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Abstract. This paper utilizes a stochastic Susceptible-Infected-recovered (SIR) model with a non-linear incidence rate to estimate the optimal lock-down intensity and vaccination rate under theCOVID-19 pandemic environment. We use a Feynman-type path integral control approach to deter-mine a Fokker-Plank type equation of this system. Since we assume the availability of informationon the COVID-19 pandemic is complete and perfect, we show the existence of a unique fixed point. Anon-linear incidence rate is used because, it can be raised from saturation effects that if the proportionof infected agents is very high so that exposure to the pandemic is inevitable, then the transmissionrate responds slower than linearity to the increase in the number of infections. The simulation studyshows that with higher diffusion coefficients susceptible and recovery curves keep the downwardtrends while the infection curve becomes ergodic. Finally, we perform a data analysis using UK dataat the beginning of 2021 and compare it with our theoretical results.

1. Introduction
In current days we see locking downs of economies and increasing vaccination rate as a strategyto reduce the spread of COVID-19 which already has claimed more than one million lives in theUnited States and more than six million across the globe. During the past couple of years, it hasbeen clear that an adequate synthesis requires better epidemiology, better economic analysis, andmore advanced optimization techniques to tame this pandemic. Almost all mathematical methods ofepidemic models descend from the susceptible-infected-recovered (SIR) model [1, 2]. The dynamicbehavior of different epidemic models has been studied extensively [2–6]. Stochastic pandemicmodeling is important when the number of infected agents is small or when the different transmissionand recovery rates influence the pandemic outcome [7].In this paper, we perform a Feynman-type path integral approach for a recursive formulation of aquadratic cost function with a forward-looking stochastic SIR model [8] and an infection dynamics
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Eur. J. Stat. 10.28924/ada/stat.4.3 2based on an Erdos-Renyi type random network [9–11]. A Fokker-Plank type equation is obtainedfor this COVID-19 environment which is analogous to an HJB equation [12] and a saddle-pointfunctional equation [13]. Solving for the first order condition of the Fokker-Plank equation theoptimal lock-down intensity and vaccination rate are obtained. As the movement of infection ina society over time is stochastic, analogous to the movement of a quantum particle, a Feynman-type path integral method of quantum physics has been used to determine optimal lock-down
intensity and vaccination rate. We define lock-down intensity as the ratio of employment due toCOVID-19 to total employment under the absence of the pandemic [8, 14]. Therefore, the valueof this lock-down intensity lies between 0 and 1 where 0 stands for complete shut-down of aneconomy [15]. Our formulation is based on path integral control and dynamic programming toolsfacilitate the analysis and permit the application of an algorithm to obtain a numerical solution forthis stochastic pandemic control model [16–18]. Throughout this paper, we assume all agents inthe pandemic environment are risk averse. Therefore, the simulation of optimal lock-down intensitygoes up at the beginning of our time interval and then comes very close to zero. The reason behindthis is that, due to the availability of perfect and complete information an individual does not wantto go out and get infected by COVID-19.We have used a non-linear incidence rate because, it can be raised from saturation effects thatif the proportion of infected agents is very high so that exposure to the pandemic is inevitable, thenthe transmission rate responds slower than linear to the increase in the number of infections [2,19].In [20] a saturated transmission rate is defined as b(S, I) = βSI/(1 + ρI), for all proportionalityconstant ρ ∈ (0, 1], stochastic infection rate β ∈ [0, 1], where βI is a measure of pandemic infectionforce and 1/(1 + ρI) is a measure of inhibition effect from the behavioral change of the susceptibleagents when their number increases [2]. To become feasible in the biological sense, for all S, I > 0assume the function b(s, I) is smooth and concave with respect to I such that, b(S, 0) = b(0, I) = 0,
∂b/∂S = βI/(1 + ρI) > 0, ∂b/∂I = βS/(1 + ρI)2 > 0 and ∂2b/∂I2 = −2ρβS/(1 + ρI)3 < 0. Thesecond order condition implies that when the number of infections is very high that the exposureto the pandemic is certain, the incidence rate responds slower than linearity in I [2, 14]. To thebest of our knowledge, less amount of research has been done with stochastic perturbation on aSIR pandemic COVID-19 model with βSI/(1 + ρI) as a saturated transmission rate.Feynman path integral is a method of quantization uses a quantum Lagrangian function, whileSchrödinger quantization uses a Hamiltonian function [21]. Since the path integral approachprovides a different viewpoint from Schrödinger’s quantization, it is a very useful tool not onlyin quantum physics but also in engineering, biophysics, economics, and finance [21–24]. These twoapproaches are believed to be equivalent but, this equivalence has not fully proved mathematicallyas the mathematical difficulties lie in the fact that the Feynman path integral is not an integralutilizing a countably additive measure [21, 25]. As the complexity and memory requirements of
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Eur. J. Stat. 10.28924/ada/stat.4.3 3grid-based partial differential equation (PDE) solvers increase exponentially as the dimensionof the system increases, this method becomes impractical in the case with high dimensions [24].As an alternative one can use a Monte Carlo scheme and this is the main idea of path integralcontrol [23, 26–28]. Path integral control solves a class of stochastic control problems with aMonte Carlo method for an HJB equation and this approach avoids the need for a global gridof the domain of the HJB equation [24]. If the objective function is quadratic and the differentialequations are linear, then the solution is given in terms of several Ricatti equations that can besolved efficiently [29–32].Although incorporating randomness with its HJB equation is straightforward, difficulties comedue to dimensionality when a numerical solution is calculated for both deterministic and stochasticHJB [29]. The general stochastic control problem is intractable to solve computationally as itrequires an exponential amount of memory and computational time because, the state space needsto be discretized and hence, becomes exponentially large in the number of dimensions [24, 26, 27].Therefore, in order to determine the expected values, it is necessary to visit all states which leadsto the inefficient summations of exponentially large sums [24, 29, 31]. This is the main reason toimplement a path integral control approach to deal with stochastic pandemic control.Following is the structure of this paper. Section 2.1 describes the main problem formulation. Wediscuss the properties of stochastic SIR and the quadratic cost function. We also show that underperfect and complete information our SIR model has a unique solution. Section 2.2 discusses aboutthe transmission of COVID-19 in a community with Erdos-Renyi random interaction based on fivedifferent immune groups. In this section, we also consider the fine particulate matter to observe theeffect of air pollution on an individual infected by the pandemic. Section 2.3 constructs the systemof stochastic constraints including infection dynamics and its properties. Section 2.4 describes themain theoretical results of this paper. We did some simulation studies and real data analysis basedon UK data for SIR in section 3 based on the results obtained from section 2.4. Finally, section 4concludes the paper. All the proofs are in the appendix.2. Framework
2.1. Model. In this section, we are going to construct a dynamic framework where a social planner’scost is minimized subject to a stochastic SIR model with pandemic spread dynamics. Throughoutthe paper, we are considering the stochastic optimization problem of a single agent, and to make ourmodel simple we assume all agents’ objectives are identical. Therefore, we ignore any subscriptsto represent an agent. Following [33] an agent’s objective is to minimize a cost function
u∗ = min

v,e∈U
E0
{∫ t

0

[
exp(−r s)

[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]

+ β(e(s), v(s))S(s)I(s)
]
ds

∣∣∣∣F0}, (1)
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dS(s) =

{
ηN(s)− β(e(s), v(s))

S(s)I(s)

[1 + ρI(s)] + ηN(s)
− κS(s)− v(s)

+ ζR(s)

}
ds + σ1 [S(s)− S∗] dB1(s),

dI(s) =

{
β(e(s), v(s))

S(s)I(s)

[1 + ρI(s)] + ηN(s)
− (µ+ κ)I(s)− e(s)

}
ds

+ σ2 [I(s)− I∗] dB2(s),

dR(s) = {µv(s)I(s)− [κ+ ζ]e(s)R(s)} ds + σ3 [R(s)− R∗] dB3(s), (2)
with the stochastic differential infection rate β, a function of vaccination rate v and lock downintensity e . In Equation (1), r ∈ (0, 1) is a continuous discounting factor; S and I representpercentage of total population (N) susceptible to and infected with COVID-19. R is the percentageof people removed from N where S + I +R = N . R includes people who got completely recoveredfrom COVID-19 and those people who passed away because of this pandemic. As S, I and R arerepresented in terms of percentages therefore, N = 100. Furthermore, in Equation (1) u∗ = (v∗, e∗)represents an optimal level of vaccination rate and lock-down intensity respectively. The coefficients
αi j for all i = 1, 2 and j = 1, 2, 3 are determined by the overall cost functions with α11 > 0 [2].Finally, F0 is the filtration process of the state variables S, I and R starting at time 0 ∈ [0, t].Hence, E0[.] = E[.|S(0), I(0), R(0);F0] where S(0), I(0) and R(0) are the initial conditions.In the System of Equations (2) η is the birth rate, 1/ [1 + ρI(s)] is a measure of inhibition effectfrom the behavioral change of the susceptible individual, κ is the natural death rate, ζ is the rate atwhich a recovered person loses immunity and returns to the susceptible class and µ is the naturalrecovery rate. σ1, σ2 and σ3 are assumed to be real constants and are defined as the intensityof stochastic environment and, B1(s), B2(s) and B3(s) are standard one-dimensional Brownianmotions [2]. It is important to note that the system dynamics (2) is a very general case of a standardSIR model. S∗, I∗ and R∗ represent the steady state levels of the state variables in this system.
Assumption 1. The following set of assumptions regarding the objective function is considered:

• {Fs} takes the values from a set X ⊂ R4. {Fs}ts=0 is an exogenous Markovian stochastic
processes defined on the probability space (X∞,F0,P) where, P is the probability measure
and X∞ is the functional state space where each function is coming from a smooth manifold.
• For all {e(s), v(s), β(s), S(s), I(s), R(s)}, there exists an optimal vaccination rate and

lock-down intensity {e∗(s), v∗(s)}ts=0, with initial conditions β(0), S(0), I(0) and , R(0),
which satisfy the stochastic dynamics represented by the equations (1) and (2) for all
continuous time s ∈ [0, t].
• The function

exp(−r s)
[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+ I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]
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+ β(e(s), v(s))S(s)I(s) is uniformly bounded, continuous on both the state and control
spaces and, for a given {e(s), v(s), β(s), S(s), I(s), R(s)}, they are P-measurable.
• The function

exp(−r s)
[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+ I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]

+β(e(s), v(s))S(s)I(s) is strictly convex with respect to the state and the control variables.
• There exists an ε > 0 such that for all {e(s), v(s), S(s), I(s), R(s)},

E0
{[

exp(−r s)
[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]

+ β(e(s), v(s))S(s)I(s)

]∣∣∣∣F0} ≥ ε.
Above assumption guarantees the integrability of the cost function.

Definition 1. For an agent, the optimal state variables e∗(s), v∗(s), S∗(s), I∗(s) and, R∗(s) and
their continuous optimal lock-down intensity e∗(s) and vaccination rate v∗(s) constitute a stochas-
tic dynamic equilibrium such that for all s ∈ [0, t] the conditional expectation of the cost function
is

E0
{[

exp(−r s)
[
S∗(s)

(
1
2α11v

∗2(s) + α12v
∗(s) + α13

)
+I∗(s)

(
1
2α21e

∗2(s) + α22e
∗(s) + α23

)]
+ β(e∗(s), v∗(s))S∗(s)I∗(s)

]∣∣∣∣F∗0}
≤ E0

{[
exp(−r s)

[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]

+ β(e(s), v(s))S(s)I(s)

]∣∣∣∣F0} ,
with the dynamics explained in Equations (1) and (2), where F∗0 is the optimal filtration starting
at time 0 so that, F∗0 ⊂ F0.

Define X(s) = [β(s), S(s), I(s), R(s)]T where T represents the transposition of a matrix suchthat the dynamic cost function is
c [u(s),X(s)] = exp(−r s)

[
S(s)

(
1
2α11v

2(s) + α12v(s) + α13
)

+I(s)
(
1
2α21e

2(s) + α22e(s) + α23
)]

+ β(e(s), v(s))S(s)I(s),

where u(s) = [e(s), v(s)]T . Furthermore, for continuous time s ∈ [0, t] define
M[X(s)] = inf

X∈X
E0
{∫ t

0

c [u(s),X(s)]ds

∣∣∣∣F0} ,
where X is assumed to be a convex set of state variables.In the following Proposition 1, we will prove the existence of a solution for dynamic cost mini-mization under complete and perfect information.
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Proposition 1. Let c be a dynamic quadratic cost function satisfying Assumption 1 and

lim inf
x→∞

M[X(s)]

X(s)
≥ 0.

Then under perfect and complete information about the pandemic and for all X(s) > 0, there exists
a unique solution X∗ to the problem described in Equation (1).

Proof. See the Appendix. �

Remark 1. The condition lim infX→∞M[X(s)]/X(s) ≥ 0 in the Proposition 1 looks strange at first
but from the proof we know that it is a necessary condition for existence and uniqueness of the
solution of Equation (1).

2.2. Spread of the Pandemic. In this section, we are going to discuss the spread of COVID-19due to social interactions and different levels of immunity levels among humans. We know theimmune system is the best defense because it supports the body’s natural ability to defend againstpathogens such as viruses, bacteria, fungi, protozoan, and worms, and resists infections [34, 35].As long the immunity level of a human is properly functional, infections due to a pandemic likeCOVID-19 go unnoticed. There are three main types of immunity levels such as innate immunity(rapid response), adaptive immunity(slow response), and passive immunity [34,36,37]. To determinethe interaction among people with different levels of immunity we randomly consider a network of
30 people [38]. Furthermore, we characterize the immunity levels among five categories as very low,
somewhat low, medium, somewhat high and very high. The subcategories somewhat high and very
high go under innate immunity and, subcategories very low and somewhat low go under adaptiveimmunity. We keep passive immunity as medium category. We did not subdivide this category undertwo types: natural immunity, received from the maternal side, and artificial immunity, received frommedicine [34, 39] as it is beyond the scope of this paper. In Figure 1 we have created an Erdos-Renyi random network of 30 agents where deep magenta, light magenta, white, lighter green, anddeep green represent an agent with very low, somewhat low, medium, somewhat high and very highrespectively [40,41].
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Figure 1. An Erdos-Renyi random network of 30 agents with five different immunitylevels.
In Figure 1 let us consider the interaction of agent 25. According to our setting, this individualhas the lowest level of immunity against the pandemic. As the information is perfect and completeeverybody in the network has information about COVID-19. Agent 25 is connected with agents

2, 8, 11, 16, 19, 27 and 28 where agents 2 and 16 have the highest level of immunity system. AssumeCOVID-19 hits this network and agent 25 got infected. This person is going to be isolated fromsome of his adjacent ties, based on a probability-weighted by the level of dissimilarities amongtheir immune systems. Furthermore, agent 25 would stay with some other non-adjacent agents.In Figure 2 we randomly remove the tie between agents 25 and 16 who are perfectly opposite interms of their immune systems. On the other hand, in Figure 3 we randomly add a new tie of agent
25 with a previously nonadjacent agent 1. Intuitively, one can think about because of COVID-19,agents with similar immune systems tend to come closer.The temperature takes an important role in spreading the pandemic. If the temperature is high,more people tend to come outside the home and interact. As a result, the spread of the diseasewould be faster. In order to see interactions between agents in a large network we choose anErdos-Renyi random network with 100 agents where 21 agents have very low, 24 have somewhat
low, 18 have medium, 20 have somewhat high and 17 have very high immunity systems respectively.Figure 4 shows this type of network where agents are connected and disconnected randomly overtime based on probabilities weighted by dissimilar immunity levels and temperature of that region.
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Figure 2. Tie between agents 16and 25 is removed randomly.
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Figure 3. Tie between agents 1and 25 is added randomly.
To create Figure 4 an abstract notion of time is used. Here edges are selected randomly forupdating assuming that time has some passage between each update. Firstly, the updating functionstarts with a list of objects that would be used to store an updated network [42]. Then inside a loopa random node is selected, and the update function is called when an existing edge is removed,and a new edge is added. This procedure has two limitations. First, the loop can be replaced by a
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Eur. J. Stat. 10.28924/ada/stat.4.3 9vectorized function and in each step, this update function stores the entire network which results invery large objects being returned [42]. In Figure 5 we update this large network 1000 times. Beforestarting the updating process we assume this random network would be more homophilous overtime as the updates of edges are partially driven by the similarity of the immunity levels betweentwo agents.
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Figure 4. An Erdos-Renyi random network of 100 agents with five different immu-nity levels.
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Figure 5. An Erdos-Renyi random network of 100 agents with 1000 updates.
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Eur. J. Stat. 10.28924/ada/stat.4.3 10The right panel of Figure 5 shows that modularity is lower at the starting network comparedto the final network with 1000 updates whereas the left panel shows the density of this infectionnetwork. Intuitively, one might think about after the first incidence of the pandemic a greater partof the network is segregated. Higher modularity at the end implies edges between vertices ofsimilar immunity levels are more likely than edges between different immunity levels.Based on the above discussions we are going to construct a stochastic differential equation ofthe transmission rate of the pandemic β. Consider an Erdos-Renyi random network with the totalnumber of vertices V and edges E such that the graph is denoted as G(V, E). Let A(s) be theadjacency matrix with each element am1m2 for agent m1 and m2. We define the modularity of thisnetwork as
Q :=

1

2E
∑
m1,m2

[
am1m2 −

bm1bm2
2E

]
δ(cm1 , cm2),

where bmi is the degree of the vertex mi (i.e. agent mi ) for all i = 1, 2, cmi is the communitycorresponding to mi with Kronecker delta function δ(., .) such that if two different communitiesmerge, δ takes the value of 1. As we know, higher temperature increases the transmission rateand, higher lock-down intensity and vaccination rate reduce the transmission rate, the stochasticdifferential equation is
dβ(s) = QI(s)

[
β0T (s) + β1M[1− e(s)]θ1 − β2v θ2(s)

]
ds + σ4[β(s)− β∗]MdB4(s), (3)

where β ∈ (0, 1) are coefficients, θl > 1 for all l = 1, 2 make the transmission function β(v , e) aconvex function of e and v . Moreover, β0 is the minimum level of infection risk produced if onlythe essential activities are open, β1 is the increment in the level of infection, β2 is the reductionin the level of infection due to vaccination, M is fine particulate matter (PM2.5 > 12µg/m3) whichis an air pollutant and have significant contribution to degrade a person’s health, σ4 is a knowndiffusion coefficient infection dynamics and dB4(s) is a one-dimensional standard Brownian motionof β(e, v) with steady state at β∗ and T (s) is the temperature in that region at time s .
2.3. Stochastic SIR Dynamics. For a complete probability space (X∞,F ,P) with filtration startingfrom {Fs}0≤s≤t , let
X(s) = [β(s), S(s), I(s), R(S)]T with L2-norm ||X(s)||2 =

√
β2(s) + S2(s) + I2(s) + R2(s). Let

C1,2(R4× (0,∞),R+) be a family of all non-negative functions Z(s,X) defined on R4× (0,∞) sothat they are twice continuously differentiable in X and once in s . Define a differential operator Dassociated with 4-dimensional stochastic differential equation explained in the system of Equations(2) and (3) as
dX(s) = µ(s, u,X)ds + σ(s,X)dB(s), (4)so that

D =
∂

∂s
+

4∑
j=1

µj(s, u,X)
∂

∂X
j

+
1

2

4∑
j=1

4∑
j ′=1

[[
σT (s,X)σ(s,X)

]
j j ′

∂2

∂XjXj ′

]
,
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µ =


ηN(s)− β(e, v) S(s)I(s)

[1+ρI(s)]+ηN(s) − κS(s)− v(s) + ζR(s)

β(e, v) S(s)I(s)
[1+ρI(s)]+ηN(s) − (µ+ κ)I(s)− e(s)

µv(s)I(s)− [κ+ ζ]e(s)R(s)

QI(s)
[
β0T (s) + β1M[1− e(s)]θ1 − β2v θ2(s)

]


and,

σ =


σ1(S − S∗) 0 0 0

0 σ2(I − I∗) 0 0

0 0 σ3(R − R∗) 0

0 0 0 σ4(β − β∗)M

 .
If the differential operator D operates on a function Z ∈ C2,1(R4 × (0,∞);R+), such that
DZ(s,X) =

∂

∂s
Z(s,X)+µ(s, u,X)

∂

∂X
Z(s,X)+

1

2
trace

{
σT (s,X)

[
∂2

∂XT ∂X
Z(s,X)

]
σ(s,X)

}
,(5)where T represents a transposition of a matrix.

Assumption 2. For t > 0, let µ(s, u,X) : [0, t] × [0, 1]2 × R4 → R and σ(X) : R4 → R be some
measurable function and, for some positive constant K0, X ∈ R4 we have linear growth as

|µ(s, u,X)|+ |σ(X)| ≤ K0(1 + |X|),

such that, there exists another positive, finite, constant K1 and for a different state variable vector
X̃ such that the Lipschitz condition,

|µ(s, u,X)− µ(s, u, X̃)|+ |σ(X)− σk0(X̃)| ≤ K1 |X− X̃|,

X̃ ∈ R4 is satisfied and
|µ(s, u,X)|2 + |σ(X)|2 ≤ K21(1 + |X̃|2).

Assumption 3. Assume (X∞,F0,P) is a stochastic basis where the filtration {Fs}0≤s≤t supports
a 4-dimensional Brownian motion B(s) = {B(s)}0≤s≤t . F0 is the collection of all R-values
progressively measurable process on [0, t]× R4 and the subspaces are

F2 :=

{
X ∈ F0; E0

∫ t

0

|X(s)|2ds <∞
}

and,

S2 :=

{
X ∈ F0; E0 sup

0≤s≤t
|X(s)|2 <∞

}
,

where X∞ is a Borel σ-algebra and P is a probability measure [43]. Furthermore, the 4-dimensional
Brownian motion corresponding to the vector of state variables in this system is defined as

B :=

{
X ∈ F0; sup

0≤s≤t
|X(s)| <∞; P − a.s.

}
.
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Proposition 2. Consider a small continuous time interval [s, τ ] ∈ (0, t). Also assume the left hand
side of the Equation (5) is zero and Z solves the Cauchy problem (5) with terminal condition
Z(τ,X) = Φ(X). Let pandemic state variables X follows the stochastic differential equation (4)
such that

σ(s,X)
∂

∂X
Z(s,X) ∈ L2, for all s ≤ τ, X ∈ R4,

then Z has the stochastic Feynman-Kac representation

Z(s,X) = Es [Φ(X(τ))].

Proof. See the Appendix. �

Proposition 3. If Assumptions 2 holds then under complete information about the pandemic and
for continuous s ∈ [0, t] the pandemic dynamics expressed in Equation (4) has a strong unique
solution.

Proof. See the Appendix. �

Proposition 4. Let the initial state variable of SIR model with stochastic infection X(0) ∈ L2 is
independent of Brownian motion B(s) and the drift and diffusion coefficients µ(s, u,X) and σ(s,X)

respectively follow Assumptions 2 and 3. Then the pandemic dynamics in Equation (4) is in space
of the real valued process with filtration {Fs}0≤s≤t and this space is denoted by F0. Moreover,
for some finite constant c0 > 0, continuous time s ∈ [0, t] and Lipschitz constants µ and σ, the
solution satisfies,

E sup
0≤s≤t

|X(s)|2 ≤ c0(1 + E|X(0)|2) exp (c0t). (6)
Proof. See the Appendix. �

Propositions 2-4 tell us about the uniqueness and measurability of the system of stochasticSIR dynamics with infection dynamics. It is important to know that we assume the informationavailable regarding the pandemic is complete and perfect and that all the agents in the system arerisk-averse. Therefore, once a person in a community gets infected by COVID-19, everybody getsinformation immediately and that agent becomes isolated from the rest.
2.4. Main Results. An agent’s objective is to minimize the quadratic cost function expressed inEquation (1) subject to the dynamic system represented by the equations (2) and (3). Following [44]the quantum Lagrangian of an agent in this pandemic environment is

L(s, u,X) := Es{c [u(s),X(s)] + λ [µ(s, u,X)ds + σ(s,X)dB(s)− ∆X]}, (7)
where ∆X = X(s + ε)−X(s) for all ν ∈ [s, s + ε], ε ↓ 0 and Es [.] := E[.|X(s),Fs ]. In Equation (7)
λ > 0 is a time-independent quantum Lagrangian multiplier. At the time s an agent can predictthe severity of the pandemic based on all information available regarding state variables at that
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Proposition 5. For any two different immunity groups, if the probability measures of getting affected
by the pandemic are P1 and P2 respectively on H ∈ (X∞,P,F0) so that the total variation
difference between P1 and P2 is

||P1 − P2||tv = sup {|P1(L)− P2(L)|; for all L ∈ H} (8)
= 1− sup

η≤P1,P2
η(H) (9)

= 1− inf

K∑
k=1

[P1(Bk) ∧ P2(Bk)] , (10)
where Bk ⊂ H so that

⋂K
k=1Bk = ∅ for all k ∈ [1, K] and K ≥ 1.

Proof. See the Appendix. �

Remark 2. In Proposition 5 Bk is a set of communities of agents such that no two of them never
socially interact. Furthermore, Proposition 5 tells us that if the same variant of COVID-19 hits a
community with two agents differed by their immunities, total variation of infection is the suprimum
of two infection probabilities of their quantum Lagrangians.

Proposition 6. Suppose, the domain of the quantum Lagrangian L is non-empty, convex and com-
pact denoted as Ξ̃ such that Ξ̃ ⊂ U × X ⊂ R6. As L : Ξ̃ → Ξ̃ is continuous, then there exists
a vector of state and control variables Z̄∗ = [v∗, e∗, β∗, S∗, I∗, R∗]T in continuous time s ∈ [0, t]

such that L has a fixed-point in Brouwer sense, where T denotes the transposition of a matrix.

Proof. See the Appendix. �

Theorem 1. Consider an agent’s objective is to minimize M[X(s)] subject to the stochastic dynamic
system explained in the Equation (4) such that the Assumptions 1-3 and Propositions 1-6 hold.
For a C2-function f̃ (s, Z̄) and for all s ∈ [0, t] there exists a function g(s,X) ∈ C2([0, t] × R4)
such that Ỹ = g(s,X) with an Itô process Ỹ optimal “lock-down" intensity e∗ and vaccination rate
v∗ are the solutions

−
∂

∂u
f̃ (s, Z̄)Ψτ

s (X) = 0, (11)
where Ψτ

s is some transition wave function in R4.

Proof. See the Appendix. �

Remark 3. Proposition 6 tells us that this pandemic system has a Brouwer fixed point Z̄∗ and as
information is perfect and complete, for a given g(s,X), this fixed point is unique. Theorem 1 helps
us to determine those fixed points. Since we are assuming feedback controls, once we obtain a
steady state Z̄∗, u∗ is automatically achieved.
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Theorem 1 determines the solution of an optimal lock-down intensity and vaccination rate for ageneralized stochastic pandemic system. Consider a function g(s,X) ∈ C2([0, t]×R4) such that [2],

g(s,X) = [sβ − 1− ln(β)] + [sS − 1− ln(S)] + [sI − 1− ln(I)] + [sR − 1− ln(R)],

with ∂g/∂s = S + I + R + β, ∂g/∂xi = s − 1/xi , ∂2g/∂x2i = −1/x2i and ∂2g/∂xi∂xj = 0, for all
i 6= j where xi is i th state variable of X for all i = 1, ..., 4 and ln stands for natural logarithm. Inother words, x1 = β, x2 = S, x3 = I and x4 = R. Therefore,
f̃ (s, Z̄) = exp(−r s)

[
S
(
1
2α11v

2 + α12v + α13
)

+ I
(
1
2α21e

2 + α22e + α23
)]

+ βSI

+[sβ−1− ln(β)]+[sS−1− ln(S)]+[sI−1− ln(I)]+[sR−1− ln(R)]+(β+S+ I+R)+

(
s −

1

β

)
×QI

[
β0T + β1M(1− e)θ1 − β2v θ2

]
+

(
s −

1

S

){
ηN −

βSI

(1 + ρI) + ηN
− κS − v + ζR

}
+

(
s −

1

I

){
βSI

(1 + ρI) + ηN
− (µ+ κ)I − e

}
+

(
s −

1

R

)
[µvI − (κ+ ζ)eR]

− 12

{
σ1(S − S∗)

1

S2
+ σ2(I − I∗)

1

I2
+ σ3(R − R∗)

1

R2
+ σ4(β − β∗)

1

β2

}
.

To satisfy Equation (20), either ∂f̃
∂u = 0 or Ψτ

s = 0. As Ψτ
s is a wave function, it cannot be zero.Therefore, ∂f̃∂u = 0 for all u = {e, v}. Therefore, for θ1 = 2 the lock-down intensity is,

e∗ =
A2 + A3
A1 + A2

,

where A1 = exp(−r s)Iα21, A2 = 2QIβ1M
(
s − 1β

) and A3 =
(
s − 1I

)
+ R

(
s − 1

R

)
(κ + ζ) −

exp(−r s)Iα22. On the other hand, for θ2 = 2 the vaccination rate is,
v∗ =

B3
B1 − B2

,

where B1 = exp(−r s)Sα11, B2 = 2QIβ2
(
s − 1β

) and B3 =
(
s − 1

S

)
−µI

(
s − 1

R

)
−exp(−r s)Sα12so that B1 > B2.

3.1. Simulation Studies. Values from Table 1 have been used to perform simulation studies. Thesevalues and initial state variables are obtained from [4] and [2]. We did simulate the stochastic SIRmodel 100 times with different diffusion coefficients. Figure 6 assumes σ1 = 0.1, σ2 = 0.06 and
σ3 = 0.12.
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Table 1. Parametric values taken from [4] and [2].
Parameter values and initial state variable values.Variable Value Description

η 0.001 Birth-rate
β 1 Initial infection
β0 0 Minimal level of infection
β1 0.2 Increment in the level of infection
β3 0.2 Reduction in the level of infection due to vaccination
e(0) 1 Initial lock-down intensity
κ 0.2 Death-rate
ζ 0.001 Rate by which recovered get susceptible again
µ 0.3 Natural recovery rate
ρ 0.5 Psychological or inhibitory coefficient
θl 2 Convexity coefficient of transmission function
M 12.5 Fine particulate matter
Q 0.5 Modularity of networkS(0) 99.8 Initial susceptible populationI(0) 0.1 Initial infected populationR(0) 0.1 Initial recovered population
v 0.674 Stable fully vaccination rate
αi j

1
3 Coefficients of cost function

Since the diffusion coefficients are relatively high, we can see more fluctuations. To observe thebehavior of each of the susceptible (S), infected (I), and recovered (R) curves we construct Figures7-8. In these figures, X1, X2, and X3 curves represent S, I, and R respectively. When the diffusioncoefficients are low then all three curves have a downward pattern as in Figure 7. Once thesecoefficients increased to σ1 = 0.1, σ2 = 0.06 and σ3 = 0.12, the X2 curve in Figure 8 starts tobehave ergodically, while X1 and X3 keep their downward trends with more fluctuations. Figures9 and 10 represent the behavior of optimal lock-down intensity and vaccination rate over time. Ourmodel says, under higher volatility of the pandemic the vaccination rate is increasing over timebecause people are risk-averse and the information regarding this disease perfect and complete.
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Figure 6. SIR model with higher volatility.
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Figure 8. Model with σ1 = 0.1, σ2 = 0.06 and σ3 = 0.12.
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Figure 9. Lock-down with diffusion coefficients σ2 = 0.06 and σ3 = 0.12.
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Figure 10. Vaccination with σ1 = 0.1, σ2 = 0.06 and σ3 = 0.12.
On the other hand, under σ2 = 0.06 and σ3 = 0.12 figure 9 implies initially people did not knowabout the severity of the disease, and therefore, they come outside their homes and work. Slowlythey become afraid of being infected and stopped going out and finally, very close to the terminalpoint the intensity increased because of the high vaccination rate (i.e. Figure 10).

3.2. Real data analysis. In this section we determine the parametric values from UK data at thebeginning of 2021 [45,46]. The initial conditions of susceptibility, infection and recovery are takenat the beginning of 2021 (i.e. early January) when a post-Christmas spike of infection took placeand the vaccination had just begun [47]. Therefore, S(0) = 84.19, I(0) = 1.89 and R(0) = 13.82.The values of the initial conditions are derived from the Office for National Statistics [45] bysumming over England, Wales, Scotland, and Northern Ireland and averaging over two months 10December 2020 to 6 January 2021 and, 7 January to 3 February 2021. Moreover, initial conditionof recovery is calculated by using the formula R(0) = 100 − S(0) − I(0). The estimate of deathrate κ = 0.01 is determined by dividing the cumulative number of deaths up to 14 January 2021by the estimated number in the recovered category [47]. The birthrate (η) at this point of timein the UK is 0.0558, the initial lock down intensity e(0) = 0.75, the vaccination rate with firstand second doses are 0.0291 and 0.00557 respectively. Since throughout this paper we consideronly the full vaccination rate, we are going to use v = 0.00557. We assume the total populationof the UK at that time was 67.22 million. We also determine increment in the level of infection
β1 = 0.536 under the assumption of β1 = β2, σ2 = 0.08557 and the rate at which recovered agentgets susceptible again ζ = 0.000152 [45]. For the other parameter values, we are going to useTable 1.
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Figure 11. SIR Model of UK data with σ1 = 0.05, σ2 = 0.08557 and σ3 = 0.12.
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Figure 12. Same Model with magnified S(X1), I(X2) and R(X3).
To generate figures 11-14 we consider first 100 days of 2021 starting from January 1. Then weconvert this time interval between 0 and 1. Figures 11-12 describe the stochastic SIR model at thebeginning of 2021. Furthermore, figure 12 magnifies each of stochastic susceptible (X1), infected(X2) and recovered (X3) curves. X2 curve does not have any pattern because of the high volatilityof UK data (i.e. σ2 = 0.08557) which is consistent with the simulation in figure 8. Althoughthe susceptible curve has a downward trend in both figures 7 and 11, further magnification of the
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Figure 13. Optimal lock-down of UK data for first 100 days of 2021 with diffusioncoefficient σ2 = 0.08557.
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Figure 14. Optimal vaccination rate of UK data for first 100 days of 2021 withdiffusion coefficient σ2 = 0.08557.
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Eur. J. Stat. 10.28924/ada/stat.4.3 21Optimal lock-down intensity curves in figures 9 and 13 show similar trend between days 1 and
50. After 50th day the intensity curve in figure 13 becomes more ergodic and shows a spike betweendays 70 and 80. This tells us that although every agent in the COVID-19 environment has perfectand complete information about the pandemic, after a certain point in time they want to leave thehouse probably to purchase necessary items or just because of some social interactions. Contrarily,optimal vaccination rate curves presented in figures 10 and 14 are quite different in character. Thecurve in figure 10 shows an upward trend in vaccination rate, while the curve in figure 14 doesnot show any trend. As we take the UK data at the beginning of 2021, the infection and deathrates have a huge spike. Furthermore, since at that time new vaccines are coming slowly into theeconomy, people have less confidence in them, and this leads to an unstable trend toward optimalvaccination rate.

4. Conclusion
In this paper, a stochastic pandemic SIR model with a non-linear incidence rate βSI/(1+ρI+ηN)and a stochastic dynamic infection rate is considered. We use a Feynman-type path integralapproach to obtain optimal lock-down intensity and vaccination rate because simulating an HJBequation is almost impossible due to the curse of dimensionality. The main aspect of this studylies in the aspect of the existence of global stability and uniqueness of the control variables whenthe information is perfect and complete. Furthermore, we can show the existence of a contractionmapping point in the Brouwer sense.To determine the infection dynamics, we have divided the immunity level into five subcategoriessuch as very low, somewhat low, medium, somewhat high and very high. We have used Erdos-Renyirandom graph model to investigate the infection rate among agents with different levels. We haveminimized an agent’s cost of COVID-19 subject to a stochastic SIR and infection dynamics. Byutilizing a Feynman-type path integral approach we determine a Fokker-Plank type equation andobtain an optimal lock-down intensity and vaccination rate. We also did some simulation studiesbased on the parameters in [4] and [2]. Since we assume all agents in the pandemic environmentare risk averse, the optimal lock-down intensity went up at the beginning of our time interval andthen came very close to zero. The reason behind this is that due to the availability of perfect and

complete information an individual does not want to go out and gets infected by this pandemic. Atthe end of our time of the study, we observe that lock-down intensity is slightly improved althoughthe optimal vaccination rate has increased over the time interval we have studied.Data analysis tells us that, although people are risk averse to COVID-19, after a certain pointof time they come out of their homes to do social interaction probably because of the necessityto purchase food or some other important items. As of the beginning of 2021, the incidence ofCOVID-19 has experienced a spike, with the new incidence of vaccines people have less faith in
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Appendix

Proof of Proposition 1. For M[X(s)] ∈ (0,∞) let {Xn}n≥1 be a minimizing sequence in the convexset X so that,
lim
n→∞

E0
{∫ t

0

c [u(s),Xn(s)]ds

∣∣∣∣F0} = M[X(s)] > 0.

By compactness theorem A.3.5 in [48] there exists a convex combination X̃n(s) ∈ conv (Xn,Xn+1, ...) ∈
X so that X̃n(s)

a.s.→ X∗. As {Xn}n≥1 is a minimizing sequence hence, X∗ ∈ X . Convexity of thecost function implies
lim
n→∞

E0
{∫ t

0

c [u(s), X̃n(s)]ds

∣∣∣∣F0} = M[X(s)] > 0.

Above condition and convexity of c implies infn E0
{∫ t
0 c [u(s), X̃n(s)]ds

∣∣∣∣F0} > 0. Therefore,optimality of X(s) i.e.
E0
{∫ t

0

c [u(s),X∗(s)]ds

∣∣∣∣F0} = M[X(s)],

is achieved iff we are able to show
lim
n→∞

E0
{∫ t

0

c [u(s), X̃n(s)]ds

∣∣∣∣F0} = E0
{∫ t

0

c [u(s),X∗(s)]ds

∣∣∣∣F0} , (12)
which is uniform integrability of {c [u(s),Xn(s)]}n≥1. If c [u(s),∞] > 0 and define the initialcondition

X0 := inf {X(s) > 0 : c [u(s),X(s)] > 0} <∞.

We will prove by contradiction by assuming that sequence {c [u(s),Xn(s)]}n≥1 is not uniformlyintegrable. Hence, ∃ δ > 0 so that.
lim
n→∞

E0
{∫ t

0

c [u(s), X̃n(s)]ds

∣∣∣∣F0} = E0
{∫ t

0

c [u(s),X∗(s)]ds

∣∣∣∣F0}+ 2δ.

A subsequence {X̃n(s)}n≥1 and Corollary A.1.1 in [48] implies that there exist disjoint sets (En)n≥1in (X∞,F0,P) so that,
E0
{∫ t

0

c [u(s), X̃n(s)]1Ends

∣∣∣∣F0} ≤ δ, for all n ≥ 1.

There exists a sequence of state variables in (X∞,F0,P)

Jn(s) = X0 +

n∑
l=1

X̃l(s)1En .
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EQ0

[
Jn(s)

∣∣∣∣F0] ≤ X0 +

n∑
l=1

EQ0

[
X̃l(s)

∣∣∣∣F0]1En ≤ X0 + nX,

as X̃l(s) ∈ X . Clearly, Jn(s) ∈ X (X0 + nX) where X (X0 + nX) stands for a convex functionalspace of state variables such that the property X0 + nX holds. Therefore,
E0
{∫ t

0

c [u(s), Jn(s)]ds

∣∣∣∣F0} = E0

{∫ t

0

c

[
u(s),X0 +

n∑
l=1

X̃l(s)1En

]
ds

∣∣∣∣F0
}

≤ E0

{∫ t

0

c

[
u(s),

n∑
l=1

X̃l(s)1En

]
ds

∣∣∣∣F0
}

=

n∑
l=1

E0
{∫ t

0

c
[
u(s), X̃l(s)1En

]
ds

∣∣∣∣F0} ≤ δn.
By convexity of the dynamic cost function we get,

lim inf
X→∞

M[X(s)]

X(s)
≤ lim inf
X→∞

E0
{∫ t
0 c [u(s), Jn(s)]ds

∣∣∣∣F0}
X0 + nX

≤ lim inf
X→∞

nδ

X0 + nX
≤ δ.

After carefully setting δ → 0 we conclude that lim infX→∞M[X(s)]/X(s) < 0 which is a con-tradiction from the assumption lim infX→∞M[X(s)]/X(s) ≥ 0. Therefore, condition explained inEquation (12)is true and X∗ is the solution to M[X(s)] for all s ∈ [0, t]. The uniqueness followsfrom the strict convexity of the cost function on (0,∞) and known filtration process F0. �
Proof of Proposition 2. For small continuous time interval [s, τ ] Itô formula yields
Z(τ,X(τ)) = Z(s,X(s))

+

∫ τ

s

{
∂

∂s
Z(ν,X) + µ(ν, u,X)

∂

∂X
Z(ν,X) +

1

2
trace

{
σT (ν,X)

[
∂2

∂XT ∂X
Z(ν,X)

]
σ(ν,X)

}}
dν

+

∫ τ

s

σ(s,X)
∂

∂X
Z(s,X)dB(ν).

As we have already assumed that σ(s,X) ∂
∂XZ(s,X) is in Hilbert space L2, then in the aboveequation integral part with respect to time vanishes [49]. Applying boundary condition Z(τ,X) =

Φ(X), the initial condition X(s) = Xs and taking conditional expectation on the remainder part ofthe above equation yield
Z(s,Xs) = Es [Φ(X(τ))].

This completes the proof. �
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Proof of Proposition 3. Suppose X and X̃ both are strong solutions on the 4-dimensional Brownianmotion B(s) for all s ∈ [0, t] under complete probability space {X∞,F0,P}. Define stopping times
sρ := inf {s ≥ 0; ||X(s)|| ≥ ρ, ∀ ρ ≥ 1}

s̃ρ := inf
{
s ≥ 0; ||X̃(s)|| ≥ ρ, ∀ ρ ≥ 1

}
.

Setting Sρ , sρ ∧ s̃ρ yields P [limρ→∞ Sρ]
a.s.→ ∞ and

X(s ∧ Sρ)− X̃(s ∧ Sρ) =

∫ s∧Sρ

0

{
µ [ν, u(ν),X(ν)]− µ

[
ν, u(ν), X̃(ν)

]}
dν

+

∫ s∧Sρ

0

{
σ [ν,X(ν)]− σ

[
ν, X̃(ν)

]}
dB(ν)

For any finite constant K, Hölder inequality for Lebesgue integrals, property 3.2.27 of [50] andAssumption 2 imply
E0
{∣∣∣∣∣∣X(s ∧ Sρ)− X̃(s ∧ Sρ)

∣∣∣∣∣∣2∣∣∣∣F0}
≤ 9E0

{[∫ s∧Sρ

0

∣∣∣∣∣∣µ [ν, u(ν),X(ν)]− µ
[
ν, u(ν), X̃(ν)

]∣∣∣∣∣∣ dν]2∣∣∣∣F0
}

+ 9E0

 d∑
k=1

[
r∑
l=1

∫ s∧Sρ

0

[
σkl [ν,X(ν)]− σkl

[
ν, X̃(ν)

]]
dB(l)(ν)

]2∣∣∣∣F0


≤ 9sE0
{∫ s∧Sρ

0

∣∣∣∣∣∣µ [ν, u(ν),X(ν)]− µ
[
ν, u(ν), X̃(ν)

]∣∣∣∣∣∣2 dν∣∣∣∣F0}
+ 9E0

{∫ s∧Sρ

0

∣∣∣∣∣∣σ [ν,X(ν)]− σ
[
ν, X̃(ν)

]∣∣∣∣∣∣2 dν∣∣∣∣F0}
≤ 9(1 + t)K2

∫ t

0

E0
{∣∣∣∣∣∣X(s ∧ Sρ)− X̃(s ∧ Sρ)

∣∣∣∣∣∣2 dν∣∣∣∣F0} .
Following [50] we know for s ∈ [0, t] above condition implies
E0
{∣∣∣∣∣∣X(s ∧ Sρ)− X̃(s ∧ Sρ)

∣∣∣∣∣∣2∣∣∣∣F0} ≤ 9tK2 + 9K2
∫ t

0

E0
{∣∣∣∣∣∣X(s ∧ Sρ)− X̃(s ∧ Sρ)

∣∣∣∣∣∣2 dν∣∣∣∣F0} .
Therefore, {X(s ∧ Sρ); s ∈ [0, t]} and X̃(s ∧ Sρ); s ∈ [0, t] are modification of each other andhence, are indistinguishable. Allowing ρ → ∞ gives us {X(s); s ∈ [0, t]} and {X̃(s); s ∈ [0, t]}are indistinguishable. �
Proof of Proposition 4. For each optimal solution X∗ ∈ F2 of Equation (4), define a squaredintegrable progressively measurable process Z(X∗) by

Z(X∗)s = X(0) +

∫ t

0

µ(s, u,X)ds +

∫ t

0

σ(s,X)dB(s). (13)
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Eur. J. Stat. 10.28924/ada/stat.4.3 25We will show that Z(X∗) ∈ F2. Furthermore, as X∗ is a solution of Equation (4) iff Z(X∗) = X∗,we will show that Z is the strict contraction of the Hilbert space F2. Using the fact that
|µ(s, u,X)|2 ≤ c0

[
1 + |X|2 + |µ(s, u,X(0))|2|

]
yields
||Z(X)||2 ≤ 4

[
tE|X(0)|2 + E

∫ t

0

∣∣∣∣ ∫ s

0

µ(s ′, u,X)ds ′
∣∣∣∣2ds + tE sup

0≤s≤t

∣∣∣∣ ∫ s

0

σ(s ′,X(s ′))dB(s ′)

∣∣∣∣2ds
]
. (14)

Assumption 3 implies tE|X(0)|2 < ∞. It will be shown that the second and third terms of theright hand side of the inequality (6) are also finite. Assumption 2 implies,
E
∫ t

0

∣∣∣∣ ∫ s

0

µ(s ′, u,X)ds ′
∣∣∣∣2ds ≤ E∫ t

0

s

(∫ s

0

|µ(s ′, u,X)|2ds ′
)
ds

≤ c0E
∫ t

0

s

(∫ s

0

(1 + |µ(s ′, u,X(0))|2 + |X(s)|2)ds ′
)
ds

≤ c0t2
(

1 + ||µ(s ′, u,X(0))||2 + E sup
0≤s≤t

|X(s)|2
)
<∞.

Doob’s maximal inequality and Lipschitz assumption (i.e. Assumption 2) implies,
tE sup
0≤s≤t

∣∣∣∣ ∫ s

0

σ(s ′,X(s ′))dB(s ′)

∣∣∣∣2ds ≤ 4tE
∫ t

0

|σ(s,X(s))|2ds

≤ 4c0E
∫ t

0

(1 + |σ(X(0))|2 + |X(s)|2)ds

≤ 4c0t
2

(
1 + ||σ(X(0))||2 + E sup

0≤s≤t
|X(s)|2

)
<∞.

As Z maps F2 into itself, we show that it is strict contraction. To do so we change Hilbert norm
F2 to an equivalent norm. Following [43] for a > 0 define a norm on F2 by

||ξ||2a = E
∫ t

0

exp(−as)|ξs |sds.

If X(s) and Y(s) are generic elements of F2 where X(0) = Y(0), then
E|Z(X(s))− z(Y(s))|2 ≤ 2E

∣∣∣∣ ∫ τ

0

[µ(s ′, u,X(s ′))− µ(s ′, u,Y(s ′))]ds

∣∣∣∣2
+ 2E

∣∣∣∣ ∫ τ

0

[σk0(X(s ′))− σ(s ′,Y(s ′))]dB(s ′)

∣∣∣∣2
≤ 2τE

∫ τ

0

|µ(s ′, u,X(s ′))− µ(s ′, u,Y(s ′))|2ds ′ + 2E
∫ τ

0

|σ(s ′,X(s ′))− σ(s ′,Y(s ′))|2ds ′

≤ c0(1 + τ)

∫ τ

0

E|X(s ′)− Y(s ′)|2ds ′,
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||Z(X)− Z(Y)||2a =

∫ t

0

exp(−as)E|Z(X(s)− Z(Y(s)))|2ds

≤ c0t
∫ t

0

exp(−as)

∫ t

0

E|X(s ′)− Y(s ′)|2ds ′ds

≤ c0t
∫ t

0

exp(−as)ds

∫ t

0

E|X(s ′)− Y(s ′)|2ds ′ ≤
c0t

a
||X− Y||2a.

Furthermore, if c0t is very large, Z becomes a strict contraction. Finally, for s ∈ [0, t]

E sup
0≤s≤t

|X(s)|2 = E sup
0≤s≤t

∣∣∣∣X(0) +

∫ s ′

0

µ(r, u,X(r))dr +

∫ s ′

0

σ(r,X(r))dB(r)

∣∣∣∣2
≤ 4

[
E|X(0)|2 + sE

∫ s

0

|µ(s ′, u,X(s ′))|2ds ′ + 4E
∫ s

0

|σ(s ′,X(s ′))|ds ′
]

≤ c0
[

1 + E|X(0)|2 +

∫ s

0

E sup
0≤r≤s ′

|X(r)|2dr
]
,

where the constant c0 depends on t , ||µ||2 and ||σ||2. Gronwall’s inequality implies,
E sup
0≤s≤t

|X(s)|2 ≤ c0(1 + E|X(0)|2) exp (c0t). �

Proof of Proposition 5. In order to show Condition 8 we will use Hahn-Jordan orthogonal decom-position of total variation [51]
P = P1 − P2 = P+ − P−,

such that ||P1 − P2||tv = P+(H) = P−(H). Therefore, for quantum Lagrangian L ∈ H we have
|P1(L)− P2(L)| =

∣∣∣∣∫
R4
L(s, u,X)P+(dX)−

∫
R4
L(s, u, X̃)P−(dX̃)

∣∣∣∣
= ||P1 − P2||tv

∣∣∣∣∣∫R4 [L(s, u,X)− L(s, u, X̃)
] P+(dX)

P+(H)

P−(dX̃)

P−(H)

∣∣∣∣∣ .
Above condition implies,

|P1(L)− P2(L)| ≤ ||P1 − P2||tv .Supremum over all L ∈ H yields,
sup {|P1(L)− P2(L)|; L ∈ H} ≤ ||P1 − P2||tv .

The reverse inequality can be checked by using the simple function 1B such as B ∈ E ∈ H. Nowwe will show Condition 9. By the construction of this pandemic framework there exist two non-interacting neighborhoods of agents H+ and H− so that P+(H−) = 0 = P−(H+). Hence, for all
B ∈ E , we have

P+(B) = P(B ∩H+) ≥ 0 and P−(B) = −P−(B ∩H−) ≥ 0,
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P1(B ∩H+) ≥ P2(B ∩H+) and P2(B ∩H−) ≥ P1(B ∩H−). (15)

For any B ∈ E define η as η , P1(B ∩ H−) + P2(B ∩ H+). By construction of this pandemicnetwork we have
η(B) ≤ P1(B) ∧ P2(B) and η(H) = P1(H−) + P2(H+). (16)

As total variation distance between two immunity group is
||P1 − P2||tv = P+(H) = P(H+) = P1(H+)− P2(H−) = 1− [P1(H+) + P2(H−)] ,

Condition 16 implies
1− sup

γ≤P1,P2
γ(H) ≤ 1− η(H) = ||P1 − P2||tv .

In order to show the reverse inequality assume γ be a non-negative such as for all B ∈ E yields
γ(B) ≤ P1(B)∧P2(B). Suppose, if we consider B = H+ and B = H− respectively, then we have

γ(H+) ≤ P1(H+) and γ(H−) ≤ P2(H−),

which yields
γ(H) ≤ P1(H+) + P2(H−) = 1− ||P1 − P2||tv .

Therefore, 1 − γ(H) ≥ ||P1 − P2||tv . Finally, taking the infimum of over all the distributions of
γ ≤ P1 and P2, Condition 9 is obtained. To show Condition 10 we are going to use the similar idealike above. First, by using 15 define P2(H+) = P1(H+)∧P2(H+) and P1(H−) = P1(H−)∧P2(H−).This yields

η(H) = P1(H−) + P2(H+) = [P1(H−) ∧ P2(H−)] + [P1(H+) ∧ P2(H+)] .

Non-interaction of agents between H+ and H− implies
η(H) ≤ inf

K∑
k=1

[P1(Bk) ∧ P2(Bk)] ,

where the infimum is taken over all resolutions of H into pairs of non-interacting subgroups Bk , k ∈
[1, K], K ≥ 1. To show the reverse inequality we use the definition of η [51]. Using Condition 16we know for any finite resolution Bk ∈ E the inequality η(Bk) ≤ P1(Bk) ∧ P2(Bk) holds. Thus,

η(H) =

K∑
k=1

η(Bk) ≤
K∑
k=1

P1(Bk) ∧ P2(Bk).

Taking the infimum of all resolutions and using η(H) = 1− ||P1 −P2||tv yield Condition 10. Thiscompletes the proof. �
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Proof of Proposition 6. We have divided the proof into two cases.
Case I: We assume that m ⊂ N, a set i with condition |i| = m + 1, and affinely independentstate variables, vaccination rates and lock-down intensities {Xk(s)}k∈i ⊂ R6 such that Ξ̃ coincideswith the simplex convex set of {Xk(s)}k∈i. For each Z(s) ⊂ Ξ, there is a unique way in which thevector Z(s) can be written as a convex combination of the extreme valued state variables, vaccinationrates and lock-down intensities; such as, Z(s) =

∑
k∈i αk(s,X)Xk(s) so that ∑k∈i αk(s,X) = 1and αk(s,X) ≥ 0, ∀k ∈ i and s ∈ [0, t]. For each k ∈ i, define a set

Ξ̃k ,
{
Z ∈ Ξ̃ : αk [L(s, u,X)] ≤ αk(s,X)

}
.

By the continuity of the quantum Lagrangian of a agent L, for each k ∈ i, Ξ̃k is closed. Now weclaim that, for every ĩ ⊂ i, the convex set consists of {Xk}k∈ĩ is proper subset of ⋃k∈ĩ Ξ̃k . Sup-pose ĩ ⊂ i and Z(s) is also in the non-empty, convex set consists of the state variables, vaccinationrates and the lock-down intensities {Xk(s)}k∈ĩ. Thus,∑
k∈ĩ αk(s,X) = 1 ≥

∑
k∈ĩ αk [L(s, u,X)].Therefore, there exists k ∈ ĩ such that αk(s,X) ≥ αk [L(s, u,X)] which implies Z(s) ∈ Ξ̃ ⊂⋃

l∈ĩ Ξ̃l . By Knaster-Kuratowski-Mazurkiewicz Theorem, there is X̄∗k ∈ ⋂k∈i Ξ̃k , in other words,the condition αk [L(s, u∗, X̄∗k)
]
≤ αk(s, X̄∗k) for all k ∈ i and for each s ∈ [0, t] [52]. Hence,

L(s, u∗, X̄∗k) = X̄∗k or L has a fixed-point.
Case II: Again consider Ξ̃ ⊂ R6 is a non-empty, convex and compact set. Then for m ⊂ N, aset i with condition |i| = m + 1, and affinely independent state variables, vaccination rates andlock-down intensities {Xk(s)}k∈i ⊂ R6 such that Ξ̃ is a proper subset of the convex set based on

{Xk(s)}k∈i for all s ∈ [0, t]. Among all the simplices, suppose ℵ̂ is the set with smallest m. Let
Z̃(s) be a dynamic point in the m-dimensional interior of ℵ̂. Define L̂, an extension of L to thewhole simplex ℵ̂, as follows. For every Z(s) ∈ ℵ̂, let

ζ̄(s, Z) : max
{
ζ̄ ∈ [0, 1] : (1− ζ̄)Z̃(s) + ζ̄Z(s) ∈ Ξ̃

}
, ∀s ∈ [0, 1],

and,
L̂(s, u,X) : L(s, u,X)

{[
1− ζ̄(s, Z)

]
Z̃(s) + ζ̄(s, Z)Z(s)

}
.Therefore, ζ̄ is continuous which implies L̂(s, u,X) is continuous. Since the codomain of L̂(s, u,X)is in Ξ̃, every fixed-point of L̂(s, u,X) is also a fixed-point of L. Now by Case I, L̂(s, u,X) has afixed-point and therefore, L also does. �

Proof of Theorem 1. From quantum Lagrangian function expressed in the Equation (7), the Eu-clidean action function for the agent in continuous time [0, t] is given by
A0,t(X) =

∫ t

0

Es {c [u(s),X(s)] ds + λ [µ(s, u,X)ds + σ(s,X)dB(s)− ∆Xds]} ,

where vector λ > 0 is a time independent quantum Lagrangian multiplier. As at the beginning ofthe continuous time interval [s, s + ε], as the agent does not have any prior future knowledge, theymake expectations based on their all current state variables represented by X. Hence, Es [.] :=
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E[.|X(s),Fs ], where Fs is the filtration process starting at time s . For a penalization constant
Lε > 0 and for time interval [s, s + ε] with ε ↓ 0 define a transition function from s to s + ε as

Ψs,s+ε(X) =
1

Lε

∫
R4

exp[−εAs,s+ε(X)]Ψs(X)dX, (17)
where Ψs(X) is the value of the transition function at time s with the initial condition Ψ0(X) = Ψ0and the action function in [s, s + ε] of the representative agent is,

As,s+ε(X) =

∫ s+ε

s

Eν {c [u(ν),X(ν)]dν + g[ν + ∆ν,X(ν) + ∆X(ν)]} ,

where g(X) ∈ C2([0, t] × R4) such that Assumptions 1- 3 hold and Ỹ (ν) = g(X), where Ỹ is anItô process [53] and,
g(X) = λ [µ(s, u,X)ds + σ(s,X)dB(s)− ∆Xds] + o(1),

where ∆X = X(s+ ε)−X(s). In Equation (17) Lε is a positive penalization constant such that thevalue of Ψk
s,s+ε(.) becomes 1. One can think this transition function Ψs,s+ε(.) as some transitionprobability function on Euclidean space. We have divided the time interval [0, t] into n small equalsub-intervals [s, s + ε] so that τ = s + ε. Fubini’s Theorem implies,

As,τ (X) = Es
{∫ τ

s

c [u(ν),X(ν)]dν + g[ν + ∆ν,X(ν) + ∆X(ν)]

}
.

After using the fact that [∆X(s)]2 = ε, for ε ↓ 0 (with initial condition X(0)), Itô’s formula and [54]imply,
As,τ (X) = c [u(s),X(s)] + g +

∂g

∂s
+ µ[s, u(s),X(s)]

∂g

∂X
+ 1
2σ

T [s,X(s)]
∂2g

∂XT ∂X
σ[s,X(s)] + o(1),

where g = g[s,X(s)]. Result in Equation(17) implies,
Ψs,τ (X) =

1

Lε

∫
R4

exp

{
−ε
[
c [u(s),X(s)] + g +

∂g

∂s
+ µ[s, u(s),X(s)]

∂g

∂X

+12σ
T [s,X(s)]

∂2g

∂XT ∂X
σ[s,X(s)]

]}
Ψs(X)dX+ o(ε1/2).

For ε ↓ 0 define a new transition probability Ψτ
s centered around time τ . A Taylor series expansion(up to second order) of the left hand side of the above Equation yields,

Ψτ
s (X) + ε

∂

∂s
Ψτ
s + o(ε) =

1

Lε

∫
R4

exp

{
−ε
[
c [u(s),X(s)] + g +

∂g

∂s
+ µ[s, u(s),X(s)]

∂g

∂X

+12σ
T [s,X(s)]

∂2g

∂XT ∂X
σ[s,X(s)]

]}
Ψs(X)dX+ o(ε1/2),

as ε ↓ 0. For fixed s and τ let X(s) = X(τ) + ϑ. For some number ϑ̄∗ ∈ (0,∞) assume
|ϑ| ≤ ϑ̄∗ε[X(s)]−1. Therefore, we get upper bound of state variables in this SIR model as X(s) ≤
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ϑ̄∗ε/(ϑ)2. Moreover, Fröhlich’s Reconstruction Theorem [?, 44, 55] and Assumptions 1-3 imply,
Ψτ
s (X) + ε

∂

∂s
Ψτ
s + o(ε) =

1

Lε

∫
R4

exp

{
−ε
[
c [u(s),X(s)] + g +

∂g

∂s
+ µ[s, u(s),X(s)]

∂g

∂X

+12σ
T [s,X(s)]

∂2g

∂XT ∂X
σ[s,X(s)]

]}[
Ψτ
s (X) + ϑ

∂

∂X
Ψτ
s (X) + o(ε)

]
dX+ o(ε1/2), (18)

as ε ↓ 0. Define a C2 function,
f̃ (s, Z̄) , c [u(s),X(s)] + g +

∂g

∂s
+ µ[s, u(s),X(s)]

∂g

∂X
+ 1
2σ

T [s,X(s)]
∂2g

∂XT ∂X
σ[s,X(s)].

Plugging in f̃ (s, Z̄) into Equation (18) yields,
Ψτ
s (X) + ε

∂

∂s
Ψτ
s (X) + o(ε) =

1

Lε

∫
R4

exp
{
−εf̃ (s, Z̄)

} [
Ψτ
s (X) + ϑ

∂

∂X
Ψτ
s (X) + o(ε)

]
dX + o(ε1/2).(19)

Let f̃ (s, Z̄) be a C2 function. A second order Taylor series expansion yields,
f̃ (s, u, ϑ(τ)) = f̃ (s, u, ϑ(τ)) + [ϑ− X(τ)]

∂

∂X
f̃ (s, u, ϑ(τ))

+ 1
2 [ϑ− X(τ)]T

∂2

∂XT ∂X
f̃ (s, u, ϑ(τ))[ϑ− X(τ)] + o(ε),

as ε ↓ 0 and ∆u(s) ↓ 0. Define ϑ̂ = ϑ − X so that dϑ̂ = dϑ. Thus, first integration of Equation(19) becomes,∫
R4

exp(−εf̃ (s, Z̄))dX =

∫
R4

exp
{
−ε
[
f̃ (s, u, ϑ(τ))− JT ϑ̂+ ϑ̂THXϑ̂

]}
dϑ̂

= exp{−εf̃ (s, u, ϑ(τ))}
∫
R4

exp
{

(εJT )ϑ̂− ϑ̂(εHX)ϑ̂
}
dϑ̂ =

π√
ε|HX|

exp
{ε

4
JTH−1X J− εf̃ (s, u, ϑ(τ))

}
,

where J = −∂f̃ /∂X and HX is a non-singular Hessian matrix. Therefore, first integral term ofEquation (19) becomes,
1

Lε
Ψτ
s (X)

∫
R4

exp(−εf̃ )dX =
1

Lε
Ψτ
s

π√
ε|HX|

exp
{ε

4
JTH−1X J− εf̃ (s, u, ϑ(τ))

}
,

where HX > 0. In a similar fashion we get the second integral term of Equation (19) as
1

Lε

∂Ψτ
s (X)

∂X

∫
R4
ϑ exp(−εf̃ )dX =

1

Lε

∂Ψτ
s

∂X

π√
ε|HX|

[
1

2
H−1X + X

]
exp

{ε
4
JTH−1X J− εf̃ (s, u, ϑ(τ))

}
.

Using above results and Equation (19) we obtain a Fokker-Plank type equation as,
Ψτ
s (X) + ε

∂

∂s
Ψτ
s (X) + o(ε) =

1

Lε

π√
ε|HX|

exp
{ε

4
JTH−1X J− εf̃ (s, u, ϑ(τ))

}
×
{

Ψτ
s (X) +

[
1

2
H−1X + X

]
∂Ψτ

s

∂X

}
+ o(ε1/2),
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as ε ↓ 0. Assuming Lε = π/
√
ε|HX| > 0 yields,

Ψτ
s (X)+ε

∂

∂s
Ψτ
s (X)+o(ε) =

{
1 +

ε

4
JTH−1X J− εf̃ (s, u, ϑ(τ))

}{
Ψτ
s (X) +

[
1

2
H−1X + X

]
∂Ψτ

s

∂X

}
+o(ε1/2),

as ε ↓ 0. Since X ≤ ϑ̄∗ε/(ϑ)2 assume |H−1X | ≤ 2ϑ̄∗ε(1 − ϑ−1) such that |(2HX)−1 + X| ≤ ϑ̄∗ε.Therefore, |H−1X | ≤ 2εϑ̄∗(1− ϑ−1) so that |(2H−1X ) + X| ↓ 0. Hence,
Ψτ
s (X) + ε

∂

∂s
Ψτ
s (X) + o(ε) = (1− ε) + Ψτ

s + o(ε1/2).

The Fokker-Plank type equation of stochastic SIR model with infection dynamics is,
∂

∂s
Ψτ
s (X) = −f̃ (s, u, ϑ(τ))Ψτ

s (X).

The solution of
−
∂

∂u
f̃ (s, u, ϑ(τ))Ψτ

s (X) = 0, (20)is an optimal “lock-down" intensity and vaccination rate. Since, ϑ = X(s) − X(τ) for all ε ↓ 0,in Equation (20) ϑ can be replaced by X. As the transition function Ψτ
s (X) is a solution of theEquation (20), the result follows. �
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