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ABsTRACT. ANOVA, a test of a null hypothesis, is limited in assessing the statistical significance of
differences. This paper considers an ANOVA F test of the non-null hypothesis for comparing k group
means. A margin is chosen for the difference of means between each group and the kth group. A
non-null hypothesis is defined to be the difference equal to the margin instead of zero. Data are
thus prepared under the non-null hypothesis. Then follows the derivation of the one-way ANOVA
non-null F test and its power. It reduces to the classical F test on setting the margin equal to zero.
The observed size of it is identical to that of the F test and is near the nominal level of significance.
The observed power is close to the power in balanced designs. With the non-null F test, it enables
inferences to extend to the equivalence of group means or the clinical significance of differences. An

example is taken to analyze both non-inferiority trials and k-sample equivalence trials.

1. INTRODUCTION

To test a null hypothesis, the result is either statistically significant or non-significant. The
non-significant result means failing to reject the null hypothesis of the equality between a new
treatment and a control. Nevertheless, it does not mean that there exists a real equality [1, 2].
Regarding the significant result, it is often not enough to define success because it does not yield
information about magnitude of effect, practical significance, nor clinical significance [3, 4, 5, 6, 7|.
Clearly, the test of null hypothesis is unable to evaluate the equivalence of group means or the
clinical significance of differences. Thus the topic shifts to a test of the non-null hypothesis.

The term non-null hypothesis was introduced by Egon Pearson (1939)[8] and used by Fisher
(Good 1992)[9]. Some other terms, as we have seen, are often used synonymously: the shifted
null-hypothesis, non-zero null-hypothesis, and so on [6]. Of these, the term non-null hypothesis is
found in the book, A Dictionary of Statistical Terms [10]. Some tests of the non-null hypothesis
are available [11, 12, 13].
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Up to date, the existing tests of the non-null hypothesis address categorical data only. Con-
cerning numerical data, the most frequently used procedure is analysis of variance (or ANOVA for
short) [14]. However, it refers to the null hypothesis, waiting for a non-null generalization.

This paper considers an ANOVA F test of the non-null hypothesis (or the non-null F test for
short) for comparing k group means. As we show in Section 2, a margin is chosen for the difference of
means between each group and the kth group. A non-null hypothesis is defined to be the difference
equal to the margin instead of zero. Data are thus prepared under the non-null hypothesis. Then
follows the derivation of the one-way ANOVA non-null F test in Section 3. It overlaps the two-
sample non-null t test, which is then inverted to the confidence interval for analyzing the data
of non-inferiority or equivalence trials. Section 4 provides an extension to the two-way ANOVA
non-null F test. It overlaps the paired non-null t test. Section 5 formulates the power and sample
sizes in balanced and unbalanced designs using the R Language [15]. The observed test size and
power are demonstrated using Monte Carlo techniques in Section 6. Section 7 contains three
examples addressing the relation between non-inferiority and k-sample equivalence trials, the
clinical significance of differences, and the randomized block design, respectively. Section 8 covers
various aspects of these tests such as history, contributions, properties, clinical applications, and

perspectives.

2. PREPARING DATA UNDER NON-NULL HYPOTHESIS

2.1. ANOVA data organization. ANOVA data organization is usually based on the traditional
standard: Let Vj;, /1 = 1,2,..., n,Jj=12..., k, be independent numerical observations, each
from an underlying normal distribution: N(v;, 012), where n; is the sample size, v; the mean, and
sz the variance in the jth group. The total sample size is n = ZJ- n; and the sample fraction
is gj = nj/n with Zj g; = 1. When carrying out an ANOVA, one assumes equal variances for
the k populations: 02 = 02 = --- = 02 = 02 The hypotheses to be tested in ANOVA is
Ho:vi =wvo =---= vy versus Hy : not all the uj’-s are equal.

For a given data set, the mean v; is estimated by Y, = %Z,Yij. It follows the grand mean
v =73 ;g and its estimator Y. =} . g;Y;. We define the difference of means between the jth

and kth group and its estimator to be
pj=vj—vkand g =Y, — Y (2.1)

with the averages
p=> gui=v-uvcandi=y gifi;=Y.— Y.
J J
Definition (2.1) does three things at once: 1. It shows the last difference puyx = v — v =0. 2. It

allows us to rewrite the hypotheses in an equivalent form Hg : u = 0 versus Hy : u # 0, which


https://doi.org/10.28924/ada/stat.4.4

Eur. J. Stat.

provides a room for a non-null generalization. 3. We can reexpress the mean and its estimator as
vi=v+(uj—p)and Y, =Y.+ (4 — @), (2.2)
which will play a key role in generalizing the F test to its non-null version.

2.2. Process of data preparation. The non-null hypothesis is defined by a margin of the difference.
It refers to the equivalence margin in this text. In the two-sample case, this is sometimes known
as the non-inferiority margin. Let A; be the margin of u; with the average A =} ; g;A;. How
to choose the values of margin A;, j = 1,2,..., k — 1, will be given later in Section 8. For
the last item j = k, however, we set Ay = 0 because u, = 0 (see Definition (2.1)). As Killoy
(2002)[16] mentioned, the parameter u; defines the range in which the margin A; has its being so
that the sign of A; is always kept identical to that of ;. In clinical practice, A; is the minimal
detectable difference. The difference |u;| less than |A}| implies the equivalence of group means.
Conversely, the difference |u;| exceeding |Aj| is thought to be clinically important and would lead
to a preference for one treatment over the other. Taking the average margin in place of zero gives

the non-null hypotheses for equivalence trials
Ho @ |l = [Af versus Hy : |u| < |A] (] € (0, ]A)). (2.3)

For superiority trials, the non-null hypotheses are Hp : |u| < |A| versus Hy @ |u] > |A] (Ju| €
(JA], 0)). Clearly, they are asymmetric to equivalence trials. As it turns out, while the null hy-
pothesis refers to the difference of zero, the non-null hypothesis generalizes to arbitrary differences.

Under the non-null hypothesis, the mean and its estimator in (2.2) are generalized to
vi = v — ) — (& = D)) and Y] =Y.+ [(4; — &) — (&7 — D)]. (2.4)
If subtracting (2.2) from (2.4), we obtain

This provides the non-null values of the grand mean v* =} ; gjv; and its estimator Y= 2, gj\_/j‘.
In view of the fact 3 _; g;(A; — A) =0, it must be true that
V=) gly— (B - D] =vand V=) glVj— (A —A)] =Y. (2.6)
J J

Remark 2.1. The grand mean is the same regardless of whether the null or non-null hypothesis
holds.

Let Y7 be the observations under the non-null hypothesis; then the non-null values of the sample
means should be \_/J* = n%Z,YU* Referring to (2.5), we have %Z,YU* = ,%Z/Yij — (47— A). That
is, 5 2V = 5 XYy — (4 — A)], which implies

nj

Yi =Y, — (4= D), (2.7)

where (A; — A) is a constant.
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Remark 2.2. If the observations are normal, they are still normal under the non-null hypothesis
since normal random variables plus or minus a constant are themselves normal.
The variance 07 is estimated by S? = njil >_(Yij — Y;)? with the non-null values S7* =

ﬁ > (Y- \_/J*)z Since subtracting (2.5) from (2.7) gives

Y=Y =Y =Y, (2.8)

it follows that
* 1 \/
SJ'Q = ﬁ Z(Y/j - Yj)2 = 512- (2.9)
]

Remark 2.3. The sample variance is left unchanged in the non-null generalization of the ANOVA
F test.

3. BuiLbiNnG oNE-wAY ANOVA OF NON-NULL HYPOTHESIS

3.1. One-way ANOVA non-null F test. The total sum of squares is known tobe Q =3 ;% (Y} —
¥.)? in the one-way ANOVA. Under the non-null hypothesis, it should be Q* = Y 3~ (Y7 — V).

Since Y* =Y. (see Remark 2.1), it is written formally as
Q=Y Y (v -V
J i
For the treatment sum of squares, the non-null value can be treated in the same way as
Q=2 2 (Vj=V)P=3 n(Vy - V)% (3.1)
Jooi J

Concerning the error sum of squares, it is Q5 = Zj(”j — l)SJ-z*. From (2.9) comes the not-

surprising result that

Q=) (m—-1ST=) > (Vj-Y)’=Q, (3.2)
J Joi
which expresses the fact that the error sum of squares is invariable in the non-null generalization
of the ANOVA F test based on Remark 2.3.
The one-way ANOVA non-null F statistic has the form

_ Qi/(k=1)

Fr= 100 2 A kel ek
QQ/(n—k) 1 a,k 1,[7 k

(3.3)

where the only change is using Q7 in place of Q1. It accounts for the differences among group
means.

Setting A; = 0 gives \_/J* =Y, and Q% = Q1. So, we have F* = F, meaning that the statistic
reduces to the classical F statistic on setting the margin equal to zero. This is known to be the
reducibility, an essential property of such tests (Zhao 2008). This property is shared by all the

test statistics presented in later sections.
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The F test will provide an answer by deciding whether or not the null hypothesis Hg : u = 0,
e, Hy : v1 = 1o = --- = v, should be rejected. However, the alternative, H; : u # O, ie,
Hi : not all the I/J/-S are equal, does not specify any pair of means. This problem continues to
the non-null F test. Fortunately, there is a solution available from breaking down an overall null

hypothesis into smaller more relevant sub-hypotheses.

3.2. Testing non-null sub-hypotheses. To do this, there are two general ways: the Tukey method
and the contrast [17]. The Tukey method is expressed in a confidence interval and the contrast, in
an F test. Therefore, the contrast is taken here since it is the F test that conforms to the topic
of this text. In every set of k-sample data, there are (’2‘) contrasts. It is given the symbol C;,
i=12..., (5), with C; = 3_; i), where ¢; is coefficients of v; with }_; ¢; = 0. For example, in
the contrast C1, we have C; = v; — v = 1. The linear combination of the contrast is given by
CG=0n+(-1)vo+ O)vs+---+ (0)vk = v1 — vp, where ¢; = (1,-1,0,..., 0). For all s # t,
we have the contrast C; = vs — vy = u; with the estimator CA,' =Y.—-Y:=04. The corresponding
sub-hypotheses are H : u;j = 0 versus Hy : uj # 0. The sum of squares associated with C; is

estimated by

A2 _ _ .
G _ (Ys — Yi)? _ e
L e

The non-null sub-hypothesis with the margin A can be still put in the form of (2.3): H{ : |ui| >

Qi =

|A| versus HY : |uj| < |A| for equivalence trials and H{ @ |ui| < |A| versus HY : |wi| > |A] for

superiority trials. Then the non-null value of of Q; should be

2= A 2
o; — (=187
Ns ng

For each different pairwise sub-hypothesis test, the non-null F statistic can be constructed as

Q*/1
F-*Zil f\JF_a n—ks
] QQ/(n_k) 1 ,1, k

which enables us to deal with the difference between group means vs and v;.

(3.4)

Testing the sub-hypothesis Hf : uj =0, e, Hy : vs = v versus Hy 1 i # 0, e, Hy :vs # vt
tells which two are equal and which two are not, depending upon the pairwise comparisons. This
has come to the solution of the problem given above. Also, the same solution holds for testing the

non-null sub-hypotheses along the lines of the pairwise comparisons.

3.3. Two-sample data. The one-way ANOVA non-null F test (3.3) overlaps the two-sample non-
null t test. The latter is then inverted to the confidence interval for analyzing the data of non-
inferiority or equivalence trials. In the two-sample case, we only need to specify A;. Definition
(2.1) states uy = 0 so that we set A, = 0. The non-null F statistic (3.3) becomes

Qi/1

P = =)

~ Fl—a, 1, n—2- (35)


https://doi.org/10.28924/ada/stat.4.4

Eur. ). Stat.
The treatment sum of squares in (3.5) is Q} = n(YF — Y.)2 + m(Y3 — Y.)2, where Y — Y. =
@[(Y1—Y2)— A1)l and Y3 =Y. = g1[—(Y1 — Y2) + A1]. Writing Y1 — Y2 as 4 and A; as A gives
Q= g1nga(f — A)? + gang2(—f + A)?, which simplifies to Q} = nkygo(d — A)? or
* (.0' — A)2
Q=T L1

n np

The error sum of squares in (3.5) is Q2 = (n1 — 1)S? + (np — 1)S3. This is just the numerator of

the pooled variance

o2 _ (m=1)St+(m—1)S3
P n+n—2
so that Q> = Sg(nl + np —2). When Q7 and Q> are substituted into the square root of (3.5), one

obtains

Y/

/1 1

This is the two-sample non-null t statistic. Notice that the denominator is the same as that of its

*
=t~ Tnn-2.

classical counterpart.
Food and Drug Administration (FDA, 2016) recommends the use of confidence intervals on the
data of two-sample non-inferiority trials. Inverting the equation gives a 100(1 — a)% confidence

interval for A

A 1 1 ~ 1 1
b= tasa, mtn—2 " Sp m + n SA< O+ ta nrm—2Sp mn + '

which has several forms in this context. For instance, it takes the form

0 < 181 < 181+ tarz mim—2 Sy + o (3.6)
in equivalence trials with the hypotheses Hg : |u| > |A] versus Hj : |u| < |A]. The equivalence
holds when Hp : |u| > |A| is rejected with || < |A|. Clearly, this definition of equivalence is
the same as that in International Conference on Harmonisation (1998). The equivalence has two
symmetric profiles: the non-inferiority and the non-superiority. When u < 0 and A < 0, we have
the non-inferiority with the hypothesis Hp : © < A versus H; : © > A and when p© > 0 and
A > 0, we have the non-superiority with the hypothesis Hp : > A versus Hy : u < A, where the

confidence intervals are expressed in the forms

R 1 1 R 1 1
b= tay2, mn,—2 " Sp/ m i, s A<0and0<A<f+tap min—2: S\ Pl (3.7)

respectively. Non-inferiority and non-superiority trials are converted to each other as long as
treatment and control groups reverse roles. A comparison of (3.6) and (3.7) provides insights
into the relationship between equivalence trials and non-inferiority trials, which will be shown

numerically in an example (see Subsection 7.1).
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To evaluate the clinical significance of differences, the hypothesis to be tested is Hp : |u| <

|A| versus Hy : || > |A| and the confidence interval has the form

" /1 1
|ﬂ'| - ta/2, m4nm—2" Sp le + 1772 < |A| < 0.

3.4. One-sample data. The one-sample case has only a single mean v. Letting vg be a specified
value of the mean, the difference is u = v — 1y so that v = vy + u. With the margin A, we have
v =1y + (b —A) or v* = v — A. The non-null hypothesis is still written in the form of (2.3).

For asample of Y; ~ N(v,0%),i=1,2,..., n, the mean v is estimated by Y = % > ;Y. It follows
that Y* = Y —A, which implies % Y. Y= % > ;Yi—AsothatY;* =Y;—A. These variables generate
an identity: Y* = vg+ (Y* — vp) 4+ (Y = Y*) or, equivalently, (Y;* —vp) = (Y* —vp) + (Y = Y*).
It must be true that }_,(Y* — 19)? = Y_,[(Y* — vo) + (Y — Y*)]2. Since the cross-product term
vanishes: Y ;(Y*—uo)(Y*—Y*) = 0, it follows that }_,(Y* —119)? = Y_,(Y*—v0)2+Y_,(Y*—Y*)?,
or more conveniently, Q* = Q} + Q3. Since Y* —Y* = (Y, —A) — (Y — A) = Y; — Y, it turns out
that Q5 =3 (Vi — Y)? = Q. The statistic for testing H versus Hj is
Q1/1

Fre——12 R 1
Q2/(n—1) 1 a,l,n 1

(3.8)
where Q7 = Y, (Y* — o) or QF = Y_.((Y — vp) — A)2. The square root of (3.8) is just the
one-sample non-null t statistic
Y =) — A
VEr = % = t* ~ n—1.
Z/(\/,-—Y)z
n(n—1)
Inverting the statistic gives the confidence interval, which is omitted since its form is similar to that

in the two-sample case.

4. RANDOMIZED BLOCK DESIGNS UNDER NON-NULL HYPOTHESIS

4.1. Non-null F test for randomized block design. The procedure stated above can easily be
extended to the two-way ANOVA, say, the randomized block design. It operates a horizontal
ANOVA and a vertical ANOVA for the treatment and block effect, respectively. Hence two F
ratios are calculated, one for the treatment effect and one for the block effect. By analogy, further
extension results in the effects of multiple factors, which lies beyond the scope of this text.

The data structure for a randomized block design is a matrix with n rows and k columns represent-
ing the n blocks and the k levels of treatment, respectively. Here, Yj;, i = 1,2, ..., nj=12,..., k,
denote the observations associated with the application of treatment j to block /.

Consider first the treatment effect. Sample fractions in this context are constant: g; = % It
follows that ¥, = 13"V}, v = %ZJ vj, and p = %ZJ wj. Similarly, the average margin is
A= %ZJ A;. The hypotheses are the same as (2.3) in style of writing.
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The non-null value for the treatment sum of squares is given by
Q=Y Y (V-V)2 =3 nV;—¥)2 (4.1)
Joi J

where \_/J* =Y;—(Aj—A)and Y. = %ZJ Y. The error sum of squares is Q5 = }_; > (Y- Y. —
\_/J* + Y*)?, where Y=Y, —(4;— 1), Y. = %ZJ Yjj, and Y¥ = %ZJ \_/J* An inspection of (2.6)
and (2.8) discloses that

Jooi
The non-null F statistic for treatment effect is given by
Qi/(k—1)
e ~ Freae (- (e 4.3
E T Qe/(n—1)/(k—1) "t k-l (=Dlk=1) (4.3)

We are then led to consider the block effect. It is analyzed with a process in analogy to that for
the treatment effect but some minor changes in subscripts. The difference between block means is
defined tobe uj=v;i—v, i =1,2,..., n, with the average ub = %Z/N’i- Prescribing the margin
A, corresponding to u; yields the average AP = %Z,-A,u The hypotheses are in accord with (2.3)
as long as using u” in place of u and A® in place of A.

The block sum of squares under the non-null hypothesis is
Q=Y Y (V7 -V =kY (- V.2
joi i

where Y* =Y. — (A; — AP). The error sum of squares is still Q.. Thus we have

_ £/(n—1) E
= =T~ P s ek,

Fp
This is the non-null F statistic for block effect.

4.2. Paired data. In some clinical situations, the randomized block design may have only 2 levels
of treatment, where (4.3) is written
Qi/1

*
Fif=——F——=~Fi_a1 n1.

Qe/(n - 1)

In this case, the sample block mean is Y. = %Y,—l + %Y,Q and the grand mean, Y. = %\7.1 + %\7.2.
Substituting them into (4.2) gives the error sum of squares Qe =3} ;3 (Y}, — Y — Yo -V, +
1Y¥1+ 3Y2)2 Let D; be the within-block difference with D; = Yj; — Y2 and D be the average with
D =Y.1 — Ys. Then (4.2) further simplifies to

1 _
Qe =3 Z(D,- - D). (4.5)
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Here (4.1) is written Qf = n{(Y; — Y.)2 + (V3 — Y.)2}, where Y — Y. = ((Y1 — Y2) — Ay)
and Y3 — Y. = 3(—(Yq — Y2) + Ay1). Writing Y1 — ¥ as D and A; as A gives the treatment sum

of squares
1 -
Qi = En(D—A)Z. (4.6)
Putting (4.5) and (4.6) into the statistic and taking the square root of the result give

. bH-a .
\ai Vm—f ~ Tt
n(n—1)
This is just the paired non-null t statistic. Inverting the equation will then yield the confidence

interval, which is omitted here.

5. POWER AND SAMPLE SIZE DETERMINATION

5.1. Power of non-null F test. The power of the F statistic depends upon the noncentral F dis-
tribution Fi_q k—1. n—k, » under the alternative, where A is the non-centrality parameter with
A= ni(y - v)?/a? and n; is the sample size per group with n; = n/k [17].

The non-null value of the non-centrality parameter is expressed as A* =} ; n;(v; — v)?/o?,
where the only change is using v7 (2.5) in place of v; with v and o2 left unchanged based on
Remark 2.1. and 2.3. It follows the non-null value of Cohen effect size for ANOVA f* = \/W or

Fr = \/Z"(Ufg_g 2l (5.1)

This is computationally simple after specifying k, nj, v, 02, and Aj. But it is tedious to specify

vj one by one. Here we arrange it into an arithmetic series with a given minimal mean v,;, and

maximal difference wmax. Then we have a descending series
Vi = Vmin + Umax — (J - 1) ,U'max/(k - 1)v (5-2)

an ascending series Vj = Umin + (J — 1) max/(k — 1), or an equal series Vj = Vpmin + max/2-

The power of the non-null F test at a-level is
1—B* = P(F* > Fi_a, k-1, n—k x| H1 is true), (5.3)

which is easily calculated using the function
pwr.anova.test (k = k, n=nj, f = f*, sig.level=a)
in the R Language. When H is true, we have v/ = v by (2.4) and f* = 0 by (5.1). Then, (5.3)
becomes
1-0"=aqa, (5.4)
the nominal test size, which will be exhibited numerically later in Figure 3.
When A; = 0, we have v7 = v, f* = f, and F* = F so that 1 — 8" = 1 — 3, meaning that the

J
power function reduces to its classical counterpart on setting the margin equal to zero.
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Figure 1 shows the power of the non-null F test at & = 0.05 with the total sample size fixed at
n = 160.

09 |
08 |
07 |

206

=05
St

Number of groups, k

Figure 1. Power of non-null F test by number of groups
with total sample size fixed

The significance level is o = 0.05. The total sample size is n = 160. The
minimum mean is v,;, = 0.3. The maximum difference is p,,, = 0.125. The
standard deviation is ¢ = 0.4. And the power of the non-null F test is given by
(5.3).

In this figure, the margin is specified as A; = 0,2.2u;, 2.5u;, 3u;, which will be reused later in
the simulation of equivalence trials. The power is computed from (5.3) with the other parameter
values kK = 2,3, ..., 38, Umin = 0.3, max = 0.125, and 0 = 0.4. All the curves have certain
basic similarities in form. The power of the non-null F test is higher than that of the F test. Not
surprisingly, as the number of groups gets larger, the power gets lower when the total sample size
is fixed.

Another possibility is to take the sample size per group fixed at n; = 16 instead. Then we get

the power as indicated in Figure 2.
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0 4 8 12 16 20 24 28 32 36 40
Number of groups, k

Figure 2. Similar to Figure 1, except for taking
sample size per group fixed instead

The significance level is a = 0.05. The sample size per group is n; = 16.
The minimum mean is v,;, = 0.3. The maximum difference is p,, = 0.35.

The standard deviation is ¢ = 0.4. And the power of the non-null F test is
given by (5.3).

Here the margin is taken as A; = 0,0.1u;,0.2u1;,0.5u;, which will be reused later in the
simulation of superiority trials. The other parameter values are the same as those in Figure 1 but
Umax = 0.35. The power of the non-null F test is lower than that of the F test. It is worth noting
that over the range of k, the power decreases first and increases later with the minimum at k = 4.

Both Figure 1 and 2 have the margin A; dependent on the difference ;. One might be of
interest for taking A; independent of ;. Now, the maximum margins are chosen as A =
0,0.08,0.16, 0.24 for each of the maximum differences pmax = 0,0.04,...,0.4, respectively. In
applying the same approach with n; = 25, k = 8, v;j, = 0.3, and 0 = 0.4, we get the power at
the o = 0.05 level as pictured in Figure 3.

max = 0

Power,
)
=

0 0.04 008 012 016 02 024 028 032 036 04

Maximum difference, p,,.

Figure 3. Power of non-null F test for values of margins
independent of values of differences

The significance level is a = 0.05. The sampe size per group is n; = 25. The
number of groups is k = 8. The minimum mean is v,;, = 0.3. The standard
deviation is ¢ = 0.4. And the power of the non-null F test is given by (5.3).
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The curve with index Ap,2x = 0 gives the power of the F test, which increases with the increasing
Umax- Those labeled with Ay, = 0.08,0.16, 0.24 refer to the power of the non-null F test. When
Umax < Amax, the power decreases as max increases; when tmax = Amax, the power equals 0.05,
i.e., the nominal test size, as predicted by (5.4); and when pmax > Anax, the power increases as

Umax LNcreases.

5.2. Sample size determination. The sample size determination also relies on the power of the
non-null F test (5.3) with the function pwr.anova.test. But this function provides balanced designs
only. For unbalanced designs, we take a process with three steps: 1. Start by finding the sample
size n; per group using the function
pwr.anova.test (k = k, f = f*, sig.level=a, power = 1 — 3).

2. Determine the total sample size n = kn;. 3. Choose the sample fractions g; deriving the unequal
group sample sizes n; = g;n.

The last step involves the sample fraction g;, which is specified as an arithmetic series here
likewise. Let g be the average sample fraction with § = 1/k. The minimum sample fraction is
defined as gmin = M7, where 1 is a real number with the value of n € [0, 1]. It follows the maximum

sample fraction gmax = (2 —1)g. Accordingly, we have a descending series

9 = 9gmax =20 —1)(1 = n)g/(k — 1) (5.5)
or an ascending series

9j = Imin +20 = 1)(1 =m)g/(k = 1). (5.6)
Setting m = 1 gives balanced designs and 1 < 1, unbalanced. Here we define the mildly, moder-
ately, and highly unbalanced designs by n = 0.9,0.5,0.1, respectively. When 1 = 0, both (5.5)

and (5.6) produce extremely unbalanced designs. It is noted that the last step often gives decimals

and rounding is required.

6. SIMULATION STUDIES

The use of unbalanced designs broadens the scope of simulation studies and provides more

choices in describing the behavior of the non-null F test.

6.1. Observed size of non-null F test. Experiment 1 was conducted to measure the observed size of
the non-null F test in balanced and highly unbalanced designs. The margin was taken to be A; =0
throughout this experiment, depending upon this reason. Inspection of (2.2) and (2.4) discloses that
vj = v when Ho holds and v/ = v as well when H holds. So, the function rnorm(n;v;,0) was
written here as (nj,v,0) for generating normal observations in the R Language. We now give a
heuristic explanation for this.

Remark 6.1. The observed size of the non-null F test is identical to that of the F test because

the sampling scheme does not distinguish between the null and non-null hypothesis.
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We fixed the total sample size at n = 48,192, 768, representing small, moderate, and large
sample sizes. The number of groups was taken to be k = 3,6. Recall the procedure derived in
Subsection 5.2. Balanced and highly unbalanced designs were implemented by (5.5) and (5.6)
with 7 = 1,0.1. There were 18 possible combinations of the quantities n, k, and 1. We set the
significance level as @ = 0,0.0125, ..., 0.1. The other parameters were specified as v, = 0.3,
tmax = 0, and o = 0.4. For each case, 1000 data sets were generated. This number yields a 95%
confidence interval for the nominal size o & 1.96(c(1 — a)/1000)*/2. The observed test size is

given by
1000
&= I{F > Fi_a k-1, n—k a |H is true}/1000,
1

which is corresponding to the nominal size (5.4).

The values of the observed test size for n = 48 appear in the upper part of Table 6.1.

Table 6.1. Observed size of non-null F test in balanced and highly unbalanced designs

Significance level o
0 00125 0.025 00375 0.05 0.0625  0.075  0.0875 0.1
n =48

nj

(16, 16, 16) 0 0.017 0.027 0.040 0.051 0.064 0.079 0.094 0.109
(30, 16, 2) 0 0.012 0.022 0.036 0.056 0.067 0.073 0.081 0.095
(2,16, 30) 0 0.016 0.030 0.043 0.057 0.068 0.081 0.087 0.097
(8.8,8,8, 8, 8) 0 0.013 0.027 0.035 0.046 0.057 0.071 0.090 0.103
(15,12,9,7,4,1) 0 0.019 0.033 0.044 0.056 0.067 0.080 0.092 0.102
(1,4,7,9,12,15) 0 0.018 0.023 0.042 0.057 0.068 0.078 0.088 0.105
n=192
(64, 64, 64) 0 0.015 0.029 0.043 0.055 0.069 0.084 0.097 0.110
(122, 64, 6) 0 0.018 0.032 0.045 0.060 0.074 0.077 0.089 0.097
(6, 64, 122) 0 0.012 0.032 0.044 0.059 0.071 0.082 0.097 0.116
(32, 32, 32, 32, 32, 32) 0 0.015 0.028 0.036 0.052 0.065 0.076 0.091 0.100
(61, 49, 38, 26, 15, 3) 0 0.013 0.022 0.032 0.048 0.061 0.072 0.085 0.099
(3, 15, 26, 38, 49, 61) 0 0.018 0.026 0.040 0.057 0.076 0.087 0.098 0.112
n =768
(256, 256, 256) 0 0.009 0.016 0.024 0.041 0.050 0.059 0.075 0.084
(486, 256, 26) 0 0.013 0.023 0.042 0.059 0.072 0.081 0.100 0.113
(26, 256, 486) 0 0.015 0.029 0.043 0.055 0.067 0.071 0.080 0.095
(128, 128, 128, 128, 128, 128) 0 0.013 0.024 0.037 0.049 0.056 0.068 0.077 0.088
(243, 197, 151, 105, 59, 13) 0 0.007 0.021 0.038 0.049 0.067 0.085 0.103 0.116
(13, 59, 105, 151, 197, 243) 0 0.010 0.022 0.032 0.041 0.059 0.069 0.081 0.097

The balanced designs are defined with 7 = 1 and the highly unbalanced designs, with n = 0.1 by (5.5) and (5.6). The

minimum mean is Vmin = 0.3. The maximum difference is max = 0. And the standard deviation is o = 0.4.

The first three rows show the entries for kK = 3. It is not surprising that the observed test size

is near the nominal level in the balanced design n; = (16, 16, 16). Even in the highly unbalanced
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design n; = (30, 16, 2) or n; = (2,16, 30), however, we have not seen any appreciable variety: the
observed size still lies within the most 95% confidence intervals for the nominal size. For example,
the use of the 95% confidence interval for the nominal size 0.1 results in (0.081, 0.119), which
contains the observed test size 0.095 and 0.097. A similar result holds for kK = 6 as shown in the
last three rows. The remaining parts show the results for n = 192 and n = 768, which are similar
to those in the upper part. Notice that the group sample size n; may not add up the total sample
size n due to rounding.

Remark 6.2. The observed size of the non-null F test is near the nominal level in balanced
designs as well as in unbalanced designs.

Further insights about Remark 6.2 will be given in Experiment 2 and 3. We did not attempt to
mention mildly and moderately unbalanced designs because the variation of the observed size is

not likely to exceed that in highly unbalanced designs.

6.2. Observed power of non-null F test. Experiment 2 was planned to assess the power estimates
of the non-null F test for a given sample size in equivalence trials. The values of margin in Figure
1 were reused here. Notice that they are larger than or equal to the differences. We fixed the total
sample size at n = 200 and the number of groups at k = 8. Using (5.5) or (5.6) with m» =1 and 0.1
yielded balanced and highly unbalanced designs, respectively. Concerning k-sample equivalence
trials, we took o = 0.05 in this experiment. In two-sample non-inferiority trials, however, one
may choose o = 0.025, as recommended by FDA (2016)[18] and International Guideline ICH E9
Hirotsu (2007)[19].

The first part of Table 6.2 reports the power resulting from (5.3) with vpyin = 0.3, Umax =
0,0.04,..., 0.4, and 0 = 0.8.

The column "wmax = 0" refers to the minimum value of the power, i.e., the nominal test size 0.05
as previously mentioned in (5.4). This experiment gives that the power of the non-null F test is
higher than that of the F test in equivalence trials and as the margin gets larger, the power gets
higher.

We now turn to the power estimates. For each set of experimental conditions, 1000 random
samples were drawn from the function rnorm(n;,v;,0). This yields a 95% confidence interval for the
power 1 — B* £ 1.96(8*(1 — 8*)/1000)/2. The power estimates are given by

1000
1-B"=> H{F* > Fi_a k-1, n—k x| H1 is true}/1000,
1
where the statistic F* is calculated from (3.3).
The second part of Table 6.2 gives the power estimates from balanced designs. The column
"Umax = 0" shows the minimum value of power estimates, i.e., the observed test size 0.05, which is

equal to the nominal level. Figure 4 displays this result.
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Table 6.2. Power estimates of non-null F test in equivalence trials (B € (0, 1))

Maximum difference tmax

A 0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
1—B" nj=(25,25,25,25,25,25,25,25)

0 0.050 0052 0057 0067 0082 0103 0131 0166 0210 0264 0325
22u; 0050 0053 0061 0076 0098 0131 0174 0231 0299 0380  0.468
254, 0050 0054 0067 0092 0131 0187 0264 0357 0468 0583  0.694

31, 0.050 0057 0082 0131 0210 0325 0468 0621 0760 0867 0937
1— 6% nj = (25,25,25,25,25,25,25,25)

0 0.050 0053 0059 0068 0077 0102 0137 0175 0222 0263 0323
22, 0050 0055 0061 0076 0109 0142 0184 0237 0303 0369  0.441
254, 0050 0054 0066 0099 0142 0195 0269 0354 0441 0568  0.689

3u, 0.050 0059 0088 0142 0215 0326 0441 0602 0750 0854 0934
1—B" nj=(48,41,35,28,22,15,9,2)

0 0.059 0061 0063 0065 0072 0084 0108 0132 0165 0195 0232
22u; 0059 0062 0069 0080 0094 0115 0139 0177 0205 0242  0.290
25u;, 0059 0062 0076 0094 0115 0148 0190 0228 0290 0373 0468

31, 0.059 0067 008 0115 0163 0214 0290 0407 0525 0657 0753
1—06% nj= (2,9, 15,22, 28,35, 41, 48)

0 0.051 0057 0056 0067 0072 0084 0100 0119 0140 0180 0216
22u; 0051 0049 0049 0064 0075 0100 0123 0154 0187 0239 0278
254, 0051 0048 0057 0073 0100 0129 0167 0228 0278 0359 0457

3, 0.051 0047 0070 0100 0145 0208 0278 0389 0517 0641 0750

The significance level is o« = 0.05. The minimum mean is Vmi» = 0.3. The standard deviation is o = 0.8. The power

1 — B is given by (5.3). And the power estimates 1 — B* are the fractions of F*-values greater than or equal to the

critical F-values under H; in 1000 sets of samples.
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Figure 4. Power estimates versus power of non-null
F test in balanced designs

The significance level is o = 0.05. The number of groups is k = 8. The minimum mean is

Vimin = 0.3. The standard deviation is ¢ = 0.8. Solid curves represent the power estimates from
1000 times of simulations in the balanced designs: n; = (25, 25, 25, 25, 25, 25, 25, 25). And
dash curves indicate the power of the non-null F test given by (5.3).
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On comparing the curves of the observed power and the power, we see that they almost overlap.
It tells that the agreement between the observed power and the power is quite well for the non-null
F tests in balanced designs.

The third part of Table 6.2 lists the power estimates from the highly unbalanced designs with

descending n;. Figure 5 portrays this result.

Power estimate

0 0.04 0.08 0.12 0.16 0.2 024 028 032 036 04
Maximum differences, p,,,,

Figure 5. Power estimates versus power of non-null F test
in highly unbalanced designs

The significance level is o = 0.05. The number of groups is k = 8. The minimum mean is
Vpin = 0.3. The standard deviation is 6 = 0.8. Solid curves represent the power estimates from
1000 times of simulations in the highly unbalanced designs: n; = (48,41, 35, 28,22, 15,9, 2).
And dash curves indicate the power of the non-null F test given by (5.3).

Clearly, the power estimates are lower than the power for both the null and non-null F tests.
That is, the violation of balance may decrease the power. By contrast, we have not seen any
apparent influence of unbalanced designs on the observed test size: The observed test size 0.059
lies between 0.036 and 0.064, the 95% confidence interval for the nominal size 0.05 as Remark 6.2
predicts.

A similar appearance holds for the results from the highly unbalanced designs with ascending
n; as shown in the fourth part of Table 6.2.

Experiment 3 considered the power estimates of the non-null F test for a given sample size in
superiority trials. The values of margin in Figure 2 were reused here. Notice that they are smaller
than or equal to the differences. The other parameter values were the same as those in Experiment
2 but 0 = 0.4. Taking the same method as in Experiment 2 yielded the power and the observed
power, which are laid out in Table 6.3.

In superiority trials, the power of the non-null F test is lower than that of the F test.

Looking at the column ppax = O of Table 6.3, the observed test size 0.05 in the balanced designs
equals the nominal level 0.05 and the observed test size 0.059 and 0.051 in the highly unbalanced
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Table 6.3. Power estimates of non-null F test in superiority trials (8 € (0, 1))

Maximum difference tmax

A 0 0.04 0.08 012 0.16 0.2 0.24 0.28 0.32 0.36 0.4
1—p3": n; = (25,25,25,25,25,25,25,25)
0 0.05 0.057 0.082 0.131 0.210 0.325 0.468 0.621 0.760 0.867 0.937

0.14, 0.05 0056 0076 0113 0174 0264 0380 0514 0650 0772  0.867

0.2u, 0.05 0055 0070 0098 0144 0210 0299 0408 0529 0650  0.760

0.50, 0.05 0052 0057 0067 0082 0103 0131 0166 0210 0264 0325
1— 6% nj = (25,25,25,25,25,25,25,25)

0 0.05 0059 0077 0137 0222 0323 0471 0607 0747 0859 0943
0.1p, 0.05 0058 0070 0118 0183 0263 0375 0510 0642 0760  0.859
0.2u, 0.05 0.057 0068 0093 0148 0222 0299 0398 0521 0642 0747
0.50, 0.05 0053 0059 0068 0077 0102 0137 0175 0222 0263 0323

1—B" nj = (48,41,35,28,22,15,9,2)

0 0059 0063 0072 0108 0165 0232 0324 0435 0538 0644 0742
0.1, 0059 0063 0069 0097 0138 0195 0268 0354 0455 0549  0.644
02u; 0059 0063 0063 0080 0119 0165 0214 0280 0366 0455 0538
054, 0059 0061 0063 0065 0072 0084 0108 0132 0165 0195 0232

1—05" n= (29,1522 28,35, 41,48)

0 0.051 0056 0072 0100 0140 0216 0294 0408 0531 0645 0755
0.1x;, 0051 0058 0067 0090 0124 0180 0244 0326 0440 0539 0645
02u;, 0051 0059 0067 0083 0111 0140 0197 0257 0340 0440 0531

0.5u; 0.051 0.057 0.056 0.067 0.072 0.084 0.100 0.119 0.140 0.180 0.216

The significance level is a = 0.05. The standard deviation is o = 0.4. And the other parameter values are taken to be

the same as those in Table 6.2.

designs lie within (0.036, 0.064) a 95% confidence interval for the nominal size 0.05 as predicted
by Remark 6.2.
Experiment 2 and 3 were run in the range of B € (0,1). But our attention is often focused on

B = 0.1, which will be adopted in Experiment A1 and A2 as shown in Appendix.

7. WORKED EXAMPLES

7.1. Example for evaluating equivalence of group means. Larsen and Marx (2018, p598)[17] in-
troduced a study that tells whether the use of special walking exercises may help infants walk
alone. The study was fulfilled by 23 infants being randomly assigned to one of four groups. Group
1 received special walking and placing exercises. Group 2 also had daily 12-minute exercises
but were not given the special walking and placing exercises. Group 3 and 4 received no special
instruction. Listed in Table 7.1 is the age (in months) at which each of the children first walk alone

after seven-week training.
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Table 7.1. Age when infants first walked alone (months)

Group 1 Group 2 Group 3 Group 4
9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00
10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 -

Source: Larsen and Marx (2018), p598 [17].

Knowing that \_/.J- = (10.12, 11.38, 11.71, 12.35) with Y. =1135 provides i1 = -2.22, fio =
-0.97, iz = -0.64, and fis = 0 with &t = -1.00. The ordinary analysis is performed with A; = 0
resulted in Q1 = 14.78 and Q2 = 43.69. The statistic F = 2.14 (P = 0.13) gives a non-significant
result at the a = 0.05 level.

are estimated as C; = (-1.25, -1.58, -2.22, -0.33, -0.97, -0.64). Testing the sub-hypotheses from
(3.4) gives the statistics F; = 2.04, 3.27, 5.87, 0.14, 1.13, 0.49 (P = 0.17, 0.09, 0.03, 0.71, 0,30,
0.49). The contrast C3 with the maximum |C3

= 2.22 gives a significant result at the o = 0.05
level: F3 =5.87 (P = 0.03). The others show non-significant results.

Now consider the equivalence of group means. If, for example, the margin is chosen as A; = 2.3/i;,
we have A1 =-512, Ay, =-2.24, A3 =-1.48, and A4 = 0 with the average A =-2.30. The treatment
sum of squares under the non-null hypothesis is Q7 = 24.97. The error sum of squares is Q5 =
43.69, which equals Q2 as (3.2) predicts. Using (3.3) gives F* = 3.62 (P = 0.03) and then we
reject H at a = 0.05.

In testing the non-null sub-hypotheses H’, we have F,* = 1.45, 0.68, 0.01, 5.07, 2.10, 3.28 (P
= 0.24, 0.42, 0.93, 0.04, 0.16, 0.09). Of these, the contrast C4 with the minimum |CA4 = 033
shows F; = 5.07 (P = 0.04). We should reject H at o = 0.05 and conclude that the equivalence

holds for the contrast C4. The other contrasts are non-significant at &« = 0.05 and the results are
indeterminate.

A closer look reveals that both Group 1 and 2 received the exercises and both Group 3 and 4
received no special instruction. So, we are justified to merge the former two into one treatment
group and the latter two into one control group and make a simpler analysis using the two-sample
non-null t test instead. The sample sizes are n; = (12,11) with g; = (0.52, 0.48) and the sample
means are Y; = (10.75, 12.00) with & = —1.25. The conventional analysis gives Q; = 8.97,
Q» =49.50, F = 3,80 (P = 0.06), and t = —1.95 (P = 0.06) and thus the null hypothesis Hy can
not be rejected at o = 0.05.
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In considering the equivalence of the two means, if an appropriate margin is used as A = 2.1[,
we have A = -2.62. The analysis under the non-null hypothesis gives Q7 = 10.85, F* = 4.60
(P = 0.04), and t* = 2.15 (the two-sided P = 0.04 and the one-sided P = 0.02). The non-null
hypothesis is rejected at o = 0.025. Using (3.6), the one-sided 97.5% confidence interval for |A]
is computed as (0, 2.58), which fails to contain |A| = 2.62 and so Hp : |u| = |A| can be rejected
at the a = 0.025 level. It is in favor of such an interpretation that the two means are equivalent.
Alternatively, calculating (3.7) gives (-2.58,0), the one-sided 97.5% confidence interval for A. Since
the interval does not contain A = -2.62, Hp : & = A can be rejected at the a = 0.025 level. The
interpretation turns to the non-inferiority, a profile of equivalence, implying that the mean of the

treatment group is not less than the mean of control group.

7.2. Example for evaluating clinical significance of differences. Table 7.2 contains the transforma-
tion rates of lymphocytes from 24 healthy men in three age groups [20]. We wish to know whether
there is any true difference of means among the three groups but the most interest is addressed in

the differences between any pair of means, especially the clinical significance of differences.

Table 7.2. Transformation rates (%) of lymphocytes

Number of observations
1 2 3 4 5 6 7 8 9 10
11-20 58 61 61 62 63 68 70 70 74 78
41-50 54 57 57 58 60 60 63 64 66 -
61-75 43 52 55 5% 60 - - - - -

Age (years)

Source: Sichuan Medical College (1981), p30 [20].

The sample sizes are n; = (10, 9, 5) with g; = (0.42, 0.38, 0.21) and the sample means are Y,; =
(66.50, 59.89, 53.20) with Y. = 61.25. Using (3.1) and (3.2) with A; = 0 yields Q; = 616.31 and
Q2 = 662.19. The F statisticis F = 9.77 (P = 0) by (3.3). One would reject Hy at o = 0.05.
There are three contrasts in this case: C; = (v1 — 1o, V1 — 13, V2 — v3), which are estimated as
C; = (6.61,13.30,6.69). Testing the sub-hypotheses Hy gives F; = (6.57, 18.70, 4.56) (P = 0.02,
0, 0.04). All the p-values imply that the differences between any pair of means are statistically
significant at the level o = 0.05, concluding that there is strong evidence that the transformation
rates of lymphocytes in the three groups differ.

Now, look at the clinical significance of differences. Suppose A; = 0.3[; is appropriate for
the margin. Knowing that 43 = 13.30, fi» = 6.69, and iz = 0 with & = 8.05, we find A; =
3.99, Ay, = 2.01, and Az = 0 with A = 2.41. It follows the treatment sum of squares under the
non-null hypothesis Q] = 301.99 and the statistic F* = 4.79 (P = 0.02). In testing the non-null
sub-hypotheses H’, the statistics are F* = (2.64, 12.52, 1.86) (P = 0.12, 0, 0.19). We reject H" at

i
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a = 0.05 with respect to the contrast Co = 11 — v3 but not for the other two. In fact, the contrast
Co has the maximum |Cy| = 13.30. The proper interpretation is that the contrast C, has clinical

significance but the other two are indeterminate.

7.3. Example of randomized block design. In a phase | trial [20], seven schistosomiasis patients
received a test drug for three days. The level of serum alanine aminotransferase (ALT), a sensitive
index of reflecting liver damage, was measured before and after treatment with a randomized block
design. Table 7.3 lists the ALT levels.

Table 7.3. Levels of serum alanine aminotransferase (ALT) before and after treatment

Post-treatment levels of ALT

Patients Pre-treatment levels of ALT
atients  Fre-treatment tevets o 3 days 1 week 2 weeks 3 weeks 4 weeks

1 63 36 188 138 63 54
2 90 200 238 220 188 144
3 54 36 300 83 100 92
4 45 72 140 213 144 100
5 54 54 175 150 100 36
6 72 63 300 163 144 90
7 64 77 207 185 122 87

Source: Sichuan Medical College (1981), p31 [20].

With respect to the treatment effect, knowing that Y, = (63.14, 76.86, 221.14, 164.57, 123.00,
86.14) with Y. = 122.48, we find 4; = (-23.00, -9.29, 135.00, 78.43, 36.86, 0) with 7 = 36.33.
Concerning the block effect, we have Y. = (90.33, 180.00, 110.83, 119.00, 94.83, 138.67, 123.67)
with Y. = 122.48 and (i, = (-33.33, 56.33, -12.83, -4.67, -28.83, 15.00,0) with z* = -1.19.

Usual analysis with A; = 0 gives Q = 202586.48, Q; = 129003.33, Qp = 33104.81, and Qe =
40478.33. By the use of (4.3), the F ratio for the treatment effect is F = 19.12 (P = 0). For the
block effect, it is F, = 4.09 (P = 0) from (4.4). Both of them are statistically significant.

With the highly statistical significance, one may further look for the clinical significance. For
the treatment effect, if the appropriate margins are used as A; = 0.3, we have A; = (-6.90, -2.79,
40.50, 23.53, 11.06,0) with A = 10.90. Knowing that Q* = 136794.78, Qi = 63211.63, Q) =
33104.81, and Q. = 40478.33 provides F} = 9.37 (P = 0). Turning to the block effect under
the non-null hypothesis, letting A; = 0.34; gives A; = (-10.00, 16.90, -3.85, -1.40, -8.65, 4.50,0)
with AP = -0.36. Then we have Q* = 185703.02, Q; = 129003.33, Q; = 16221.36, and Q. =
40478.33. By applying (4.4), we have F; = 2.00 (P = 0.10). The small P-value for the treatment
effect, yet the lack of significance for the block effect, states that the former is clinically significant
at the 0.05 level but the latter not.
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8. DiscussioN

The non-null hypothesis has a long history. A difference with clinical importance may be statis-
tically non-significant and a statistically significant difference may be no real interest. Addressing
this issue, Kirk (2001)[21] claimed that there are three questions concerning the estimated dif-
ference. First, is an observed result real or should it be attributed to chance (i.e., statistical
significance)? Second, if the result is real, how large is it (i.e., effect size)? Third, is the result
large enough to be meaningful and useful (i.e., clinical or practical significance)? The clinical sig-
nificance is described in detail, for example, in Victor (1987)[6], Laupacis et al (1988)[22], or Kieser
et al (2013)[7]. Such an idea even dates back to Kendal and Stuart (1979)[23]. Their concern
concentrated on the two questions. The first is whether there is any true difference and the second
is about its magnitude. The first question relates to the null hypothesis and the second, to the
non-null hypothesis. The non-null hypothesis test applies to assessing the equivalence of group
means or the clinical significance of differences. This has come to broaden the scope in analyzing
clinical data.

It is believed that any test of the null hypothesis has a corresponding non-null version. Here are
the non-null versions of the one- and two-way ANOVA F tests as well as the two-, one-sample t
tests, and the paired t test. In the non-null generalization of the ANOVA F test, the treatment sum
of squares changes with the margin but the grand mean, the sample variance, and the error sum of
squares not (see Remark 2.1, 2.3). All the proposed tests enjoy the property of reducibility, meaning
that they reduce to their classical counterparts on setting the margin equal to zero. Therefore, they
are valid under both the null and non-null hypothesis.

The power of the non-null F test is higher than that of the F test in equivalence trials as
described in Table 6.2. The larger the margin, the higher is the power. The required sample size
of this test is smaller than that of the F test in equivalence trials, for which Appendix gives details.
The results are just the contrary in superiority trials (see Table 6.3).

The observed size of the non-null F test is identical to that of the F test (see Remark 6.1) and
is near the nominal level regardless of the design balanced or unbalanced as in Table 6.1, 6.2, and
6.3 (see also Remark 6.2).

The observed power of the non-null F test is close to the power as long as the design is balanced
as shown in Figure 4. The power may suffer from severe violations of balance. When there are mild
violations of balance, however, the observed power is still near the power as shown in the Appendix.
It seems that mildly unbalanced designs would be somewhat tolerable in planning clinical trials
though balanced designs are the best.

Specifying the margin is the single greatest challenge in the designing, implementation, and
analysis of equivalence or non-inferiority trials, which is explained in detail in FDA (2016)[18].

This is clearly subjective, and generally relies on professional knowledge, references, academic
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conferences, prior experiences, past trials, or pilot studies, etc. An appropriate valuation of the
margin comes from practices and experiences. For convenience to describe the performance of the
non-null F test, the margin is chosen larger than or equal to the difference for equivalence trials
and smaller than or equal to the difference for superiority trials. Note that we specify |A;| > 0,
=12 ..., k—1, except the last item j = k, in which we set A, = 0 because px = 0. Note further
that the sign of A; is kept identical to that of ;. Situations sometimes arise where it is difficult
to specify an appropriate margin. If necessary, one may even negotiate with the FDA (Rockville,
Maryland, United States) about an acceptable boundary value.

To an increasing extent, active control trials are selected rather than placebo trials, especially,
since the fifth edition of Helsinki Declaration published [24, 25, 1]. On the other hand, relative
to the development of medical treatments, it is becoming difficult to develop more powerful drugs,
hence one would be looking for new treatments that have the same efficacy but demonstrate better
quality in other aspects. As a consequence, the tests of the non-null hypothesis will be increasingly
useful.

Most equivalence trials or non-inferiority trials are planned in the two-sample format to compare
a test drug with an active control to show that the test drug is either equivalent to or not worse than
the active control. Hirotsu (2007)[26] illuminated the underlying association between these trials
and superiority trials and derived a unifying approach to the three kinds of trials. Lesaffre (2008)[27]
among others introduced the basic definitions of superiority, equivalence, and non-inferiority trials
in a broader sense. Snapinn (2000) and Pater (2004) [28,29] among others laid the foundation for
the important theory and methods of equivalence trials and non-inferiority trials. In practice, the
most frequently used are non-inferiority trials, which are discussed in detail by D’Agostino Sr et al
(2003)[30]. The guidance for non-inferiority trials [18] recommends the use of confidence intervals
in data analysis, which is currently accepted [31, 32, 33, 34].

Clinical practice goes beyond the two-sample format when we need to compare several drugs,
several doses, or several routes of administration. Then the topic becomes the k-sample equivalence
trials and the inference procedures are hypothesis tests rather than confidence intervals.

The ANOVA F test of the non-null hypothesis is presented just for this context. In analyzing
k-sample data, we need both the non-null hypothesis test (3.3) for overall means testing and the
non-null sub-hypothesis tests (3.4) for each different pairwise comparison. In the two-sample case,
the one-sided confidence interval (3.6) can be used for equivalence trials and (3.7) for non-inferiority
trials. Subsection 3.3 provides insights into the relationship between non-inferiority trials and k-
sample equivalence trials and Subsection 7.1 gives a numerical calculation for it. Of the two-way
ANOVA non-null F tests, (4.3) is used to test the treatment effect and (4.4), the block effect. If the
original observations are claimed to be normal after checking using Shapiro-Wilk test [35], so are

the observations under the non-null hypothesis based on (2.7) (see also Remark 2.2). The non-null
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F test is used when the data are numerical. In the case of categorical data, one may prefer the
r x 2 chi-square test of non-null hypothesis (Zhao 2015) instead.
With the non-null F test, it enables inferences to extend to the equivalence of group means in

k-sample equivalence trials or the clinical significance of differences in clinical superiority trials.

REFERENCES

[1] T.R. Fleming, Evaluation of active control trials in AIDS, J. Acquired Inmune Deficiency Syndrome. 2 (1990), S82-
S87.
[2] R. Temple, Problems in interpreting active control equivalence trials, Account. Res. 4 (1996), 267-275.

[3] RF. Haase, MV. Ellis, N. Ladany, Multiple criteria for evaluating the magnitude of experimental effects, J. Counsel.
Psychol. 36 (1989), 511-516.

[4] G. Greenstein, Clinical versus statistical significance as they relate to the efhcacg of periodontal therapy, J. Amer.
Dental Assoc. 134 (2003), 583-591.

[5] H.C. Kraemer, G.A. Morgan, N.L. Leech, J.A. Gliner, J.J. Vaske, R.J. Harmon, Measures of cllnlcal significance, .
Amer. Acad. Child Adolesc. Psych. 42 (2003), 1524-1529.

[6] N. Victor, On clinically relevant differences and shifted nullhypotheses, Methods Inf. Med. 26 (1987), 109-116.

[7] M. Kieser, T. Friede, M. Gondan, Assessment of statistical significance and clinical relevance, Stat. Med. 32 (2012),
1707-1719.

[8] E.S. Pearson, "Student" as statistician, Biometrika. 30 (1939), 210-250.

[9] I). Good, The Bayes/Non-Bayes compromise: A brief review, J. Amer. Stat. Assoc. 87 (1992), 597-606.

[10] F.H.C. Marriott, A dictionary of statistical terms, 5th ed., Longman Scientific and Technical, Harlow (1990).

[11] CW. Dunnett, M. Gent, Significance testing to establish equivalence between treatments, with special reference to
data in the form of 2 x 2 tables, Biometrics. 33 (1977), 593.

[12] G. Zhao, Tests of non-null hypothesis on proportions for stratified data, Stat. Med. 27 (2007), 1429 1446.

[13] G. Zhao, A test of non null hgpothesis for linear trends in proportions, Comm. Stat. - Theory Meth. 44 (2013),
1621-1639.

[14] RA. Fisher, Statistical methods for research workers, Oliver and Bogd Edinburgh, 1925.

[15] W.N. Venables, D.M. Smith, the R Core Team, An introduction to R notes on R: A programming environment for data
analysis and graphics, Version 3.6.1., The R Foundation for Statistical Computing (R-core@R-project.org) (2019).

[16] W.J. Killoy, The clinical significance of local chemotherapies, J. Clin. Periodontol. Supplement 2 (2002), 22-29.

[17] RJ. Larsen, M.L. Marx, An introduction to mathematical statistics and its applications, Sixth edition, Pearson,
Boston, 2018.

[18] U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and
Research (CDER), Center for Biologics Evaluation and Research (CBER). Non-Inferiority Clinical Trials to Establish
Effectiveness: Guidance for Industry. 3-6 (2016).

[19] International Conference on Harmonisation. Guidance E9: statistical principles for clinical trials. Fed Register. 63
(179), (1998).

[20] Sichuan Medical College, Health statistics, First edition, Beijing: People’s Health Publishing House, 30-31, (1981).

[21] RE. Kirk, Promoting good statistical practices: some suggestions, Educ. Psychol. Measure. 61 (2001), 213-218.

[22] A. Laupacis, D.L. Sackett, R.S. Roberts, An assessment of clinically useful measures of the consequences of treatment,
N. Engl. J. Med. 318 (1988), 1728-1733.

[23] SW. Kendal, A. Stuart, The advanced theory of statistics, Volume 2, Charles Griffin and Company Limited, London,
p175, (1979).

[24] R. Temple, Difficulties in evaluating positive control trials, In: Proceedings of the Biopharmaceutical Section of the
American Statistical Association, 1-7 (1983).

[25] T.R. Fleming, Treatment evaluation in active control studies, Cancer Treat. Rep. 71 (1987), 1061-1065.

[26] C. Hirotsu, A unifying approach to non-inferiority, equivalence and superiority tests via multiple decision processes,
Pharm. Stat. 6 (2007), 193-203.

[27] E. Lesaffre, Superiority, equivalence, and non-inferiority trials, Bull. NYU Hosp. Joint Dis. 66 (2008), 150-154.

[28] S.M. Snapinn , Noninferiority trials, Curr. Controlled Trials Cardiov. Med. 1 (2000), 19-21.


https://doi.org/10.28924/ada/stat.4.4
https://doi.org/10.1080/08989629608573887
https://doi.org/10.1080/08989629608573887
https://doi.org/10.1037/0022-0167.36.4.511
https://doi.org/10.14219/jada.archive.2003.0225
https://doi.org/10.1055/s-0038-1635499
https://doi.org/10.1002/sim.5634
https://doi.org/10.2307/2332648
https://doi.org/10.1080/01621459.1992.10475256
https://doi.org/10.1080/01621459.1992.10475256
https://doi.org/10.2307/2529457
https://doi.org/10.1002/sim.3023
https://doi.org/10.1002/sim.3023
https://doi.org/10.1080/03610926.2013.776687
https://doi.org/10.1177/00131640121971185
https://doi.org/10.1002/pst.305

Eur. J. Stat. 10.28924/ada/stat.4.4 24

[29] C. Pater, Equivalence and noninferiority trials - are they viable alternatives for registration of new drugs? (lll),
Curr. Controlled Trials Cardiov. Med. 5 (2004), 1-7.

[30] R.B. D’Agostino Sr., ].M. Massaro, L.M. Sullivan, Non-inferiority trials: design concepts and issues — the encounters
of academic consultants in statistics, Stat. Med. 22 (2002), 169-186. https://doi.org/10.1002/sim. 1425,

[31] N. Le Saux, A randomized, double-blind, placebo-controlled noninferiority trial of amoxicillin for clinically diagnosed
acute otitis media in children 6 months to 5 years of age, Can. Med. Assoc. J. 172 (2005), 335-341. https:
//doi.org/10.1503/cmaj.1040771.

[32] Piaggio G., Elbourne D.R, Altman D.G., Pocock S.., Evans S.JW., Reporting of noninferiority and equivalence
randomized trials an extension of the consort statement, JAMA, 295(10): 1152-1160 (2006) DOI:10.1001/jama.
2012.87802

[33] S. Harbarth, E. von Dach, L. Pagani, M. Macedo-Vinas, B. Huttner, F. Olearo, S. Emonet, |. Uckay, Randomized
non-inferiority trial to compare trimethoprim/sulfamethoxazole plus rifampicin versus linezolid for the treatment of
MRSA infection, J. Antimicr. Chemoth. 70 (2014), 264-272. https://doi.org/10.1093/jac/dku352.

[34] G. Buzangais, C. Roger, S. Bastide, P. Jeannes, JY. Lefrant, L. Muller, Comparison of two ultrasound guided ap-
proaches for axillary vein catheterization: a randomized controlled non-inferiority trial, Br. J. Anaesthesia. 116
(2016), 215-222. https://doi.org/10.1093/bja/aev4b8.

[35] J.P. Royston, An extension of shapiro and Wilk's W test for normality to large samples, Appl. Stat. 31 (1982), 115.
https://doi.org/10.2307/2347973.


https://doi.org/10.28924/ada/stat.4.4
https://doi.org/10.1002/sim.1425
https://doi.org/10.1503/cmaj.1040771
https://doi.org/10.1503/cmaj.1040771
https://doi.org/10.1093/jac/dku352
https://doi.org/10.1093/bja/aev458
https://doi.org/10.2307/2347973

Eur. J. Stat.

APPENDIX: OBSERVED POWER OF NON-NULL F TEST FOR GIVEN TYPE || ERROR

Experiment A1 investigated the power estimates of the non-null F test for a given type Il error in
equivalence trials. The values of margin in Figure 1 were taken again. The experiment was carried
out at @ = 0.05 and 8 = 0.1. The sample size n; was determined from the process described in
Subsection 5.2 with kK = 4, vy = 0.3, bmax = 0.16, 0 = 0.4, and n = 1,0.9,0.5,0.1. Then
we obtained the balanced, mildly, moderately, and highly unbalanced designs in descending or
ascending series, respectively.

The experiment consisted of generating the observations Yj; using the function rnorm(n;,v;,0). In
applying the method in Subsection 3.1, we obtained the statistic £*. Each simulation is based on
1000 replications and yields a 95% confidence interval for the power 1—8 = 0.9: 1-8+1.96(B(1—
8)/1000)1/2 = (0.881,0.919). Following the same procedure that is used for Experiment 2, we

obtained the observed power.
The left half of Table A.1 covers the power estimates for the descending group sample sizes.

Table A.1. Power estimates of the non-null F test in equivalence trials (3 = 0.1)

Descending n; Ascending n;

n nm no ns Na 1- 6* n no n3 Na 1- ﬁ*
A =0

642 160 160 160 160 0.891 160 160 160 160 0.891
176 166 155 144 0.903 144 155 166 176 0.899

241 187 134 80 0.857 80 134 187 241 0.842

305 209 112 16 0.649 16 112 209 305 0.646

AJ‘ = 2.2}1.]

447 112 112 112 112 0.910 112 112 112 112 0.910
123 115 108 101 0.890 101 108 115 123 0.894

168 130 93 56 0.834 56 93 130 168 0.839

212 145 78 11 0.634 " 78 145 212 0.646

Aj = 2.5/.Lj

287 72 72 72 72 0.900 72 72 72 72 0.900
79 74 69 65 0913 65 69 74 79 0.904

108 84 60 36 0.852 36 60 84 108 0.842

137 93 50 7 0.645 7 50 93 137 0.645

Aj = 3u,

163 41 41 41 41 0.909 41 41 41 41 0.909
45 42 39 37 0.903 37 39 42 45 0.897

61 48 34 20 0.845 20 34 48 61 0.836

78 53 29 4 0.645 4 29 53 78 0.648

The balanced designs are defined by (5.5) with n = 1. The descending mildly, moderately, and highly unbalanced
designs are defined by (5.5) with n = 0.9, 0.5, 0.1 and the ascending designs by (5.6). The significance level is
a = 0.05. The P(type Il error) is 8 = 0.1. The minimum mean is Vmip = 0.3. The maximum difference is pmax = 0.16.
And the standard deviation is o = 0.4.

The first rows in each part refer to the balanced designs. The observed power is close to 0.9.
The same is true for the mildly unbalanced designs as shown in the second rows in each part. With
the moderately or highly unbalanced designs, however, the observed power degenerates as seen in

the third and fourth rows. The right half of the table refers to ascending n;. The results are similar
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to those in the left. Furthermore, Table A1 states that the required sample size of the non-null F
test is smaller than that of the F test in equivalence trials.

Experiment A2 studied the power estimates of the non-null F test for a given type Il error in
superiority trials. The margin was the same as that seen in Figure 2. Following the same steps
that were taken in Experiment A1, we obtained the power estimates for 8 = 0.1 at o = 0.05 with

Umax = 0.33. The resulting power estimates are summarized in Table A.2.

Table A.2. Power estimates of the non-null F test in superiority trials (3 = 0.1)

Descending n; Ascending n;

n n no n3 Ny 1- ﬁ* ni n» n3 Ny 1- ﬁ*
A =0
154 38 38 38 38 0.901 38 38 38 38 0.901
42 40 37 35 0.887 35 37 40 42 0.899
58 45 32 19 0.843 19 32 45 58 0.837
73 50 27 4 0.636 4 27 50 73 0.644
Aj=0.1u;
189 47 47 47 47 0.907 47 47 47 47 0.907
52 49 46 43 0.896 43 46 49 52 0.893
71 55 39 24 0.857 24 39 55 71 0.864
90 61 33 5 0.645 5 33 61 90 0.661
Aj = 0.2y,
238 60 60 60 60 0.904 60 60 60 60 0.904
66 62 58 54 0.899 54 58 62 66 0.900
89 69 50 30 0.846 30 50 69 89 0.855
113 77 42 6 0.640 6 42 77 113 0.681
Aj = 0.5y,
604 151 151 151 151 0.912 151 151 151 151 0.912
166 156 146 136 0.900 136 146 156 166 0.900
226 176 126 75 0.848 75 126 176 226 0.840
287 196 106 15 0.658 15 106 196 287 0.658

See Table 6.2 for definitions of designs. The significance level is o = 0.05. The P(type Il error) is 8 = 0.1. The
number of groups is kK = 4. The minimum mean is Vmi» = 0.3. The maximum difference is pmax = 0.33. The margins
are A; =0,0.1u), 0.2, 0.5u;. And the standard deviation is o = 0.4.

We have seen that the manner of variation in the observed power is just the same as that in
Experiment A1. For another, the required sample size of the non-null F test is larger than that of

the F test in superiority trials.
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