Nine (9) different sample sizes were used to determine the sampling

distributions.

Table 1: Showing the Behavior of Parameters of NSIVED

Sample size True Parameters MLE BIAS RMSE
20 0.3 0.2651 0.0349 0.0001
0.5 0.3830 0.1170 0.0007

0.7 0.4761 0.2239 0.0025

0.9 0.5522 0.3478 0.0060

40 0.3 0.2190 0.0810 0.0002
0.5 0.3177 0.1823 0.0008

0.7 0.3966 0.3034 0.0023

0.9 0.4625 0.4375 0.0048

60 0.3 0.2175 0.0825 0.0001
0.5 03173 0.1827 0.0006

0.7 0.3955 0.3045 0.0015

0.9 0.4605 0.4395 0.0032

80 0.3 0.2399 0.0601 0.0000
0.5 0.3434 0.1566 0.0003

0.7 0.4180 0.2820 0.0010

0.9 0.4903 0.4097 0.0021

100 0.3 0.2163 0.0837 0.0001
0.5 0.3109 0.1891 0.0004

0.7 0.3862 0.3138 0.0010

0.9 0.4490 0.4510 0.0020
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150 0.3 0.2212 0.0788 0.0000
0.5 0.3164 0.1836 0.0002
0.7 0.3920 0.3080 0.0006
0.9 0.4560 0.4440 0.0013
300 0.3 0.2174 0.0826 0.0000
0.5 0.3106 0.1894 0.0001
0.7 0.3847 0.3153 0.0003
0.9 0.4463 0.4537 0.0007
600 0.3 0.2100 0.0900 0.0000
0.5 0.3025 0.1975 0.0001
0.7 0.3766 0.3234 0.0002
0.9 0.4386 0.4614 0.0004
1000 0.3 0.2093 0.0907 0.0000
0.5 0.3020 0.1980 0.0000
0.7 0.3764 0.3236 0.0001
0.9 0.4387 0.4613 0.0002

MSE as Sample Size Increases

0.0070
0.0060
0.0050
0.0040
0.0030
0.0020

0.0010

0.0000
1234567 8 9101112131415161718192021222324252627282930313233343536

Figure Ill: Showing the Behavior of the NSIVED MSE as the Sample Size Increases

As inferred by the central limit theorem, as the sample size increases, it is expected that
the parameter estimates tend to the true population parameter. This implies a reduction in
the root mean square error of the estimates. Figure Ill shows that as the number of the

sample increases from 20-1000, the magnitude of the RMSE reduces and tends to zero.
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APPLICATION AND GOODNESS OF FIT USING SOME REAL DATASETS
Several distributions have been constructed in  statistical literature  that
models experimental data. The New Sine Inverse Exponential Distribution (NSIED)
presented by [9], the Prakaamy Distribution (PkD) by [10], and the Ram Awadh
Distribution (R-AD) produced by [11] were the distributions that were compared with the
NSIVED in the current study.

Using the generated distribution and certain preexisting probability distributions, two
actual datasets were modeled. The first data set includes the total of 202 athletes' skin
folds, which were measured at the Australian Institute of Sports and were published by
[12]. The second dataset included 72 gquinea pig survival periods in days that were
voluntarily exposed to various dosages of tubercle bacilli in Bjerkedal, (1960) (as cited in
[13)).

First data set
“148.9, 149.0, 156.0, 156.9, 157.9, 158.9, 162.0, 162.0, 162.5, 163.0, 163.9, 165.0, 166.1, 166.7,
167.3, 167.9, 168.0, 168.6, 169.1, 169.8, 169.9, 170.0, 170.0, 170.3, 170.8, 171.1, 171.4, 171.4,
171.6, 171.7, 172.0, 1722, 1723, 1725, 172.6, 172.7, 173.0, 173.3, 173.3, 173.5, 173.6, 173.7,
173.8, 174.0, 174.0, 174.0, 1741, 1741, 174.4, 175.0, 175.0, 175.0, 175.3, 175.6, 176.0, 176.0,
176.0, 176.0, 176.8, 1770, 177.3, 177.3, 177.5, 177.5, 177.8, 177.9, 178.0, 178.2, 178.7, 178.9,
179.3, 1795, 179.6, 179.6, 179.7, 179.7, 179.8, 179.9, 180.2, 180.2, 180.5, 180.5, 180.9, 181.0,
181.3, 1821, 182.7, 183.0, 183.3, 183.3, 184.6, 184.7, 185.0, 185.2, 186.2, 186.3, 188.7, 189.7,
193.4, 195.9".

Second data set
“12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48 , 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60,
60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99,
109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376".
Table 1: Application to First Dataset

Models  AIC BIC CAIC HQIC MLE Rank
NSIVED 5598.165 5601.473 5598.19 5599.50 0.0143 1
NSIED 66894560 66897.87 6689458 6689590 1.1952 2
PkD 11415070 11418.38 11415.09 1141641 0.5942 3
R-AD 31705.48 31708.79 3170550 31706.82 1.3952 4

Key: New Sine Inverted Exponential Distribution = NSIVED
New Sine Inverse Exponential Distribution = NSIED
Prakaamy Distribution = PkD

Ram Awadh Distribution = R-AD
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Table 2: Application to Second Dataset

Models AIC BIC CAIC HQIC MLE  Rank

NSIVED 720.5444 722.8751 720.5984 721.4758 0.3409 1

NSIED 2029.2640 2031.5950 2029.3180 2030.1950 1.8104 4
PkD 856.7214 858.9981 856.7786 857.6278 0.0603 3
R-AD 856.7165 858.9932 856.7737 857.6229 0.0601 2

Key: New Sine Inverted Exponential Distribution = NSIVED
New Sine Inverse Exponential Distribution = NSIED
Prakaamy Distribution = PkD

Ram Awadh Distribution = R-AD

Based on the analysis of the two datasets that have been fitted with distinct probability
models, a notable trend emerges: the NSIVED consistently produced the smallest value
among all the information criterion measures used for evaluation. This observation suggests
that, in terms of the results obtained, the NSIVED model outperforms the others and is,
therefore, the most favorable choice. This finding underscores the superiority of the
NSIVED model in capturing and explaining the underlying data, as it exhibits a superior fit

when compared to the alternative models.

CONCLUSION

An Inverted Exponential Distribution modification known as the N Sine Inverted
Exponential Distribution is discussed in this study. Through simulation studies, the
behavior of the distributions was found to be in line with the central limit theorem as the
value of the RMSE was decreasing with increase in the sample size. Using two actual data
sets, the relevance of this distribution for modeling lifetime data was demonstrated. The
NSIED, PkD, and R-AD were among one-parameter probability distributions with which
the performance of the NSIVED was compared. The Kolmogorov-Smirnov test, the Akaike
Information Criterion, the Consistent Akaikes Information Criterion, the Bayesian
Information Criterion, and the Hannan-Quinn Information Criterion were used to compare
distributions. The study showed that when modeling lifetime data, the NSIVED outperforms
the NSIED, PkD, and the R-AD as it has the smallest information criterions.
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