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ANOVA F Test of Non-Null Hypothesis

Guolong Zhao∗, Junxia Yang, Liufeng Zhang, Huiyu Yang
Henan Institute of Medical Sciences, Henan Academy of Medical and Pharmaceutical Sciences,

40 University Road, Zhengzhou, Henan, 450052, China
∗Correspondence: zhaogzu@hotmail.com

Abstract. ANOVA, a test of a null hypothesis, is limited in assessing the statistical significance ofdifferences. This paper considers an ANOVA F test of the non-null hypothesis for comparing k groupmeans. A margin is chosen for the difference of means between each group and the kth group. Anon-null hypothesis is defined to be the difference equal to the margin instead of zero. Data arethus prepared under the non-null hypothesis. Then follows the derivation of the one-way ANOVAnon-null F test and its power. It reduces to the classical F test on setting the margin equal to zero.The observed size of it is identical to that of the F test and is near the nominal level of significance.The observed power is close to the power in balanced designs. With the non-null F test, it enablesinferences to extend to the equivalence of group means or the clinical significance of differences. Anexample is taken to analyze both non-inferiority trials and k-sample equivalence trials.

1. Introduction
To test a null hypothesis, the result is either statistically significant or non-significant. Thenon-significant result means failing to reject the null hypothesis of the equality between a newtreatment and a control. Nevertheless, it does not mean that there exists a real equality [1, 2].Regarding the significant result, it is often not enough to define success because it does not yieldinformation about magnitude of effect, practical significance, nor clinical significance [3, 4, 5, 6, 7].Clearly, the test of null hypothesis is unable to evaluate the equivalence of group means or theclinical significance of differences. Thus the topic shifts to a test of the non-null hypothesis.The term non-null hypothesis was introduced by Egon Pearson (1939)[8] and used by Fisher(Good 1992)[9]. Some other terms, as we have seen, are often used synonymously: the shiftednull-hypothesis, non-zero null-hypothesis, and so on [6]. Of these, the term non-null hypothesis isfound in the book, A Dictionary of Statistical Terms [10]. Some tests of the non-null hypothesisare available [11, 12, 13].
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Eur. J. Stat. 10.28924/ada/stat.4.4 2Up to date, the existing tests of the non-null hypothesis address categorical data only. Con-cerning numerical data, the most frequently used procedure is analysis of variance (or ANOVA forshort) [14]. However, it refers to the null hypothesis, waiting for a non-null generalization.This paper considers an ANOVA F test of the non-null hypothesis (or the non-null F test forshort) for comparing k group means. As we show in Section 2, a margin is chosen for the difference ofmeans between each group and the kth group. A non-null hypothesis is defined to be the differenceequal to the margin instead of zero. Data are thus prepared under the non-null hypothesis. Thenfollows the derivation of the one-way ANOVA non-null F test in Section 3. It overlaps the two-sample non-null t test, which is then inverted to the confidence interval for analyzing the dataof non-inferiority or equivalence trials. Section 4 provides an extension to the two-way ANOVAnon-null F test. It overlaps the paired non-null t test. Section 5 formulates the power and samplesizes in balanced and unbalanced designs using the R Language [15]. The observed test size andpower are demonstrated using Monte Carlo techniques in Section 6. Section 7 contains threeexamples addressing the relation between non-inferiority and k-sample equivalence trials, theclinical significance of differences, and the randomized block design, respectively. Section 8 coversvarious aspects of these tests such as history, contributions, properties, clinical applications, andperspectives.
2. Preparing data under non-null hypothesis

2.1. ANOVA data organization. ANOVA data organization is usually based on the traditionalstandard: Let Yi j , i = 1, 2, . . . , nj , j = 1, 2, . . . , k , be independent numerical observations, eachfrom an underlying normal distribution: N(νj , σ
2
j ), where nj is the sample size, νj the mean, and

σ2
j the variance in the jth group. The total sample size is n =

∑
j nj and the sample fractionis gj = nj/n with ∑j gj = 1. When carrying out an ANOVA, one assumes equal variances forthe k populations: σ2

1 = σ2
2 = · · · = σ2

k = σ2. The hypotheses to be tested in ANOVA is
H0 : ν1 = ν2 = · · · = νk versus H1 : not al l the ν′j s are equal .For a given data set, the mean νj is estimated by Ȳ·j = 1

nj

∑
i Yi j . It follows the grand mean

ν =
∑
j gjνj and its estimator Ȳ·· =

∑
j gj Ȳ·j . We define the difference of means between the jthand kth group and its estimator to be

µj = νj − νk and µ̂j = Ȳ·j − Ȳ·k (2.1)

with the averages
µ =

∑
j

gjµj = ν − νk and µ̄ =
∑
j

gj µ̂j = Ȳ·· − Ȳ·k .

Definition (2.1) does three things at once: 1. It shows the last difference µk = νk − νk = 0. 2. Itallows us to rewrite the hypotheses in an equivalent form H0 : µ = 0 versus H1 : µ 6= 0, which
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Eur. J. Stat. 10.28924/ada/stat.4.4 3provides a room for a non-null generalization. 3. We can reexpress the mean and its estimator as
νj = ν + (µj − µ) and Ȳ·j = Ȳ·· + (µ̂j − µ̄), (2.2)

which will play a key role in generalizing the F test to its non-null version.
2.2. Process of data preparation. The non-null hypothesis is defined by a margin of the difference.It refers to the equivalence margin in this text. In the two-sample case, this is sometimes knownas the non-inferiority margin. Let ∆j be the margin of µj with the average ∆ =

∑
j gj∆j . Howto choose the values of margin ∆j , j = 1, 2, . . . , k − 1, will be given later in Section 8. Forthe last item j = k , however, we set ∆k = 0 because µk = 0 (see Definition (2.1)). As Killoy(2002)[16] mentioned, the parameter µj defines the range in which the margin ∆j has its being sothat the sign of ∆j is always kept identical to that of µj . In clinical practice, ∆j is the minimaldetectable difference. The difference |µj | less than |∆j | implies the equivalence of group means.Conversely, the difference |µj | exceeding |∆j | is thought to be clinically important and would leadto a preference for one treatment over the other. Taking the average margin in place of zero givesthe non-null hypotheses for equivalence trials

H0 : |µ| ≥ |∆| versus H1 : |µ| < |∆| (|µ| ∈ (0, |∆|)). (2.3)

For superiority trials, the non-null hypotheses are H0 : |µ| ≤ |∆| versus H1 : |µ| > |∆| (|µ| ∈
(|∆|,∞)). Clearly, they are asymmetric to equivalence trials. As it turns out, while the null hy-pothesis refers to the difference of zero, the non-null hypothesis generalizes to arbitrary differences.Under the non-null hypothesis, the mean and its estimator in (2.2) are generalized to

ν∗j = ν + [(µj − µ)− (∆j − ∆)] and Ȳ ∗·j = Ȳ·· + [(µ̂j − µ̄)− (∆j − ∆)]. (2.4)

If subtracting (2.2) from (2.4), we obtain
ν∗j = νj − (∆j − ∆) and Ȳ ∗·j = Ȳ·j − (∆j − ∆). (2.5)

This provides the non-null values of the grand mean ν∗ =
∑
j gjν

∗
j and its estimator Ȳ ∗·· =

∑
j gj Ȳ

∗
·j .In view of the fact ∑j gj(∆j − ∆) = 0, it must be true that

ν∗ =
∑
j

gj [νj − (∆j − ∆)] = ν and Ȳ ∗·· =
∑
j

gj [Ȳ·j − (∆j − ∆)] = Ȳ··. (2.6)

Remark 2.1. The grand mean is the same regardless of whether the null or non-null hypothesis
holds.Let Y ∗i j be the observations under the non-null hypothesis; then the non-null values of the samplemeans should be Ȳ ∗·j = 1

nj

∑
i Y
∗
i j . Referring to (2.5), we have 1

nj

∑
i Y
∗
i j = 1

nj

∑
i Yi j − (∆j −∆). Thatis, 1

nj

∑
i Y
∗
i j = 1

nj

∑
i [Yi j − (∆j − ∆)], which implies

Y ∗i j = Yi j − (∆j − ∆), (2.7)

where (∆j − ∆) is a constant.
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Remark 2.2. If the observations are normal, they are still normal under the non-null hypothesis
since normal random variables plus or minus a constant are themselves normal.The variance σ2 is estimated by S2

j = 1
nj−1

∑
i(Yi j − Ȳ·j)2 with the non-null values S2∗

j =

1
nj−1

∑
i(Y
∗
i j − Ȳ ∗·j )2. Since subtracting (2.5) from (2.7) gives

Y ∗i j − Ȳ ∗·j = Yi j − Ȳ·j , (2.8)

it follows that
S2∗
j =

1

nj − 1

∑
i

(Yi j − Ȳ·j)2 = S2
j . (2.9)

Remark 2.3. The sample variance is left unchanged in the non-null generalization of the ANOVA
F test.

3. Building one-way ANOVA of non-null hypothesis
3.1. One-way ANOVA non-null F test. The total sum of squares is known to be Q =

∑
j

∑
i(Yi j −

Ȳ··)
2 in the one-way ANOVA. Under the non-null hypothesis, it should be Q∗ =

∑
j

∑
i(Y
∗
i j − Ȳ ∗·· )2.Since Ȳ ∗·· = Ȳ·· (see Remark 2.1), it is written formally as

Q∗ =
∑
j

∑
i

(Y ∗i j − Ȳ··)2.

For the treatment sum of squares, the non-null value can be treated in the same way as
Q∗1 =

∑
j

∑
i

(Ȳ ∗·j − Ȳ··)2 =
∑
j

nj(Ȳ
∗
·j − Ȳ··)2. (3.1)

Concerning the error sum of squares, it is Q∗2 =
∑
j(nj − 1)S2∗

j . From (2.9) comes the not-surprising result that
Q∗2 =

∑
j

(nj − 1)S2
j =

∑
j

∑
i

(Yi j − Ȳ·j)2 = Q2, (3.2)

which expresses the fact that the error sum of squares is invariable in the non-null generalizationof the ANOVA F test based on Remark 2.3.The one-way ANOVA non-null F statistic has the form
F ∗ =

Q∗1/(k − 1)

Q2/(n − k)
∼ F1−α, k−1, n−k , (3.3)

where the only change is using Q∗1 in place of Q1. It accounts for the differences among groupmeans.Setting ∆j = 0 gives Ȳ ∗·j = Ȳ·j and Q∗1 = Q1. So, we have F ∗ = F , meaning that the statisticreduces to the classical F statistic on setting the margin equal to zero. This is known to be thereducibility, an essential property of such tests (Zhao 2008). This property is shared by all thetest statistics presented in later sections.
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Eur. J. Stat. 10.28924/ada/stat.4.4 5The F test will provide an answer by deciding whether or not the null hypothesis H0 : µ = 0,i.e., H0 : ν1 = ν2 = · · · = νk should be rejected. However, the alternative, H1 : µ 6= 0, i.e.,
H1 : not al l the ν′j s are equal , does not specify any pair of means. This problem continues tothe non-null F test. Fortunately, there is a solution available from breaking down an overall nullhypothesis into smaller more relevant sub-hypotheses.
3.2. Testing non-null sub-hypotheses. To do this, there are two general ways: the Tukey methodand the contrast [17]. The Tukey method is expressed in a confidence interval and the contrast, inan F test. Therefore, the contrast is taken here since it is the F test that conforms to the topicof this text. In every set of k-sample data, there are (k2) contrasts. It is given the symbol Ci ,
i = 1, 2, . . . ,

(
k
2

), with Ci =
∑
j cjνj , where cj is coefficients of νj with ∑j cj = 0. For example, inthe contrast C1, we have C1 = ν1 − ν2 = µ1. The linear combination of the contrast is given by

C1 = (1)ν1 + (−1)ν2 + (0)ν3 + · · ·+ (0)νk = ν1 − ν2, where cj = (1,−1, 0, . . . , 0). For all s 6= t ,we have the contrast Ci = νs − νt = µi with the estimator Ĉi = Ȳ·s − Ȳ·t = µ̂i . The correspondingsub-hypotheses are H′0 : µi = 0 versus H′1 : µi 6= 0. The sum of squares associated with Ci isestimated by
Qi =

Ĉi
2∑

j c
2
j /nj

=
(Ȳ·s − Ȳ·t)2

1
ns

+ 1
nt

=
µ̂i

2

1
ns

+ 1
nt

.

The non-null sub-hypothesis with the margin ∆ can be still put in the form of (2.3): H′0 : |µi | ≥
|∆| versus H′1 : |µi | < |∆| for equivalence trials and H′0 : |µi | ≤ |∆| versus H′1 : |µi | > |∆| forsuperiority trials. Then the non-null value of of Qi should be

Q∗i =
(|µ̂i | − |∆|)2

1
ns

+ 1
nt

.

For each different pairwise sub-hypothesis test, the non-null F statistic can be constructed as
F ∗i =

Q∗i /1

Q2/(n − k)
∼ F1−α, 1, n−k , (3.4)

which enables us to deal with the difference between group means νs and νt .Testing the sub-hypothesis H′0 : µi = 0, i.e., H′0 : νs = νt versus H
′
1 : µi 6= 0, i.e., H′1 : νs 6= νttells which two are equal and which two are not, depending upon the pairwise comparisons. Thishas come to the solution of the problem given above. Also, the same solution holds for testing thenon-null sub-hypotheses along the lines of the pairwise comparisons.

3.3. Two-sample data. The one-way ANOVA non-null F test (3.3) overlaps the two-sample non-null t test. The latter is then inverted to the confidence interval for analyzing the data of non-inferiority or equivalence trials. In the two-sample case, we only need to specify ∆1. Definition(2.1) states µ2 = 0 so that we set ∆2 = 0. The non-null F statistic (3.3) becomes
F ∗ =

Q∗1/1

Q2/(n − 2)
∼ F1−α, 1, n−2. (3.5)
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Eur. J. Stat. 10.28924/ada/stat.4.4 6The treatment sum of squares in (3.5) is Q∗1 = n1(Ȳ ∗·1 − Ȳ··)2 + n2(Ȳ ∗·2 − Ȳ··)2, where Ȳ ∗·1 − Ȳ·· =

g2[(Ȳ·1− Ȳ·2)−∆1] and Ȳ ∗·2− Ȳ·· = g1[−(Ȳ·1− Ȳ·2) + ∆1]. Writing Ȳ·1− Ȳ·2 as µ̂ and ∆1 as ∆ gives
Q∗1 = g1ng

2
2(µ̂− ∆)2 + g2ng

2
1(−µ̂+ ∆)2, which simplifies to Q∗1 = nk1g2(µ̂− ∆)2 or

Q∗1 =
(µ̂− ∆)2

1
n1

+ 1
n2

.

The error sum of squares in (3.5) is Q2 = (n1 − 1)S2
1 + (n2 − 1)S2

2 . This is just the numerator ofthe pooled variance
S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2so that Q2 = S2
p(n1 + n2 − 2). When Q∗1 and Q2 are substituted into the square root of (3.5), oneobtains

√
F ∗ =

µ̂− ∆

Sp

√
1
n1

+ 1
n2

= t∗ ∼ Tn1+n2−2.

This is the two-sample non-null t statistic. Notice that the denominator is the same as that of itsclassical counterpart.Food and Drug Administration (FDA, 2016) recommends the use of confidence intervals on thedata of two-sample non-inferiority trials. Inverting the equation gives a 100(1 − α)% confidenceinterval for ∆

µ̂− tα/2, n1+n2−2 · Sp
√

1

n1
+

1

n2
≤ ∆ ≤ µ̂+ tα/2, n1+n2−2 · Sp

√
1

n1
+

1

n2
,

which has several forms in this context. For instance, it takes the form
0 ≤ |∆| ≤ |µ̂|+ tα/2, n1+n2−2 · Sp

√
1

n1
+

1

n2
(3.6)

in equivalence trials with the hypotheses H0 : |µ| ≥ |∆| versus H1 : |µ| < |∆|. The equivalenceholds when H0 : |µ| ≥ |∆| is rejected with |µ̂| < |∆|. Clearly, this definition of equivalence isthe same as that in International Conference on Harmonisation (1998). The equivalence has twosymmetric profiles: the non-inferiority and the non-superiority. When µ ≤ 0 and ∆ ≤ 0, we havethe non-inferiority with the hypothesis H0 : µ ≤ ∆ versus H1 : µ > ∆ and when µ ≥ 0 and
∆ ≥ 0, we have the non-superiority with the hypothesis H0 : µ ≥ ∆ versus H1 : µ < ∆, where theconfidence intervals are expressed in the forms
µ̂− tα/2, n1+n2−2 · Sp

√
1

n1
+

1

n2
≤ ∆ ≤ 0 and 0 ≤ ∆ ≤ µ̂+ tα/2, n1+n2−2 · Sp

√
1

n1
+

1

n2
, (3.7)

respectively. Non-inferiority and non-superiority trials are converted to each other as long astreatment and control groups reverse roles. A comparison of (3.6) and (3.7) provides insightsinto the relationship between equivalence trials and non-inferiority trials, which will be shownnumerically in an example (see Subsection 7.1).
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Eur. J. Stat. 10.28924/ada/stat.4.4 7To evaluate the clinical significance of differences, the hypothesis to be tested is H0 : |µ| ≤
|∆| versus H1 : |µ| > |∆| and the confidence interval has the form

|µ̂| − tα/2, n1+n2−2 · Sp
√

1

n1
+

1

n2
≤ |∆| ≤ ∞.

3.4. One-sample data. The one-sample case has only a single mean ν. Letting ν0 be a specifiedvalue of the mean, the difference is µ = ν − ν0 so that ν = ν0 + µ. With the margin ∆, we have
ν∗ = ν0 + (µ− ∆) or ν∗ = ν − ∆. The non-null hypothesis is still written in the form of (2.3).For a sample of Yi ∼ N(ν, σ2), i = 1, 2, . . . , n, the mean ν is estimated by Ȳ = 1

n

∑
i Yi . It followsthat Ȳ ∗ = Ȳ −∆, which implies 1

n

∑
i Y
∗
i = 1

n

∑
i Yi−∆ so that Y ∗i = Yi−∆. These variables generatean identity: Y ∗i = ν0 + (Ȳ ∗− ν0) + (Y ∗i − Ȳ ∗) or, equivalently, (Y ∗i − ν0) = (Ȳ ∗− ν0) + (Y ∗i − Ȳ ∗).It must be true that ∑i(Y

∗
i − ν0)2 =

∑
i [(Ȳ

∗ − ν0) + (Y ∗i − Ȳ ∗)]2. Since the cross-product termvanishes: ∑i(Ȳ
∗−ν0)(Y ∗i − Ȳ ∗) = 0, it follows that∑i(Y

∗
i −ν0)2 =

∑
i(Ȳ
∗−ν0)2 +

∑
i(Y
∗
i − Ȳ ∗)2,or more conveniently, Q∗ = Q∗1 +Q∗2. Since Y ∗i − Ȳ ∗ = (Yi − ∆)− (Ȳ − ∆) = Yi − Ȳ , it turns outthat Q∗2 =

∑
i(Yi − Ȳ )2 = Q2. The statistic for testing H versus H1 is

F ∗ =
Q∗1/1

Q2/(n − 1)
∼ F1−α, 1, n−1, (3.8)

where Q∗1 =
∑
i(Ȳ
∗ − ν0)2 or Q∗1 =

∑
i((Ȳ − ν0) − ∆)2. The square root of (3.8) is just theone-sample non-null t statistic

√
F ∗ =

(Ȳ − ν0)− ∆√∑
i (Yi−Ȳ )2

n(n−1)

= t∗ ∼ Tn−1.

Inverting the statistic gives the confidence interval, which is omitted since its form is similar to thatin the two-sample case.
4. Randomized block designs under non-null hypothesis

4.1. Non-null F test for randomized block design. The procedure stated above can easily beextended to the two-way ANOVA, say, the randomized block design. It operates a horizontalANOVA and a vertical ANOVA for the treatment and block effect, respectively. Hence two Fratios are calculated, one for the treatment effect and one for the block effect. By analogy, furtherextension results in the effects of multiple factors, which lies beyond the scope of this text.The data structure for a randomized block design is a matrix with n rows and k columns represent-ing the n blocks and the k levels of treatment, respectively. Here, Yi j , i = 1, 2, . . . , n, j = 1, 2, . . . , k ,denote the observations associated with the application of treatment j to block i .Consider first the treatment effect. Sample fractions in this context are constant: gj ≡ 1
k . Itfollows that Ȳ·j = 1

n

∑
i Yi j , ν = 1

k

∑
j νj , and µ = 1

k

∑
j µj . Similarly, the average margin is

∆ = 1
k

∑
j ∆j . The hypotheses are the same as (2.3) in style of writing.
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Eur. J. Stat. 10.28924/ada/stat.4.4 8The non-null value for the treatment sum of squares is given by
Q∗t =

∑
j

∑
i

(Ȳ ∗·j − Ȳ··)2 =
∑
j

n(Ȳ ∗·j − Ȳ··)2, (4.1)

where Ȳ ∗·j = Ȳ·j − (∆j −∆) and Ȳ·· = 1
k

∑
j Ȳ·j . The error sum of squares is Q∗e =

∑
j

∑
i(Y
∗
i j − Ȳi ·−

Ȳ ∗·j + Ȳ ∗·· )
2, where Y ∗i j = Yi j − (∆j − ∆), Ȳi · = 1

k

∑
j Yi j , and Ȳ ∗·· = 1

k

∑
j Ȳ
∗
·j . An inspection of (2.6)and (2.8) discloses that

Q∗e =
∑
j

∑
i

(Yi j − Ȳi · − Ȳ·j + Ȳ··)
2 = Qe . (4.2)

The non-null F statistic for treatment effect is given by
F ∗t =

Q∗t/(k − 1)

Qe/(n − 1)/(k − 1)
∼ F1−α, k−1, (n−1)(k−1). (4.3)

We are then led to consider the block effect. It is analyzed with a process in analogy to that forthe treatment effect but some minor changes in subscripts. The difference between block means isdefined to be µi = νi − νn, i = 1, 2, . . . , n, with the average µb = 1
n

∑
i µi . Prescribing the margin

∆i corresponding to µi yields the average ∆b = 1
n

∑
i ∆i . The hypotheses are in accord with (2.3)as long as using µb in place of µ and ∆b in place of ∆.The block sum of squares under the non-null hypothesis is

Q∗b =
∑
j

∑
i

(Ȳ ∗i · − Ȳ··)2 = k
∑
i

(Ȳ ∗i · − Ȳ··)2,

where Ȳ ∗i · = Ȳi · − (∆i − ∆b). The error sum of squares is still Qe . Thus we have
F ∗b =

Q∗b/(n − 1)

Qe/(n − 1)/(k − 1)
∼ F1−α, n−1, (n−1)(k−1). (4.4)

This is the non-null F statistic for block effect.
4.2. Paired data. In some clinical situations, the randomized block design may have only 2 levelsof treatment, where (4.3) is written

F ∗t =
Q∗t/1

Qe/(n − 1)
∼ F1−α, 1, n−1.

In this case, the sample block mean is Ȳi · = 1
2Yi1 + 1

2Yi2 and the grand mean, Ȳ·· = 1
2 Ȳ·1 + 1

2 Ȳ·2.Substituting them into (4.2) gives the error sum of squares Qe =
∑
j

∑
i(Yi j −

1
2Yi1 −

1
2Yi2 − Ȳ·j +

1
2 Ȳ·1 + 1

2 Ȳ·2)2. Let Di be the within-block difference with Di = Yi1− Yi2 and D̄ be the average with
D̄ = Ȳ·1 − Ȳ·2. Then (4.2) further simplifies to

Qe =
1

2

∑
i

(Di − D̄)2. (4.5)

https://doi.org/10.28924/ada/stat.4.4


Eur. J. Stat. 10.28924/ada/stat.4.4 9Here (4.1) is written Q∗t = n{(Ȳ ∗·1 − Ȳ··)2 + (Ȳ ∗·2 − Ȳ··)2}, where Ȳ ∗·1 − Ȳ·· = 1
2 ((Ȳ·1 − Ȳ·2) − ∆1)and Ȳ ∗·2 − Ȳ·· = 1

2 (−(Ȳ·1 − Ȳ·2) + ∆1). Writing Ȳ·1 − Ȳ·2 as D̄ and ∆1 as ∆ gives the treatment sumof squares
Q∗t =

1

2
n(D̄ − ∆)2. (4.6)Putting (4.5) and (4.6) into the statistic and taking the square root of the result give√

F ∗t =
D̄ − ∆√∑
i (Di−D̄)2

n(n−1)

= t∗ ∼ Tn−1.

This is just the paired non-null t statistic. Inverting the equation will then yield the confidenceinterval, which is omitted here.
5. Power and sample size determination

5.1. Power of non-null F test. The power of the F statistic depends upon the noncentral F dis-tribution F1−α, k−1, n−k, λ under the alternative, where λ is the non-centrality parameter with
λ =

∑
j nj(νj − ν)2/σ2 and nj is the sample size per group with nj ≡ n/k [17].The non-null value of the non-centrality parameter is expressed as λ∗ =

∑
j nj(ν

∗
j − ν)2/σ2,where the only change is using ν∗j (2.5) in place of νj with ν and σ2 left unchanged based onRemark 2.1. and 2.3. It follows the non-null value of Cohen effect size for ANOVA f ∗ =
√
λ∗/n or

f ∗ =

√∑
j(ν
∗
j − ν)2/k

σ2
. (5.1)

This is computationally simple after specifying k , nj , νj , σ2, and ∆j . But it is tedious to specify
νj one by one. Here we arrange it into an arithmetic series with a given minimal mean νmin andmaximal difference µmax . Then we have a descending series

νj = νmin + µmax − (j − 1) µmax/(k − 1), (5.2)

an ascending series νj = νmin + (j − 1) µmax/(k − 1), or an equal series νj = νmin + µmax/2.The power of the non-null F test at α-level is
1− β∗ = P (F ∗ ≥ F1−α, k−1, n−k, λ∗ | H1 i s true), (5.3)

which is easily calculated using the functionpwr.anova.test (k = k , n = nj , f = f ∗, sig.level=α)in the R Language. When H is true, we have ν∗j = ν by (2.4) and f ∗ = 0 by (5.1). Then, (5.3)becomes
1− β∗ = α, (5.4)the nominal test size, which will be exhibited numerically later in Figure 3.When ∆j = 0, we have ν∗j = νj , f ∗ = f , and F ∗ = F so that 1− β∗ = 1− β, meaning that thepower function reduces to its classical counterpart on setting the margin equal to zero.
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Eur. J. Stat. 10.28924/ada/stat.4.4 10Figure 1 shows the power of the non-null F test at α = 0.05 with the total sample size fixed at
n = 160.

In this figure, the margin is specified as ∆j = 0, 2.2µj , 2.5µj , 3µj , which will be reused later inthe simulation of equivalence trials. The power is computed from (5.3) with the other parametervalues k = 2, 3, . . . , 38, νmin = 0.3, µmax = 0.125, and σ = 0.4. All the curves have certainbasic similarities in form. The power of the non-null F test is higher than that of the F test. Notsurprisingly, as the number of groups gets larger, the power gets lower when the total sample sizeis fixed.Another possibility is to take the sample size per group fixed at nj = 16 instead. Then we getthe power as indicated in Figure 2.
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Here the margin is taken as ∆j = 0, 0.1µj , 0.2µj , 0.5µj , which will be reused later in thesimulation of superiority trials. The other parameter values are the same as those in Figure 1 but
µmax = 0.35. The power of the non-null F test is lower than that of the F test. It is worth notingthat over the range of k , the power decreases first and increases later with the minimum at k = 4.Both Figure 1 and 2 have the margin ∆j dependent on the difference µj . One might be ofinterest for taking ∆j independent of µj . Now, the maximum margins are chosen as ∆max =

0, 0.08, 0.16, 0.24 for each of the maximum differences µmax = 0, 0.04, . . . , 0.4, respectively. Inapplying the same approach with nj = 25, k = 8, νmin = 0.3, and σ = 0.4, we get the power atthe α = 0.05 level as pictured in Figure 3.
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Eur. J. Stat. 10.28924/ada/stat.4.4 12The curve with index ∆max = 0 gives the power of the F test, which increases with the increasing
µmax . Those labeled with ∆max = 0.08, 0.16, 0.24 refer to the power of the non-null F test. When
µmax < ∆max , the power decreases as µmax increases; when µmax = ∆max , the power equals 0.05,i.e., the nominal test size, as predicted by (5.4); and when µmax > ∆max , the power increases as
µmax increases.
5.2. Sample size determination. The sample size determination also relies on the power of thenon-null F test (5.3) with the function pwr.anova.test. But this function provides balanced designsonly. For unbalanced designs, we take a process with three steps: 1. Start by finding the samplesize nj per group using the functionpwr.anova.test (k = k , f = f ∗, sig.level=α, power = 1− β).2. Determine the total sample size n = knj . 3. Choose the sample fractions gj deriving the unequalgroup sample sizes nj = gjn.The last step involves the sample fraction gj , which is specified as an arithmetic series herelikewise. Let ḡ be the average sample fraction with ḡ = 1/k . The minimum sample fraction isdefined as gmin = ηḡ, where η is a real number with the value of η ∈ [0, 1]. It follows the maximumsample fraction gmax = (2− η)ḡ. Accordingly, we have a descending series

gj = gmax − 2(j − 1)(1− η)ḡ/(k − 1) (5.5)

or an ascending series
gj = gmin + 2(j − 1)(1− η)ḡ/(k − 1). (5.6)Setting η = 1 gives balanced designs and η < 1, unbalanced. Here we define the mildly, moder-ately, and highly unbalanced designs by η = 0.9, 0.5, 0.1, respectively. When η = 0, both (5.5)and (5.6) produce extremely unbalanced designs. It is noted that the last step often gives decimalsand rounding is required.

6. Simulation studies
The use of unbalanced designs broadens the scope of simulation studies and provides morechoices in describing the behavior of the non-null F test.

6.1. Observed size of non-null F test. Experiment 1 was conducted to measure the observed size ofthe non-null F test in balanced and highly unbalanced designs. The margin was taken to be ∆j = 0throughout this experiment, depending upon this reason. Inspection of (2.2) and (2.4) discloses that
νj = ν when H0 holds and ν∗j = ν as well when H holds. So, the function rnorm(nj ,νj ,σ) waswritten here as (nj ,ν,σ) for generating normal observations in the R Language. We now give aheuristic explanation for this.

Remark 6.1. The observed size of the non-null F test is identical to that of the F test because
the sampling scheme does not distinguish between the null and non-null hypothesis.
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Eur. J. Stat. 10.28924/ada/stat.4.4 13We fixed the total sample size at n = 48, 192, 768, representing small, moderate, and largesample sizes. The number of groups was taken to be k = 3, 6. Recall the procedure derived inSubsection 5.2. Balanced and highly unbalanced designs were implemented by (5.5) and (5.6)with η = 1, 0.1. There were 18 possible combinations of the quantities n, k , and η. We set thesignificance level as α = 0, 0.0125, . . . , 0.1. The other parameters were specified as νmin = 0.3,
µmax = 0, and σ = 0.4. For each case, 1000 data sets were generated. This number yields a 95%confidence interval for the nominal size α ± 1.96(α(1 − α)/1000)1/2. The observed test size isgiven by

α̂ =

1000∑
1

I{F ≥ F1−α, k−1, n−k, λ |H is true}/1000,

which is corresponding to the nominal size (5.4).The values of the observed test size for n = 48 appear in the upper part of Table 6.1.
Table 6.1. Observed size of non-null F test in balanced and highly unbalanced designs

nj
Significance level α0 0.0125 0.025 0.0375 0.05 0.0625 0.075 0.0875 0.1

n = 48(16, 16, 16) 0 0.017 0.027 0.040 0.051 0.064 0.079 0.094 0.109(30, 16, 2) 0 0.012 0.022 0.036 0.056 0.067 0.073 0.081 0.095(2, 16, 30) 0 0.016 0.030 0.043 0.057 0.068 0.081 0.087 0.097(8, 8, 8, 8, 8, 8) 0 0.013 0.027 0.035 0.046 0.057 0.071 0.090 0.103(15, 12, 9, 7, 4, 1) 0 0.019 0.033 0.044 0.056 0.067 0.080 0.092 0.102(1, 4, 7, 9, 12, 15) 0 0.018 0.023 0.042 0.057 0.068 0.078 0.088 0.105
n = 192(64, 64, 64) 0 0.015 0.029 0.043 0.055 0.069 0.084 0.097 0.110(122, 64, 6) 0 0.018 0.032 0.045 0.060 0.074 0.077 0.089 0.097(6, 64, 122) 0 0.012 0.032 0.044 0.059 0.071 0.082 0.097 0.116(32, 32, 32, 32, 32, 32) 0 0.015 0.028 0.036 0.052 0.065 0.076 0.091 0.100(61, 49, 38, 26, 15, 3) 0 0.013 0.022 0.032 0.048 0.061 0.072 0.085 0.099(3, 15, 26, 38, 49, 61) 0 0.018 0.026 0.040 0.057 0.076 0.087 0.098 0.112
n = 768(256, 256, 256) 0 0.009 0.016 0.024 0.041 0.050 0.059 0.075 0.084(486, 256, 26) 0 0.013 0.023 0.042 0.059 0.072 0.081 0.100 0.113(26, 256, 486) 0 0.015 0.029 0.043 0.055 0.067 0.071 0.080 0.095(128, 128, 128, 128, 128, 128) 0 0.013 0.024 0.037 0.049 0.056 0.068 0.077 0.088(243, 197, 151, 105, 59, 13) 0 0.007 0.021 0.038 0.049 0.067 0.085 0.103 0.116(13, 59, 105, 151, 197, 243) 0 0.010 0.022 0.032 0.041 0.059 0.069 0.081 0.097

The balanced designs are defined with η = 1 and the highly unbalanced designs, with η = 0.1 by (5.5) and (5.6). Theminimum mean is νmin = 0.3. The maximum difference is µmax = 0. And the standard deviation is σ = 0.4.
The first three rows show the entries for k = 3. It is not surprising that the observed test sizeis near the nominal level in the balanced design nj = (16, 16, 16). Even in the highly unbalanced
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Eur. J. Stat. 10.28924/ada/stat.4.4 14design nj = (30, 16, 2) or nj = (2, 16, 30), however, we have not seen any appreciable variety: theobserved size still lies within the most 95% confidence intervals for the nominal size. For example,the use of the 95% confidence interval for the nominal size 0.1 results in (0.081, 0.119), whichcontains the observed test size 0.095 and 0.097. A similar result holds for k = 6 as shown in thelast three rows. The remaining parts show the results for n = 192 and n = 768, which are similarto those in the upper part. Notice that the group sample size nj may not add up the total samplesize n due to rounding.
Remark 6.2. The observed size of the non-null F test is near the nominal level in balanced

designs as well as in unbalanced designs.Further insights about Remark 6.2 will be given in Experiment 2 and 3. We did not attempt tomention mildly and moderately unbalanced designs because the variation of the observed size isnot likely to exceed that in highly unbalanced designs.
6.2. Observed power of non-null F test. Experiment 2 was planned to assess the power estimatesof the non-null F test for a given sample size in equivalence trials. The values of margin in Figure1 were reused here. Notice that they are larger than or equal to the differences. We fixed the totalsample size at n = 200 and the number of groups at k = 8. Using (5.5) or (5.6) with η = 1 and 0.1yielded balanced and highly unbalanced designs, respectively. Concerning k-sample equivalencetrials, we took α = 0.05 in this experiment. In two-sample non-inferiority trials, however, onemay choose α = 0.025, as recommended by FDA (2016)[18] and International Guideline ICH E9Hirotsu (2007)[19].The first part of Table 6.2 reports the power resulting from (5.3) with νmin = 0.3, µmax =

0, 0.04, . . . , 0.4, and σ = 0.8.The column "µmax = 0" refers to the minimum value of the power, i.e., the nominal test size 0.05as previously mentioned in (5.4). This experiment gives that the power of the non-null F test ishigher than that of the F test in equivalence trials and as the margin gets larger, the power getshigher.We now turn to the power estimates. For each set of experimental conditions, 1000 randomsamples were drawn from the function rnorm(nj ,νj ,σ). This yields a 95% confidence interval for thepower 1− β∗ ± 1.96(β∗(1− β∗)/1000)1/2. The power estimates are given by
1− β̂∗ =

1000∑
1

I{F ∗ ≥ F1−α, k−1, n−k, λ∗ | H1 i s true}/1000,

where the statistic F ∗ is calculated from (3.3).The second part of Table 6.2 gives the power estimates from balanced designs. The column"µmax = 0" shows the minimum value of power estimates, i.e., the observed test size 0.05, which isequal to the nominal level. Figure 4 displays this result.
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Table 6.2. Power estimates of non-null F test in equivalence trials (β ∈ (0, 1))
∆j

Maximum difference µmax0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
1− β∗: nj = (25, 25, 25, 25, 25, 25, 25, 25)0 0.050 0.052 0.057 0.067 0.082 0.103 0.131 0.166 0.210 0.264 0.325

2.2µj 0.050 0.053 0.061 0.076 0.098 0.131 0.174 0.231 0.299 0.380 0.468
2.5µj 0.050 0.054 0.067 0.092 0.131 0.187 0.264 0.357 0.468 0.583 0.694
3µj 0.050 0.057 0.082 0.131 0.210 0.325 0.468 0.621 0.760 0.867 0.937

1− β̂∗: nj = (25, 25, 25, 25, 25, 25, 25, 25)0 0.050 0.053 0.059 0.068 0.077 0.102 0.137 0.175 0.222 0.263 0.323
2.2µj 0.050 0.055 0.061 0.076 0.109 0.142 0.184 0.237 0.303 0.369 0.441
2.5µj 0.050 0.054 0.066 0.099 0.142 0.195 0.269 0.354 0.441 0.568 0.689
3µj 0.050 0.059 0.088 0.142 0.215 0.326 0.441 0.602 0.750 0.854 0.934

1− β̂∗: nj = (48, 41, 35, 28, 22, 15, 9, 2)0 0.059 0.061 0.063 0.065 0.072 0.084 0.108 0.132 0.165 0.195 0.232
2.2µj 0.059 0.062 0.069 0.080 0.094 0.115 0.139 0.177 0.205 0.242 0.290
2.5µj 0.059 0.062 0.076 0.094 0.115 0.148 0.190 0.228 0.290 0.373 0.468
3µj 0.059 0.067 0.088 0.115 0.163 0.214 0.290 0.407 0.525 0.657 0.753

1− β̂∗: nj = (2, 9, 15, 22, 28, 35, 41, 48)0 0.051 0.057 0.056 0.067 0.072 0.084 0.100 0.119 0.140 0.180 0.216
2.2µj 0.051 0.049 0.049 0.064 0.075 0.100 0.123 0.154 0.187 0.239 0.278
2.5µj 0.051 0.048 0.057 0.073 0.100 0.129 0.167 0.228 0.278 0.359 0.457
3µj 0.051 0.047 0.070 0.100 0.145 0.208 0.278 0.389 0.517 0.641 0.750
The significance level is α = 0.05. The minimum mean is νmin = 0.3. The standard deviation is σ = 0.8. The power
1− β∗ is given by (5.3). And the power estimates 1− β̂∗ are the fractions of F ∗-values greater than or equal to thecritical F-values under H1 in 1000 sets of samples.
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Eur. J. Stat. 10.28924/ada/stat.4.4 16On comparing the curves of the observed power and the power, we see that they almost overlap.It tells that the agreement between the observed power and the power is quite well for the non-nullF tests in balanced designs.The third part of Table 6.2 lists the power estimates from the highly unbalanced designs withdescending nj . Figure 5 portrays this result.

Clearly, the power estimates are lower than the power for both the null and non-null F tests.That is, the violation of balance may decrease the power. By contrast, we have not seen anyapparent influence of unbalanced designs on the observed test size: The observed test size 0.059lies between 0.036 and 0.064, the 95% confidence interval for the nominal size 0.05 as Remark 6.2predicts.A similar appearance holds for the results from the highly unbalanced designs with ascending
nj as shown in the fourth part of Table 6.2.Experiment 3 considered the power estimates of the non-null F test for a given sample size insuperiority trials. The values of margin in Figure 2 were reused here. Notice that they are smallerthan or equal to the differences. The other parameter values were the same as those in Experiment2 but σ = 0.4. Taking the same method as in Experiment 2 yielded the power and the observedpower, which are laid out in Table 6.3.In superiority trials, the power of the non-null F test is lower than that of the F test.Looking at the column µmax = 0 of Table 6.3, the observed test size 0.05 in the balanced designsequals the nominal level 0.05 and the observed test size 0.059 and 0.051 in the highly unbalanced

https://doi.org/10.28924/ada/stat.4.4


Eur. J. Stat. 10.28924/ada/stat.4.4 17

Table 6.3. Power estimates of non-null F test in superiority trials (β ∈ (0, 1))
∆j

Maximum difference µmax0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
1− β∗: nj = (25, 25, 25, 25, 25, 25, 25, 25)0 0.05 0.057 0.082 0.131 0.210 0.325 0.468 0.621 0.760 0.867 0.937

0.1µj 0.05 0.056 0.076 0.113 0.174 0.264 0.380 0.514 0.650 0.772 0.867
0.2µj 0.05 0.055 0.070 0.098 0.144 0.210 0.299 0.408 0.529 0.650 0.760
0.5µj 0.05 0.052 0.057 0.067 0.082 0.103 0.131 0.166 0.210 0.264 0.325

1− β̂∗: nj = (25, 25, 25, 25, 25, 25, 25, 25)0 0.05 0.059 0.077 0.137 0.222 0.323 0.471 0.607 0.747 0.859 0.943
0.1µj 0.05 0.058 0.070 0.118 0.183 0.263 0.375 0.510 0.642 0.760 0.859
0.2µj 0.05 0.057 0.068 0.093 0.148 0.222 0.299 0.398 0.521 0.642 0.747
0.5µj 0.05 0.053 0.059 0.068 0.077 0.102 0.137 0.175 0.222 0.263 0.323

1− β̂∗: nj = (48, 41, 35, 28, 22, 15, 9, 2)0 0.059 0.063 0.072 0.108 0.165 0.232 0.324 0.435 0.538 0.644 0.742
0.1µj 0.059 0.063 0.069 0.097 0.138 0.195 0.268 0.354 0.455 0.549 0.644
0.2µj 0.059 0.063 0.063 0.080 0.119 0.165 0.214 0.280 0.366 0.455 0.538
0.5µj 0.059 0.061 0.063 0.065 0.072 0.084 0.108 0.132 0.165 0.195 0.232

1− β̂∗: nj = (2, 9, 15, 22, 28, 35, 41, 48)0 0.051 0.056 0.072 0.100 0.140 0.216 0.294 0.408 0.531 0.645 0.755
0.1µj 0.051 0.058 0.067 0.090 0.124 0.180 0.244 0.326 0.440 0.539 0.645
0.2µj 0.051 0.059 0.067 0.083 0.111 0.140 0.197 0.257 0.340 0.440 0.531
0.5µj 0.051 0.057 0.056 0.067 0.072 0.084 0.100 0.119 0.140 0.180 0.216
The significance level is α = 0.05. The standard deviation is σ = 0.4. And the other parameter values are taken to bethe same as those in Table 6.2.
designs lie within (0.036, 0.064) a 95% confidence interval for the nominal size 0.05 as predictedby Remark 6.2.Experiment 2 and 3 were run in the range of β ∈ (0, 1). But our attention is often focused on
β = 0.1, which will be adopted in Experiment A1 and A2 as shown in Appendix.

7. Worked examples
7.1. Example for evaluating equivalence of group means. Larsen and Marx (2018, p598)[17] in-troduced a study that tells whether the use of special walking exercises may help infants walkalone. The study was fulfilled by 23 infants being randomly assigned to one of four groups. Group1 received special walking and placing exercises. Group 2 also had daily 12-minute exercisesbut were not given the special walking and placing exercises. Group 3 and 4 received no specialinstruction. Listed in Table 7.1 is the age (in months) at which each of the children first walk aloneafter seven-week training.
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Eur. J. Stat. 10.28924/ada/stat.4.4 18Table 7.1. Age when infants first walked alone (months)
Group 1 Group 2 Group 3 Group 49.00 11.00 11.50 13.259.50 10.00 12.00 11.509.75 10.00 9.00 12.0010.00 11.75 11.50 13.5013.00 10.50 13.25 11.509.50 15.00 13.00 -

Source: Larsen and Marx (2018), p598 [17].
Knowing that Ȳ·j = (10.12, 11.38, 11.71, 12.35) with Ȳ·· = 11.35 provides µ̂1 = -2.22, µ̂2 =-0.97, µ̂3 = -0.64, and µ̂4 = 0 with µ̄ = -1.00. The ordinary analysis is performed with ∆j = 0resulted in Q1 = 14.78 and Q2 = 43.69. The statistic F = 2.14 (P = 0.13) gives a non-significantresult at the α = 0.05 level.The contrasts in this case Ci = (ν1−ν2, ν1−ν3, ν1−ν4, ν2−ν3, ν2−ν4, ν3−ν4), i = 1, 2, . . . , 6,are estimated as Ĉi = (-1.25, -1.58, -2.22, -0.33, -0.97, -0.64). Testing the sub-hypotheses from(3.4) gives the statistics Fi = 2.04, 3.27, 5.87, 0.14, 1.13, 0.49 (P = 0.17, 0.09, 0.03, 0.71, 0,30,0.49). The contrast C3 with the maximum |Ĉ3| = 2.22 gives a significant result at the α = 0.05level: F3 = 5.87 (P = 0.03). The others show non-significant results.Now consider the equivalence of group means. If, for example, the margin is chosen as ∆j = 2.3µ̂j ,we have ∆1 = -5.12, ∆2 = -2.24, ∆3 = -1.48, and ∆4 = 0 with the average ∆ = -2.30. The treatmentsum of squares under the non-null hypothesis is Q∗1 = 24.97. The error sum of squares is Q∗2 =43.69, which equals Q2 as (3.2) predicts. Using (3.3) gives F ∗ = 3.62 (P = 0.03) and then wereject H at α = 0.05.In testing the non-null sub-hypotheses H′, we have F ∗i = 1.45, 0.68, 0.01, 5.07, 2.10, 3.28 (P= 0.24, 0.42, 0.93, 0.04, 0.16, 0.09). Of these, the contrast C4 with the minimum |Ĉ4| = 0.33shows F ∗4 = 5.07 (P = 0.04). We should reject H′ at α = 0.05 and conclude that the equivalenceholds for the contrast C4. The other contrasts are non-significant at α = 0.05 and the results areindeterminate.A closer look reveals that both Group 1 and 2 received the exercises and both Group 3 and 4received no special instruction. So, we are justified to merge the former two into one treatmentgroup and the latter two into one control group and make a simpler analysis using the two-samplenon-null t test instead. The sample sizes are nj = (12, 11) with gj = (0.52, 0.48) and the samplemeans are Ȳ·j = (10.75, 12.00) with µ̂ = −1.25. The conventional analysis gives Q1 = 8.97,

Q2 = 49.50, F = 3,80 (P = 0.06), and t = −1.95 (P = 0.06) and thus the null hypothesis H0 cannot be rejected at α = 0.05.
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Eur. J. Stat. 10.28924/ada/stat.4.4 19In considering the equivalence of the two means, if an appropriate margin is used as ∆ = 2.1µ̂,we have ∆ = -2.62. The analysis under the non-null hypothesis gives Q∗1 = 10.85, F ∗ = 4.60(P = 0.04), and t∗ = 2.15 (the two-sided P = 0.04 and the one-sided P = 0.02). The non-nullhypothesis is rejected at α = 0.025. Using (3.6), the one-sided 97.5% confidence interval for |∆|is computed as (0, 2.58), which fails to contain |∆| = 2.62 and so H0 : |µ| = |∆| can be rejectedat the α = 0.025 level. It is in favor of such an interpretation that the two means are equivalent.Alternatively, calculating (3.7) gives (-2.58,0), the one-sided 97.5% confidence interval for ∆. Sincethe interval does not contain ∆ = -2.62, H0 : µ = ∆ can be rejected at the α = 0.025 level. Theinterpretation turns to the non-inferiority, a profile of equivalence, implying that the mean of thetreatment group is not less than the mean of control group.
7.2. Example for evaluating clinical significance of differences. Table 7.2 contains the transforma-tion rates of lymphocytes from 24 healthy men in three age groups [20]. We wish to know whetherthere is any true difference of means among the three groups but the most interest is addressed inthe differences between any pair of means, especially the clinical significance of differences.

Table 7.2. Transformation rates (%) of lymphocytes
Age (years) Number of observations1 2 3 4 5 6 7 8 9 1011-20 58 61 61 62 63 68 70 70 74 7841-50 54 57 57 58 60 60 63 64 66 -61-75 43 52 55 56 60 - - - - -

Source: Sichuan Medical College (1981), p30 [20].
The sample sizes are nj = (10, 9, 5) with gj = (0.42, 0.38, 0.21) and the sample means are Ȳ·j =(66.50, 59.89, 53.20) with Ȳ·· = 61.25. Using (3.1) and (3.2) with ∆j = 0 yields Q1 = 616.31 and

Q2 = 662.19. The F statistic is F = 9.77 (P = 0) by (3.3). One would reject H0 at α = 0.05.There are three contrasts in this case: Ci = (ν1 − ν2, ν1 − ν3, ν2 − ν3), which are estimated as
Ĉi = (6.61,13.30,6.69). Testing the sub-hypotheses H′0 gives Fi = (6.57, 18.70, 4.56) (P = 0.02,0, 0.04). All the p-values imply that the differences between any pair of means are statisticallysignificant at the level α = 0.05, concluding that there is strong evidence that the transformationrates of lymphocytes in the three groups differ.Now, look at the clinical significance of differences. Suppose ∆j = 0.3µ̂j is appropriate forthe margin. Knowing that µ̂1 = 13.30, µ̂2 = 6.69, and µ̂3 = 0 with µ̄ = 8.05, we find ∆1 =3.99, ∆2 = 2.01, and ∆3 = 0 with ∆ = 2.41. It follows the treatment sum of squares under thenon-null hypothesis Q∗1 = 301.99 and the statistic F ∗ = 4.79 (P = 0.02). In testing the non-nullsub-hypotheses H′, the statistics are F ∗i = (2.64, 12.52, 1.86) (P = 0.12, 0, 0.19). We reject H′ at
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α = 0.05 with respect to the contrast C2 = ν1 − ν3 but not for the other two. In fact, the contrast
C2 has the maximum |Ĉ2| = 13.30. The proper interpretation is that the contrast C2 has clinicalsignificance but the other two are indeterminate.
7.3. Example of randomized block design. In a phase I trial [20], seven schistosomiasis patientsreceived a test drug for three days. The level of serum alanine aminotransferase (ALT), a sensitiveindex of reflecting liver damage, was measured before and after treatment with a randomized blockdesign. Table 7.3 lists the ALT levels.

Table 7.3. Levels of serum alanine aminotransferase (ALT) before and after treatment
Patients Pre-treatment levels of ALT Post-treatment levels of ALT” 3 days 1 week 2 weeks 3 weeks 4 weeks1 63 36 188 138 63 542 90 200 238 220 188 1443 54 36 300 83 100 924 45 72 140 213 144 1005 54 54 175 150 100 366 72 63 300 163 144 907 64 77 207 185 122 87

Source: Sichuan Medical College (1981), p31 [20].
With respect to the treatment effect, knowing that Ȳ·j = (63.14, 76.86, 221.14, 164.57, 123.00,86.14) with Ȳ·· = 122.48, we find µ̂j = (-23.00, -9.29, 135.00, 78.43, 36.86, 0) with µ̄ = 36.33.Concerning the block effect, we have Ȳi · = (90.33, 180.00, 110.83, 119.00, 94.83, 138.67, 123.67)with Ȳ·· = 122.48 and µ̂i = (-33.33, 56.33, -12.83, -4.67, -28.83, 15.00,0) with µ̄b = -1.19.Usual analysis with ∆j = 0 gives Q = 202586.48, Qt = 129003.33, Qb = 33104.81, and Qe =40478.33. By the use of (4.3), the F ratio for the treatment effect is Ft = 19.12 (P = 0). For theblock effect, it is Fb = 4.09 (P = 0) from (4.4). Both of them are statistically significant.With the highly statistical significance, one may further look for the clinical significance. Forthe treatment effect, if the appropriate margins are used as ∆j = 0.3µ̂j , we have ∆j = (-6.90, -2.79,40.50, 23.53, 11.06,0) with ∆ = 10.90. Knowing that Q∗ = 136794.78, Q∗t = 63211.63, Qb =33104.81, and Qe = 40478.33 provides F ∗t = 9.37 (P = 0). Turning to the block effect underthe non-null hypothesis, letting ∆i = 0.3µ̂i gives ∆i = (-10.00, 16.90, -3.85, -1.40, -8.65, 4.50,0)with ∆b = -0.36. Then we have Q∗ = 185703.02, Qt = 129003.33, Q∗b = 16221.36, and Qe =40478.33. By applying (4.4), we have F ∗b = 2.00 (P = 0.10). The small P-value for the treatmenteffect, yet the lack of significance for the block effect, states that the former is clinically significantat the 0.05 level but the latter not.
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The non-null hypothesis has a long history. A difference with clinical importance may be statis-tically non-significant and a statistically significant difference may be no real interest. Addressingthis issue, Kirk (2001)[21] claimed that there are three questions concerning the estimated dif-ference. First, is an observed result real or should it be attributed to chance (i.e., statisticalsignificance)? Second, if the result is real, how large is it (i.e., effect size)? Third, is the resultlarge enough to be meaningful and useful (i.e., clinical or practical significance)? The clinical sig-nificance is described in detail, for example, in Victor (1987)[6], Laupacis et al (1988)[22], or Kieseret al (2013)[7]. Such an idea even dates back to Kendal and Stuart (1979)[23]. Their concernconcentrated on the two questions. The first is whether there is any true difference and the secondis about its magnitude. The first question relates to the null hypothesis and the second, to thenon-null hypothesis. The non-null hypothesis test applies to assessing the equivalence of groupmeans or the clinical significance of differences. This has come to broaden the scope in analyzingclinical data.It is believed that any test of the null hypothesis has a corresponding non-null version. Here arethe non-null versions of the one- and two-way ANOVA F tests as well as the two-, one-sample ttests, and the paired t test. In the non-null generalization of the ANOVA F test, the treatment sumof squares changes with the margin but the grand mean, the sample variance, and the error sum ofsquares not (see Remark 2.1, 2.3). All the proposed tests enjoy the property of reducibility, meaningthat they reduce to their classical counterparts on setting the margin equal to zero. Therefore, theyare valid under both the null and non-null hypothesis.The power of the non-null F test is higher than that of the F test in equivalence trials asdescribed in Table 6.2. The larger the margin, the higher is the power. The required sample sizeof this test is smaller than that of the F test in equivalence trials, for which Appendix gives details.The results are just the contrary in superiority trials (see Table 6.3).The observed size of the non-null F test is identical to that of the F test (see Remark 6.1) andis near the nominal level regardless of the design balanced or unbalanced as in Table 6.1, 6.2, and6.3 (see also Remark 6.2).The observed power of the non-null F test is close to the power as long as the design is balancedas shown in Figure 4. The power may suffer from severe violations of balance. When there are mildviolations of balance, however, the observed power is still near the power as shown in the Appendix.It seems that mildly unbalanced designs would be somewhat tolerable in planning clinical trialsthough balanced designs are the best.Specifying the margin is the single greatest challenge in the designing, implementation, andanalysis of equivalence or non-inferiority trials, which is explained in detail in FDA (2016)[18].This is clearly subjective, and generally relies on professional knowledge, references, academic
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Eur. J. Stat. 10.28924/ada/stat.4.4 22conferences, prior experiences, past trials, or pilot studies, etc. An appropriate valuation of themargin comes from practices and experiences. For convenience to describe the performance of thenon-null F test, the margin is chosen larger than or equal to the difference for equivalence trialsand smaller than or equal to the difference for superiority trials. Note that we specify |∆j | ≥ 0,
j = 1, 2, . . . , k−1, except the last item j = k , in which we set ∆k = 0 because µk = 0. Note furtherthat the sign of ∆j is kept identical to that of µj . Situations sometimes arise where it is difficultto specify an appropriate margin. If necessary, one may even negotiate with the FDA (Rockville,Maryland, United States) about an acceptable boundary value.To an increasing extent, active control trials are selected rather than placebo trials, especially,since the fifth edition of Helsinki Declaration published [24, 25, 1]. On the other hand, relativeto the development of medical treatments, it is becoming difficult to develop more powerful drugs,hence one would be looking for new treatments that have the same efficacy but demonstrate betterquality in other aspects. As a consequence, the tests of the non-null hypothesis will be increasinglyuseful.Most equivalence trials or non-inferiority trials are planned in the two-sample format to comparea test drug with an active control to show that the test drug is either equivalent to or not worse thanthe active control. Hirotsu (2007)[26] illuminated the underlying association between these trialsand superiority trials and derived a unifying approach to the three kinds of trials. Lesaffre (2008)[27]among others introduced the basic definitions of superiority, equivalence, and non-inferiority trialsin a broader sense. Snapinn (2000) and Pater (2004) [28,29] among others laid the foundation forthe important theory and methods of equivalence trials and non-inferiority trials. In practice, themost frequently used are non-inferiority trials, which are discussed in detail by D’Agostino Sr et al(2003)[30]. The guidance for non-inferiority trials [18] recommends the use of confidence intervalsin data analysis, which is currently accepted [31, 32, 33, 34].Clinical practice goes beyond the two-sample format when we need to compare several drugs,several doses, or several routes of administration. Then the topic becomes the k-sample equivalencetrials and the inference procedures are hypothesis tests rather than confidence intervals.The ANOVA F test of the non-null hypothesis is presented just for this context. In analyzingk-sample data, we need both the non-null hypothesis test (3.3) for overall means testing and thenon-null sub-hypothesis tests (3.4) for each different pairwise comparison. In the two-sample case,the one-sided confidence interval (3.6) can be used for equivalence trials and (3.7) for non-inferioritytrials. Subsection 3.3 provides insights into the relationship between non-inferiority trials and k-sample equivalence trials and Subsection 7.1 gives a numerical calculation for it. Of the two-wayANOVA non-null F tests, (4.3) is used to test the treatment effect and (4.4), the block effect. If theoriginal observations are claimed to be normal after checking using Shapiro-Wilk test [35], so arethe observations under the non-null hypothesis based on (2.7) (see also Remark 2.2). The non-null
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Eur. J. Stat. 10.28924/ada/stat.4.4 23F test is used when the data are numerical. In the case of categorical data, one may prefer the
r × 2 chi-square test of non-null hypothesis (Zhao 2015) instead.With the non-null F test, it enables inferences to extend to the equivalence of group means ink-sample equivalence trials or the clinical significance of differences in clinical superiority trials.
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Eur. J. Stat. 10.28924/ada/stat.4.4 25Appendix: Observed power of non-null F test for given type II error
Experiment A1 investigated the power estimates of the non-null F test for a given type II error inequivalence trials. The values of margin in Figure 1 were taken again. The experiment was carriedout at α = 0.05 and β = 0.1. The sample size nj was determined from the process described inSubsection 5.2 with k = 4, νmin = 0.3, µmax = 0.16, σ = 0.4, and η = 1, 0.9, 0.5, 0.1. Thenwe obtained the balanced, mildly, moderately, and highly unbalanced designs in descending orascending series, respectively.The experiment consisted of generating the observations Yi j using the function rnorm(nj ,νj ,σ). Inapplying the method in Subsection 3.1, we obtained the statistic F ∗. Each simulation is based on1000 replications and yields a 95% confidence interval for the power 1−β = 0.9: 1−β±1.96(β(1−

β)/1000)1/2 = (0.881, 0.919). Following the same procedure that is used for Experiment 2, weobtained the observed power.The left half of Table A.1 covers the power estimates for the descending group sample sizes.
Table A.1. Power estimates of the non-null F test in equivalence trials (β = 0.1)

n
Descending nj

1− β̂∗
Ascending nj

1− β̂∗n1 n2 n3 n4 n1 n2 n3 n4

∆j = 0642 160 160 160 160 0.891 160 160 160 160 0.891176 166 155 144 0.903 144 155 166 176 0.899241 187 134 80 0.857 80 134 187 241 0.842305 209 112 16 0.649 16 112 209 305 0.646
∆j = 2.2µj447 112 112 112 112 0.910 112 112 112 112 0.910123 115 108 101 0.890 101 108 115 123 0.894168 130 93 56 0.834 56 93 130 168 0.839212 145 78 11 0.634 11 78 145 212 0.646
∆j = 2.5µj287 72 72 72 72 0.900 72 72 72 72 0.90079 74 69 65 0.913 65 69 74 79 0.904108 84 60 36 0.852 36 60 84 108 0.842137 93 50 7 0.645 7 50 93 137 0.645
∆j = 3µj163 41 41 41 41 0.909 41 41 41 41 0.90945 42 39 37 0.903 37 39 42 45 0.89761 48 34 20 0.845 20 34 48 61 0.83678 53 29 4 0.645 4 29 53 78 0.648

The balanced designs are defined by (5.5) with η = 1. The descending mildly, moderately, and highly unbalanceddesigns are defined by (5.5) with η = 0.9, 0.5, 0.1 and the ascending designs by (5.6). The significance level is
α = 0.05. The P(type II error) is β = 0.1. The minimum mean is νmin = 0.3. The maximum difference is µmax = 0.16.And the standard deviation is σ = 0.4.

The first rows in each part refer to the balanced designs. The observed power is close to 0.9.The same is true for the mildly unbalanced designs as shown in the second rows in each part. Withthe moderately or highly unbalanced designs, however, the observed power degenerates as seen inthe third and fourth rows. The right half of the table refers to ascending nj . The results are similar

https://doi.org/10.28924/ada/stat.4.4


Eur. J. Stat. 10.28924/ada/stat.4.4 26to those in the left. Furthermore, Table A1 states that the required sample size of the non-null Ftest is smaller than that of the F test in equivalence trials.Experiment A2 studied the power estimates of the non-null F test for a given type II error insuperiority trials. The margin was the same as that seen in Figure 2. Following the same stepsthat were taken in Experiment A1, we obtained the power estimates for β = 0.1 at α = 0.05 with
µmax = 0.33. The resulting power estimates are summarized in Table A.2.

Table A.2. Power estimates of the non-null F test in superiority trials (β = 0.1)
n

Descending nj
1− β̂∗

Ascending nj
1− β̂∗n1 n2 n3 n4 n1 n2 n3 n4

∆j = 0154 38 38 38 38 0.901 38 38 38 38 0.90142 40 37 35 0.887 35 37 40 42 0.89958 45 32 19 0.843 19 32 45 58 0.83773 50 27 4 0.636 4 27 50 73 0.644
∆j = 0.1µj189 47 47 47 47 0.907 47 47 47 47 0.90752 49 46 43 0.896 43 46 49 52 0.89371 55 39 24 0.857 24 39 55 71 0.86490 61 33 5 0.645 5 33 61 90 0.661
∆j = 0.2µj238 60 60 60 60 0.904 60 60 60 60 0.90466 62 58 54 0.899 54 58 62 66 0.90089 69 50 30 0.846 30 50 69 89 0.855113 77 42 6 0.640 6 42 77 113 0.681
∆j = 0.5µj604 151 151 151 151 0.912 151 151 151 151 0.912166 156 146 136 0.900 136 146 156 166 0.900226 176 126 75 0.848 75 126 176 226 0.840287 196 106 15 0.658 15 106 196 287 0.658

See Table 6.2 for definitions of designs. The significance level is α = 0.05. The P(type II error) is β = 0.1. Thenumber of groups is k = 4. The minimum mean is νmin = 0.3. The maximum difference is µmax = 0.33. The marginsare ∆j = 0, 0.1µj , 0.2µj , 0.5µj . And the standard deviation is σ = 0.4.
We have seen that the manner of variation in the observed power is just the same as that inExperiment A1. For another, the required sample size of the non-null F test is larger than that ofthe F test in superiority trials.
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