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Abstract. Extensive evidence has been gathered showcasing the prevalence of heavy-tailed distribu-tions and asymmetric tail interdependence within equity and foreign exchange markets, particularlyduring times of crisis. Tail interdependence in financial markets often manifests as financial con-tagion, characterized by periods where declining prices and heightened volatility propagate acrosseconomic and financial sectors. This phenomenon causes markets that typically exhibit minimal orno correlation to behave similarly, often in opposition to fundamental principles. Instances of unwar-ranted contagion present a perplexing challenge, suggesting irrationality among market participantsand defying conventional risk management strategies and optimal portfolio selections. Our objectiveis to construct a comprehensive framework for dissecting such occurrences, utilizing a metric of tail-nonexchangeable dependencies employing various copulas with diverse marginal distributions. Weoffer analytical insights into our measurement of tail order dependence to aid in understanding theseevents.

1. Introduction
The aim of the research is to suggest effective methods for measuring the extent of non-exchangeability in the extreme ends of a two-variable combined distribution. Investigating non-exchangeability in the tails can offer valuable insights into tail-specific statistical models, which arecrucial for understanding non-exchangeability patterns observed in various fields like risk manage-ment, quantitative finance, psychometrics, econometrics, and environmetrics [23]. When we describedata as heavy-tailed or fat-tailed, we are indicating that it exhibits a significant portion of notablysubstantial fluctuations. Here, large and relatively big denote proportions and fluctuations com-parable to those seen in a normally distributed random variable. These sizable fluctuations tendto occur concurrently across multiple markets, despite each market typically displaying distinctbehavior, meaning they are heterogeneous [13].Take, for instance, the stock market returns during October 2008. Within just a few days, fromOctober 6 to 10, the S&P 500 experienced a loss of approximately 15%. Were the S&P 500 tofollow a normal distribution, such an event would occur no more frequently than once in a millionyears. Now, observe the performance of other global markets during the same timeframe. The
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Eur. J. Stat. 10.28924/ada/stat.4.7 2FTSE 100, a prominent European stock index, saw a decline of around 14%, while the Nikkei225, a major Asian stock index, plummeted by about 21% [13]. Similar or even more significantdrops occurred previously, such as on October 19, 1987, famously known as Black Monday, albeitwithin a single day. By utilizing estimations of the mean and standard deviation of these indices,it becomes evident that if returns adhered to a normal distribution, the likelihood of such dropswould be on the order of 10−107. To contextualize, this probability is immensely smaller than thechance of selecting a specific atom from the entirety of atoms in the observable universe, estimatedto be 1080! [33].There have recently been quite a few papers focusing on the study of quantifying the degreeof overall non-exchangeability. For example, [18] and [19] study the extremal cases of bivari-ate non-exchangeability using copulas, [3] provides some axioms for measures of bivariate non-exchangeability, [4] and [4] study the cases for some specific bivariate copula families, [6] proposesa test for bivariate non-exchangeability, [7] extends the study of extremal non-exchangeability tomultivariate cases. However, all of these studies are for overall non-exchangeability.This paper focuses on evaluating the extent of tail non-exchangeability in a bivariate randomvector with identical marginal distributions. The concept of tail non-exchangeability herein relieson the asymptotic properties of bivariate copulas [12]. Initially, we introduce a suitable metricfor measuring the intensity of tail non-exchangeability. Subsequently, we outline various non-exchangeable bivariate copula families derived from commonly employed methodologies. Whileexisting literature explores several straightforward non-exchangeable copulas like the Marshall-Olkin copula and the generalized Clayton Copula as referenced in [5], along with copulas con-structed through comonotonic latent variables [11], our paper restricts its focus to two methods forgenerating non-exchangeable copulas: Khoudraji’s device [17], and extreme value copulas utilizingdependence functions featuring non-exchangeable structures.A bivariate non-exchangeable-transformed Clayton copula is studied in [9], which leads to non-exchangeable structures. In what follows, we refer to this copula as KB4 copula. The cumulativeDistribution Function (CDF) of a bivariate KB4 copula is
ζ(u, v) = u1−α1v1−α2 (u−α1δ + v−α2δ − 1)−1/δ, δ ≥ 0, (α1, α2) ∈ [0, 1]2.

Thus, this specific example offers an avenue for investigating tail non-exchangeability. Fur-thermore, further exploration can be conducted on copulas formed via comonotonic latent vari-ables [11], where non-exchangeable copulas can be readily established, necessitating the mod-eling of tail non-exchangeability levels. One viable approach involves examining the disparitybetween certain conditional quantities upon interchanging Z1 and Z2. Without loss of general-ity, for identical non-negative random variables Z1 and Z2, we leverage the asymptotic propertyof Γ(t) = E[Z1|Z2 > ≈]/E[Z2|Z1 > ≈] as t tends to infinity to evaluate the intensity of tailnon-exchangeability. Conditional quantiles, as utilized in [1], serve as a tool for investigating therobustness of tail dependence.
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In the realm of dependence modeling, copula functions are frequently utilized to capture depen-dency patterns observed in the extreme regions of joint distributions, especially when these patternscannot be adequately represented by commonly employed multivariate models such as multivariateNormal or Student t distributions. The majority of commonly used bivariate copulas adhere to anexchangeable structure, implying that ζ(u, v) ≡ ζ(v , u) for any pairs of (u, v) ∈ [0, 1]2. Given thepivotal role copula modeling plays in addressing tail dependencies, there is a particular interestin understanding non-exchangeable structures within the joint tails. Inspired by [10], where thetail behavior of E[Z1|Z2 > ≈] is examined to capture the strength of tail dependence between thebivariate random variable {Z1, Z2},

Definition 1. Let {Z1, Z2} be a bivariate random vector with identically distributed marginals,
supported on [0,∞)2. Then the vector {Z1, Z2} is said to be tail exchangeable if the following
condition holds:

lim
t→∞

Γ(t) := lim
t→∞

E[Z1|Z2 > ≈]

E[Z2|Z1 > ≈]
= 1. (1)

Remark 1. We define “tail exchangeability” as a limiting property between two random variables
when both of them take large values. When the condition (1) does not hold, the vector is said to
be “tail non-exchangeable”. The departure of functions Γ(t) to 1 as t →∞ captures the degree of
tail non-exchangeability.

Without loss of generality, assume that the {Z1, Z2} has a unique copula ζ(·, ·), of which thesurvival copula denoted as ζ̂(·, ·). Therefore the above condition can be written as:
lim
t→∞

Γ(t) = lim
t→∞

∫∞
0 ζ̂(F (z), F (t))dz∫∞
0 ζ̂(F (t), F (z))dz

= 1, (2)
where F is the cdf of the identical univariate marginals. The tail behavior of Γ(t) is evidentlyinfluenced by both the copula ζ and the marginal distribution F . Our objective is to investigatehow various marginal distributions impact the extent of tail non-exchangeability.
2.1. Notations. In this section, we introduce various notations and symbols, presenting them indi-vidually. To begin, we denote distribution functions as F (z), where the argument is enclosed inparentheses. For defining survival functions, we employ F (z), again with the argument enclosedin parentheses. It is well-established in traditional literature that the first-order derivative of thedistribution function is equivalent to the density function [22]. Hence, in subsequent sections, whenwe differentiate F (z) with respect to its argument, we denote the derivative as f (z) rather than
F ′(z). In simpler terms, f (z) = F ′(z) = ∂F (z)/∂z .Secondly, throughout our paper we define the survival copula of an ordinary Copula ζ∗ as ζ̂∗(. , .).Important thing in this case is that ζ̂∗(. , .) is the Copula before non-exchangeable transformation.After non-exchangeable transformation, we have the survival Copula as ζ̂(. , .). Here, throughoutour paper by Copula we actually mean Survival Copula where it itself is a function of survival
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functions [ i.e. F (z)]. In order to calculate the first order derivative we further use ζ̂∗1|2(u|v)instead of ∂ζ̂∗(u, v)/∂v . From the literature we know that, ζ̂∗1|2(u|v) is a Cumulative distributionfunction(cdf) if u, v ∈ [0, 1]2. In this paper we put u = F (z1) and v = F (z2) to make them vary in
[0, 1]. At the tail, when we derive conditional expectation by Laplace approximation, we need tocalculate second order derivative of our survival Copula. We use the notation ζ̂∗1|2,2(u|v)t o define
ζ̂∗1|2,2(u|v) = ∂2ζ̂∗(u, v)/∂v2 = ∂ζ̂∗1|2(u|v)/∂v .In the chapter of Extreme value Copula we use the traditional notation of the [21] depen-dence function as A(ν). Furthermore, after using non-exchangeable transformation in gen-eral extreme value dependence function becomes A∗. In the first part of this section we de-fine our own non-exchangeable extreme value Copula. Inside of the parenthesis we define
ν = log(F (t))/ log(F (z)F (t)). An extreme value survival Copula is non-exchangeable if A∗(ν) 6=
A∗(1− ν) [32]. In our case, we define A∗α(ν) = A∗(1− ν). Our notation implies that, one survivalextreme value Copula is non-exchangeable if A∗(ν) 6= A∗α(ν).
Assumption 1. Assume that following conditions are fulfilled:(1) Let f (z) be a real valued function on the finite or semi-infinite interval [α, β) and in an

interval (α,α+ ε] with ε > 0 it is continuously differentiable, and

sup
α+ε≤z≤β

f (z) ≤ f (α)− δ, δ > 0.

For the derivative f ′(z) we have that

f ′(z) < 0 for all z ∈ (α,α+ ε],

f ′(z) = −a(z − α)r−1 + o((z − α)r−1) with r > 0.

(2) h(x) is a continuous real valued function on the interval [α, β) with

h(z) = b(z − α)s−1 + o((z − α)s−1) with s > 0.

(3) Let the integral be ∫ β

α

|h(z)| exp(f (z))dz <∞.

Then

I(λ) =

∫ β

α

h(z) exp(λf (z))dz

with λ ≥ 1 are all finite and have the asymptotic approximation

I(λ) ∼
b

r
Γ
(s
r

)( r
a

)s/r
λ−s/r exp(λf (α)), λ→∞.
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Assume that Z1 and Z2 have identical marginal distribution functions with the cdf F beingcontinuous on [0,∞), and density functions and moments exist whenever they are used. FollowingKhoudraji’s device, write

ζ̂(F (z), F (t)) = F (z)1−α1F (t)1−α2 ζ̂∗(F (z)α1 , F (t)α2), (α1, α2) ∈ [0, 1]2, (3)
where ζ̂∗ is the survival copula of ζ∗ that is exchangeable.Now, by using methods in [10] we are trying to see the tail non-exchangeability of survival copulawhich we are explaining in the next steps. As the conditional expectations do not have any closedform solutions, [10] suggests to use either Laplace approximation or Watson’s lemma for asymptoticapproximation when t → ∞ [29]. They used these approximations in exchangeable copulas. Inour paper, we are using the same method after transforming a copula into a non-exchangeablestructure [33].
Proposition 2. For all (α1, α2) ∈ [0, 1]2, β > 1, and if Z1 and Z2 are two random variables which
exhibits a dependent structure with g′(0, T ) > 0 then,

E[Z1|Z2 > ≈] ∼ − log(F(≈)) − log(F(≈)) ð(
,− log[F(≈)])

√
2�

log[F(≈)] ð′′(
,− log[F(≈)])
,

for all t →∞, γ = limT→∞maxs g(s, T ), T = − log(F (t)), α1 6= α2, and s ∈ (0, 0 + ε]

Proof. Following [10], together with (3),
E[Z1|Z2 > ≈] =

∫ ∞
0

ζ̂(F (z), F (t))

F (t)
dz, ∀ t

=

∫ ∞
0

F (z)1−α1F (t)1−α2 ζ̂∗(F (z)α1 , F (t)α2)

F (t)
dz ∀ t (4)

Since y = − logF (z) =⇒ dy = −∂F (z)/∂z
F (z)

dz =⇒ F (z)dy = −∂F (z)∂z dz =⇒ F (z)dy =

f (F−1(1 − F (z)))dz , after changing of variables we get, e−ydy = f (F−1(1 − e−y ))dz =⇒
e−y [f (F−1(1− e−y ))]−1dy = dz . Using this condition into (4) yields,

E[Z1|Z2 > ≈] =

∫ ∞
0

T�2−y(2−�1)�̂∗(−�1y,−�2T)[f(F−1(1− −y))]−1 y (5)
Let y = sT , and thus dy = Tds . Using this condition in (5) yields,

E[Z1|Z2 > ≈] = T−w
∫ ∞
0

Tð(∼,T)h(∼)∼, whereh(∼) = 1, ∀ ∼ ∈ [0,∞), (6)
where w := limz→0+ log(f (F−1(z)) < ∞, a real constant depending on marginal distribution F ,and

g(s, T ) = α2 − s(2− α1) +
1

T
{log[ζ̂∗(e−α1sT , e−α2T )[f (F−1(1− e−sT ))]−1] + w}. (7)

It can be easily verified that g(0, T ) = 0.
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Eur. J. Stat. 10.28924/ada/stat.4.7 6From the previous paragraphs we know, g(0, T ) = 0 and g(∞, T ) = −∞ as T → ∞. Toimplement Laplace approximation, we have to check if g ′(0, T ) > 0 for all T → ∞. In thiscase the asymptotic rate might be T 1/2eTγh(s0(T );T )[−g′′(s0(T );T )]1/2. Again, here also γ =

limT→∞maxs g(s, T ) and −g′′(s0(T );T ) > 0 exist and continuous as T →∞. From (6) we know,
g(s, T ) = α2 − s(2− α1) + 1

T [log ζ̂∗(e−α1sT ,e−α2T )
f (F−1(1−e−sT )) + w ] [in case E[Z1|Z2 > ≈]]. If we differentiatethis function with respect to s, we get,

g′(s, T ) = −(2− α1)−
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )

−
e−sT f ′(F−1(1− e−sT ))[f (F−1(1− e−sT ))]−1

f (F−1(1− e−sT ))

= −(2− α1)−
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )

−
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))
(8)

To satisfy the Laplace approximation we must have
lim
T→∞

g′(0, T ) = (α1 − 2)− lim
T→∞

α1ζ̂
∗
2|1(e

−α1sT |1)

e−α2T
(9)

−
f ′(F−1(0))

f 2(F−1(0))
> 0 (10)

In (8), the first order condition determines α1. If all the above conditions are satisfied with
h(s) = 1 then, Laplace approximation implies,

E[Z1|Z2 > ≈] = T

∫ ∞
0

eTg(s,T )h(s)ds

∼ T
∫ ∞
0

exp{Tg(γ, T ) +
1

2
(s − γ)2g′′(γ, T )}ds

∼ TeTg(γ,T )
√

2π

−Tg′′(γ, T )
. (11)

In order to satisfy the final expression g′′(γ, T ) must exist and −g′′(γ, T ) > 0. This completes theproof. �

Remark 2. When α1 = α2 = α, we obtain an exchangeable survival copula. Additionally, setting
α = 1 yields identical outcomes to those presented in Hua (2014). These specified conditions on
the g function are prerequisites before employing Laplace approximation, Watson’s lemma, or both.
Notably, copulas with Pareto, Weibull, or Exponential margins fulfill both of these conditions.

Remark 3. Calculations for the case of ζ̂∗ (where ζ̂∗ is a Clayton Copula with Pareto margins) yield
w = logβ. Apart from that after calculation we get 1T log ζ̂∗(e−α1sT , e−α2T ) = 1

T log e−α2T = −α2.
Thus, g(0, T ) = 0 and g(∞, T ) = −∞.
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Eur. J. Stat. 10.28924/ada/stat.4.7 7We know, marginal cumulative distribution function (CDF) of Pareto distribution is F (x) =

1 − (1 + x)−β . Thus, the density function is f (x) = F ′(x) = β(1 + x)−(1+β) and
f ′(x) = −β(1 + β)(1 + x)−(2+β), ∀ β > 1. Thus, the extreme right hand sideof (9) becomes, − limT→∞ f

′(F−1(0))f −2(F−1(0)) = − limT→∞−β(1 + β)β−2. Thus,
− limT→∞ f

′(F−1(0))f −2(F−1(0)) = 1 + β−1 > 1. Now, let us solve the second term of theright hand side of equation (9). At first let us write the original survival Clayton copula before [17]transformation. The numerator part is just the first order derivative of Clayton Copula with respectto its first argument and the denominator term is just the copula itself.We know, Clayton Copula is ζ̂∗(u, v) = (u−δ + v−δ − 1)−1/δ . Hence,
ζ̂∗2|1(v |u) = −

1

δ
(u−δ + v−δ − 1)−(1+1/δ)(−δ)u−(1+δ)

= u−(1+δ)(u−δ + v−δ − 1)−(1+1/δ), ∀ δ > 0 (12)
From (9) we know that the middle term is − limT→∞

α1ζ̂
∗
2|1(e

−α2T |1)
ζ̂(1,e−α2T )

, that is,
− lim
T→∞

α1ζ̂
∗
2|1(e

−α2T |1)

ζ̂∗(1, e−α2T )
= − lim

T→∞

α1e
−α2δT (1+1/δ)

eα2δT

= − lim
T→∞

α1 e
−α2δT = 0, (13)

From our above discussion it is clear that we can use Laplace Approximation under Clayton copulawith Pareto margins when limT→∞ g
′(0, T ) > 0. After using conditions (12),(13) we get −(2 −

α1) + 1 + 1/β > 0 or, 1 + α1 + β−1 > 2 =⇒ α1 + β−1 > 1 otherwise we have to useWatson’s lemma [25]. In the next section we will see that we need exactly the same conditionbefore applying Laplace approximation and we will see in the cases of Weibull and exponentialmargins, limT→∞ g
′(0, T ) < 0.

Remark 4. From the above example it is clear that, when α1 + β−1 > 1 we can use Laplace
Approximation. Furthermore, under this case, γ → α2 (α1)

−1 as T → ∞. On the other hand, in
general γ → α2δ {α1δ + (1− α1)}−1, as T →∞, ∀ (α1, α2) ∈ [0, 1]2, and δ > 0.

Proposition 3. Let Z1 and Z2 be two random variables which exhibit dependent structure and∫∞
0 eTg(s,T ) ds <∞. Then for all (α1, α2) ∈ [0, 1]2 and if g′(0, T ) ≯ 0 Watson’s lemma implies,

E[Z1|Z2 > ≈] ∼
1[

(2−�1) + B1 + B2
] , as ≈→∞,

where B1 =
α1ζ̂

∗
2|1(e

−α2T |1)
ζ̂∗(1,e−α2T )

, B2 = f ′(F−1(0))
f 2(F−1(0)) , and T = − log F (t).

Proof. Let us assume ∫∞0 eTg(s,T ) < ∞. From our definition we know that, T = − log F (t). Thisimplies, T →∞ ⇐⇒ t →∞. Thus, if we are able to prove,
E[Z1|Z2 > ≈] ∼

1[
(2−�1) + B1 + B2

] ,
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B1 =

α1e
−α1sT ζ̂∗2|1(e

−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
,

and
B2 =

e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))
.

Furthermore, since g′(0, T ) ≤ 0 , then Watson’s lemma works as g′(s;T ) < 0. From our previousresults , that is enough to prove the proposition. We know, g(0, T ) = 0 and g(∞, T ) = −∞.Since g(s, T ) is a real valued function on the semi-infinite interval [0,∞) and in an interval
(0, 0 + ε] with ε > 0, this function is continuously differentiable, and

sup
0+ε≤s≤∞

g(s, T ) ≤ g(0, T )− ψ, (14)
with ψ > 0.For g′(s, T ) we have g′(s, T ) < 0 as α1 + β−1 ≤ 1, and s → 0. We can also write

g′(s, T ) = −as r−1 + o(s r−1) ∀r > 0.

If r = 1, then
g′(s, T ) = −a = −

[
(2− α1) +

α1e
−α1sT ζ̂∗2|1(e

−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))

]
.

Watson’s lemma requires,
lim
s+→0

g′(s, T ) = −[(2− α1) +
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))
],

which is a constant if
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))goes to a constant as s+ → 0. Thus,
−a = −[(2− α1) +

α1ζ̂
∗
2|1(e

−α2T |1)

ζ̂∗(1, e−α2T )
+
f ′(F−1(0))

f 2(F−1(0))
]

or, a = (2− α1) +
α1ζ̂

∗
2|1(e

−α2T |1)
ζ̂∗(1,e−α2T )

+ f ′(F−1(0))
f 2(F−1(0)) = 2 + f ′(F−1(0))

f 2(F−1(0)) > 0.Assume there exists another real and continuous function h(s) ∈ [0,∞) such that,
h(s) = bsm−1 + o(sm−1)

with m > 0. Thus,
bsm−1 + o(sm−1) = 1 =⇒ b = 1 (15)when m = 1. Assume ∫∞0 eg(s,T )ds < ∞ then, by Watson’s lemma the approximated value of theintegral I(T ) =

∫∞
0 eTg(s,T )ds . The asymptotic approximation is
I(T ) ∼

(
1

(2− α1) +D1 +D2

)(
T−1

)
eTg(0,T ) as, T →∞

https://doi.org/10.28924/ada/stat.4.7


Eur. J. Stat. 10.28924/ada/stat.4.7 9Therefore,
E[Z1|Z2 > ≈] ∼

1[
(2−�1) + B1 + B2

] (16)
as t → ∞, ∀ (α1, α2) ∈ [0, 1]2, β > 1 and where B1 =

α1ζ̂
∗
2|1(e

−α2T |1)
ζ̂∗(1,e−α2T )

= α1 and B2 = f ′(F−1(0))
f 2(F−1(0)) .This completes the proof. �

Example 1. Above proposition implies,
a = (2− α1) +

α1Ĉ
∗
2|1(e

−α2T |1)

ζ̂∗(1, e−α2T )
+
f ′(F−1(0))

f 2(F−1(0))
> 0.

In our case, the marginal CDF of the Pareto distribution is F (x) = 1 − (1 + x)−β . Thus, thedensity function is f (x) = F ′(x) = β(1 + x)−(1+β) and f ′(x) = −β(1 +β)(1 + x)−(2+β), ∀ β > 1.Thus, limT→∞
f ′(F−1(0))
f 2(F−1(0)) = limT→∞

−β(1+β)
β2

for s ∈ (0, 0 + ε]. Hence, for Pareto margins we have
limT→∞

f ′(F−1(0))
f 2(F−1(0)) = −

[
1 + 1

β

] around s = 0 [i.e. s ∈ (0, 0 + ε]].In the case of Clayton copula we know that,
ζ̂∗2|1(e

−α2T |e−α1sT ) = α1e
sT (1+α1δ)(eα1δsT + eα2δT − 1)−(1+

1
δ
)

We know, g(s, T ) = (2−α1) +
α1e

−α1sT ζ̂∗
2|1(e

−α2T |e−α1sT )
ζ̂∗(e−α1sT ,e−α2T )

+ e−sT f ′(F−1(1−e−sT ))
f 2(F−1(1−e−sT )) . We have to calculatethe value of g(s, T ) around s = 0 and as T →∞ [i.e. a]. We have;

g(s, T ) =(2− α1) +
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))

= (2− α1) +
α1e

−α1sTα1e
sT (1+α1δ)(eα1δsT + eα2δT − 1)−(1+

1
δ
)

(eα1δsT + eα2δT − 1)−
1
δ

(17)
+
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))

a = (2− α1)−
[

1 +
1

β

]
, at T →∞ and s ∈ (0, 0 + ε]

= 1− α1 −
1

β
, at T →∞ and s ∈ (0, 0 + ε]. (18)

To satisfy a > 0 we need α1 + β−1 ≤ 1. This condition is true. Thus, Watson’s lemma implies,
E[Z1|Z2 > ≈] ∼

1(
1−�1 − 1

�

) , a≈ ≈→∞ an ∼ ∈ (0,0+�]. (19)
4. Examples

In our study, we utilize a specific form of Archimedean copula known as the Clayton Copula. Bydefinition, this copula is represented as ζ̂∗(u, v) = (u−δ + v−δ − 1)−
1
δ , where (u, v) ∈ [0, 1]2 and

δ ≥ 0. Subsequently, we apply the Khoudraji non-exchangeable device to transform it into thetransformed Clayton Copula, as outlined in Khoudraji et al. (1996) (referred to as KB4). Moreover,in our analysis of non-exchangeability at the tail, we consider three distributions as margins:
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Eur. J. Stat. 10.28924/ada/stat.4.7 10Pareto, Weibull, and Exponential. These distributions represent the three primary patterns of tailbehavior observed in univariate margins, as derived from extreme value theory [38]. Our primaryobjective in this paper is to examine the influence of both margins and dependence on tail non-exchangeability.A bivariate Khoudraji-transformed Clayton copula has been studied in Hofert and Vrins (2013),which takes care about the non-exchangeable structure. In our study we name this as KB4 copula.The CDF of bivariate KB4 copula can be written as;
ζ̂(u, v) = (u−α1δ + v−α2δ − 1)−1/δu1−α1v1−α2 , δ ≥ 0, (α1, α2) ∈ [0, 1]2, (20)

where the original survival Clayton Copula before Khoudraji transformation is ζ̂∗(u, v) = (u−δ +

v−δ − 1)−1/δ . At first, we are interested in checking the behavior of our measure of tail non-
exchangeability represented by;

Γ(t) =
E[Z1|Z2 > ≈]

E[Z2|Z1 > ≈]
,

where a general tail behavior of E[Z1|Z2 > t] as t →∞ has been studied earlier in the paper.
4.1. Pareto Margins. To begin, let’s consider employing the Pareto distribution as univariate mar-gins, characterized by the CDF, F (z) = 1− (1 + z)−β , where β > 1 holds for both variables. Thisdistribution follows a power-law pattern and exhibits relatively heavier tails. Widely utilized ineconomics, actuarial science, geophysics, and other fields, it’s sometimes referred to as the Brad-ford distribution. Originating from Vilfredo Pareto’s investigation into the distribution of wealthin class-based societies, as documented in his seminal work “The New Theories of Economics"published in “The Journal of Political Economy" [20], it reveals a notable skewness towards highervalues. Pareto observed that approximately 20% of the population possesses around 80% of the to-tal wealth, unveiling significant disparities in resource allocation, especially evident under extremecircumstances. Consequently, the application of extreme value theory becomes imperative, particu-larly in sectors like insurance and finance, where risk is inherent. Traditional asymptotic theoriesoften fail to adequately predict extreme events in such scenarios. Utilizing the Pareto distributionwith the Clayton Copula transformed by [17], enables us to better anticipate and manage theseextreme occurrences.In our model, we aim to compute a stable conditional expectation at extreme values. Given theheavy right skewness of the Pareto distribution, we adopt this margin alongside a non-exchangeableClayton Copula [31]. Unlike the previous section where we illustrated examples using generalCopula functions with various margins, here we directly employ the KT-transformed Clayton Copulawith Pareto margins to derive the g function. We demonstrate that the conditions and outcomesobtained in both the preceding and current sections are identical, which is advantageous as itensures consistency with the theoretical framework previously established. Employing both LaplaceApproximation and Watson’s lemma, we derive the form of the tail-order non-exchangeable structure.Through simulation studies, we ascertain that Laplace Approximation outperforms Watson’s lemma
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Eur. J. Stat. 10.28924/ada/stat.4.7 11in this context. Leveraging the propositions and lemmas presented, we compute the form of tail-order conditional expectations.
Lemma 4. Khoudraji transformed Clayton Copula with Pareto margins the integrand function g
satisfies g(0, T ) = 0 and g(∞, T ) = −∞ as T →∞.

Proof. Assume the random variables X1, X2 follow Pareto distribution with identical CDF F (z) =

1− (1 + z)−β, β > 1. Let ζ̂ be the [17]-transformed Clayton survival Copula of (Z1, Z2).
F (z) = 1− (1 + z)−β, β > 1Thus, F (z) = 1− F (z) = 1− 1 + (1 + z)−β = (1 + z)−β, (21)

where F (z) and F (z) represent distribution and survival functions respectively.Following [10] we transform the survival function F (t)→ e−T

or, T = − logF (t) = β log(1 + t). Now,
E[Z1|Z2 > ≈] =

T
�

∫ ∞
0

Tð(∼,T)∼, ∀ T (22)
where, g(s, T ) = 1 + s

β + 1
T log ζ̂(e−sT , e−T ). Clearly, t →∞ ⇐⇒ T →∞.Again,

Ĉ(e−sT , e−T ) = (eα1δsT + eα2δT − 1)−1/δe−(1−α1)sT e−(1−α2)T

= (eα1δsT + eα2δT − 1)−1/δe−sT+α1sT−T+α2T (23)
Hence,

1

T
log ζ̂(e−sT , e−T ) = −

1

T
[1/δ log(eα1δsT + eα2δT − 1) + sT − α1sT + T − α2T ]

=⇒
1

T
log ζ̂(e−sT , e−T ) = −

1

T
[1/δ log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T ] (24)

In order to do either Laplace Approximation or Watson’s Lemma we need to check if (i) g(0;T ) = 0and (ii) g(∞;T ) = −∞ are true. Lets check the first case; (i) =⇒

g(0;T ) = 1−
1

T
[
1

δ
log(1 + eα2δT − 1) + (1− α2)T ], as e0 = 1

= 1−
1

T
[
1

δ
log eα2δT + (1− α2)T ]

= 1−
1

T
[α2T + T − α2T ] = 1− 1 = 0, (25)

as T →∞. From the above calculation we conclude that, condition (i) holds. To show (ii) let usewrite g(s;T) one more time. We know from the previous calculations,
g(s;T ) = 1 +

s

β
−

1

T
[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T ]

=⇒ g(∞;T ) = 1 +∞−
1

T
[
1

δ
log(e∞ + eα2δT − 1) +∞+ (1− α2)T ]

=⇒ g(∞;T ) = −∞, (26)
as T →∞. From (25) and (26) we get the result. �

https://doi.org/10.28924/ada/stat.4.7


Eur. J. Stat. 10.28924/ada/stat.4.7 12

Lemma 5. g′(0, T ) > 0 if α1 + β−1 > 1 and α2 > α1, for all (α1, α2) ∈ [0, 1]2 and β > 1.

Proof. Consider the g function,
g(s;T ) = 1 +

s

β
−

1

T

[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T

] (27)
Thus, g′(s;T ) =

1

β
−

1

T

[
α1δTe

α1δsT

δ(eα1δsT + eα2δT − 1)
+ (1− α1)T

]
=

1

β
−

1

T

[
α1δT

δ[1 + eα2δT−α1δsT − e−α1δsT ]
+ (1− α1)T

]
=

1

β
−

α1
1 + eα2δT−α1δsT − e−α1δsT − (1− α1) (28)

=⇒ lim
T→∞

g′(0, T ) =
1

β
+ α1 − 1 , i f α2 > α1 (29)

where α1 ∈ [0, 1] and β−1 ∈ [0, 1). To obtain g′(0, T ) > 0 we need β−1 + α1 − 1 > 0 or,
β−1+α1 > 1. If we compare this result with the general case, we can see that, both of the resultsare same. �

Remark 5. Under Laplace approximation the asymptotic rate is
T 1/2eTγh(s0(T ))[−g′′(s0(T ), T )]−1/2, where h(s0(T )) = 1 and γ = limT→∞maxs g(s, T ),

s0(T ) = arg maxs g(s, T ).
Proposition 6. Under Clayton Copula with Pareto margins, γ → α2 (α1)

−1 as t → ∞, which is
the ratio of two non-exchangeable parameters.

Proof. For KB4 copula with Pareto margins, g function is
g(s, T ) = 1 + sβ−1 − T−1[δ−1 log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T ],

which is continuous everywhere through R. Before calculating condition (ii) let us first determinethe exact form of s0(T ) = arg maxs g(s, T ). Equation (27) implies,
g′(s, T ) =

1

β
−

1

T

[
α1δT

δ(1 + eα2δT−α1δsT − e−α1δsT )
+ (1− α1)T

]
=

1

β
−

α1
1 + eα2δT−α1δsT − e−α1δsT − (1− α1) (30)

First order condition yields,
1

β
−

α1
1 + eα2δT−α1δsT − e−α1δsT − (1− α1) = 0

α1
1 + e−α1δsT (eα2δT − 1)

=
1

β
− (1− α1)

e−α1δsT (eα2δT − 1) =
α1β

1− β(1− α1)
− 1

e−α1δsT =
1

eα2δT − 1

[
α1β

1− β(1− α1)
− 1

]
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eα1δsT =
(eα2δT − 1)[1− β(1− α1)]

α1β − (1− β(1− α1))

α1δsT = log
(eα2δT − 1)[1− β(1− α1)]

α1β − (1− β(1− α1))

s0(T ) =
1

α1δT
log

(eα2δT − 1)[1− β(1− α1)]

α1β − (1− β(1− α1))
(31)

From (31) we get the exact expression of s0(T ). Now we have to check the behavior of thisabove function when T → ∞. We know,γ = limT→∞maxsg(s, T ). Using the expression of s0(T )in (31) and taking the limit of T in both the sides yields
γ = lim

T→∞
s0(T )

= lim
T→∞

{
1

α1δT
log

(eα2δT − 1)[1− β(1− α1)]

α1β − (1− β(1− α1))

}
= lim
T→∞

log(eα2δT − 1)

α1δT
+ lim
T→∞

log(1− β(1− α1))

α1δT

− lim
T→∞

α1β − (1− β(1− α1))

α1δT

= lim
T→∞

log(eα2δT − 1)

α1δT
[ two right hand side terms go to 0 asT →∞ ]

= lim
T→∞

α2δe
α2δT

α1δ(eα2δT − 1)
, [by L’Hospital Rule]

= lim
T→∞

α2
α1(1− e−α2δT )

, [dividing by δeα2δT from numeritor and denominator]
=
α2
α1
, ∀ (α1, α2) ∈ [0, 1]2 (32)

This completes the proof. �

Remark 6. If we compare this result with using the theoretical results in the previous section, we
have to approach in the following way: In the case of Clayton copula we know that,

ζ̂∗2|1(e
−α2T |e−α1sT ) = α1e

sT (1+α1δ)(eα1δsT + eα2δT − 1)−(1+
1
δ
)

From our previous result we know that, −g′(s, T ) = (2 − α1) +
α1e

−α1sT ζ̂∗
2|1(e

−α2T |e−α1sT )
ζ̂∗(e−α1sT ,e−α2T )

+

e−sT f ′(F−1(1−e−sT ))
f 2(F−1(1−e−sT )) . First order condition implies,

(2− α1) +
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
+
e−sT f ′(F−1(1− e−sT ))

f 2(F−1(1− e−sT ))
= 0

(2− α1) +
α1e

−α1sT ζ̂∗2|1(e
−α2T |e−α1sT )

ζ̂∗(e−α1sT , e−α2T )
= 0, as T →∞

e−α1δsT =
1

eα2δT − 1

[
α21e

(1−α1)sT

α1 − 2
− 1

] (33)
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Furthermore,

e−α1δsT =
1

eα2δT − 1

[
α21e

(1−α1)sT

α1 − 2
− 1

]
eα1δsT =

(α1 − 2)(eα2δT − 1)

α21e
(1−α1)sT − α1 + 2

α1δsT = log(eα2δT − 1) + log(α1 − 2)− log[α21e
(1−α1)sT − α1 + 2]

s =
log(eα2δT − 1)

α1δT
+

log(α1 − 2)

α1δT
−

log[α21e
(1−α1)sT − α1 + 2]

α1δT

=
α2e

α2δT

α1(eα2δT − 1)
−

α1(1− α1)se(1−α1)sT

δ[α21e
(1−α1)sT + 2− α1]

, by L’Hospital Rule

=
α2
α1
−

α1s(1− α1)
δ[α21 + (2− α1)e−(1−α1)sT ]

, as T →∞

=
α2
α1
−

(1− α1)s
α1δ

, as T →∞

γ =
α2δ

α1δ + (1− α1)
, as T →∞ (34)

From the earlier example we know that, for Clayton Copula with Pareto margin we can use Laplace
Approximation if α1 + β−1 > 1. By our assumption we also know that, β > 1. Thus, β−1 ∈ [0, 1).
To satisfy both the conditions we need α1 is very close to 1. Then the expression γ → α2 (α1)

−1

as α1 → 1. In the previous proposition we see the expression is exactly same. Thus, γ → α2
α1

as
T →∞ and α1 → 1.

Proposition 7. Second order sufficient condition of the integrand g of Khoudraji transformed Clay-
ton Copula satisfies.

Proof. From the previous section we know that, g′(s;T ) = β−1 − T−1[(α1δTeα1δsT ){δ(eα1δsT +

eα2δT − 1)}−1 + (1 − α1)T ]. In order to satisfy Laplace Approximation we need negative secondorder value of the integrand. Here we prove that when α2 = α1s holds, the second order conditionfor maximization occurs.
As, g′(s;T ) =

1

β
−

1

T

[
α1δTe

α1δsT

δ(eα1δsT + eα2δT − 1)
+ (1− α1)T

]
g′′(s;T ) =

∂g′(s;T )

∂s

= −
[
α21δTe

δsT (eα1δsT + eα2δT − 1)

(eα1δsT + eα2δT − 1)2
−
α1e

δsT (α1δTe
α1δsT )

(eα1δsT + eα2δT − 1)2

]
=⇒ −g′′(s;T ) =

[
α21δTe

δsT (eα1δsT + eα2δT − 1)

(eα1δsT + eα2δT − 1)2
−
α1e

δsT (α1δTe
α1δsT )

(eα1δsT + eα2δT − 1)2

]
=

[
α21δTe

δsT

eα1δsT + eα2δT − 1
−
α1e

δsT (α1δTe
α1δsT )

(eα1δsT + eα2δT − 1)2

]
=

α21δTe
δsT

eα1δsT + eα2δT − 1

(
1−

eα1δsT

eα1δsT + eα2δT − 1

) (35)
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lim
T→∞

−g′′(s;T ) = lim
T→∞

α21δTe
δsT

eα1δsT + eα2δT − 1

(
1−

eα1δsT

eα1δsT + eα2δT − 1

) (36)
In order to make limT→∞−g′′(s;T ) > 0 we need (1− eα1δsT (eα1δsT + eα2δT − 1)−1) > 0 as

lim
T→∞

α21δTe
δsT (eα1δsT + eα2δT − 1)−1 > 0,

since the denominator is greater than 0, 0 < α1 < 1, and δ ≥ 0. Now from the above condition weget, eα1δsT + eα2δT − 1− eα1δsT > 0 which further implies eα2δT > 1 . This is possible only when
s ∈ [0,∞) , 0 < α1 < 1 and δ ≥ 0.Let us discuss the property of g′′(s, T ) in further details. From (36) we know that,

lim
T→∞

−g′′(s;T ) = lim
T→∞

α21δTe
α1δsT

eα1δsT + eα2δT − 1

(
1−

eα1δsT

eα1δsT + eα2δT − 1

)
= lim
T→∞

α21δTe
α1δsT

eα1δsT + eα2δT − 1

(
1−

e(α1δs−α2δ)T

e(α1δs−α2δ)T + 1− e−α2δT

)

= lim
T→∞

α21δT

1 + e(α2δ−α1δs)T − e−α1δsT

(
1−

e(α1δs−α2δ)T

e(α1δs−α2δ)T + 1− e−α2δT

)
= lim
T→∞

α21δT

2

(
1−

1

2

)
= lim
T→∞

α21δT

4
> 0, as α1 = α2. (37)

This completes the proof. �

Combining the above conditions of function g we get, g(0;T ) = 0 and g(∞, T ) = −∞. Thus,
g(s;T ) is strictly increasing for s ∈ (0, γ] and is strictly decreasing for s ∈ [γ;∞). Now at t →∞we can write,

E[Z1|Z2 > ≈] ∼
T
�
Tð(∼0(T);T)

√
2�

−Tð′′(∼0(T);T)
∼
1
�
Tð(∼0(T);T)

√
2�T

−ð′′(∼0(T);T)
(38)

Again,
g(s;T ) = 1 + s0(T )β−1 − T−1[δ−1 log(eα1δs0(T ) T + eα2δT − 1) + (1−α1)s0(T ) T + (1−α2)T ],

−g′′(s0(T );T ) = (α21δTe
α1δs0(T ) T )(eα1δs0(T ) T +eα2δT −1)−1(1−eα1δsT (eα1δsT +eα2δT −1)−1),

s0(T ) = (α1δT )−1 log
[
(eα2δT − 1)[1− β(1− α1)](α1β − (1− β(1− α1)))−1

]
and T = β log(1 + t) .
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Corollary 8. For all (α1, α2) ∈ [0, 1]2 and very large value of T , the integrand function g varies
slowly and takes the value;

ga(s, T ) =


1 + (1− α1)s if α2 > α1;

1 + s − α2 if α2 < α1;

(1− α2
2 ) + (1− α1

2 )s if α2 = α1,

where ga(s, T ) = T−1[δ−1 log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T ].

Again, as we have calculated the optimal s, then we can say that the limit goes to a constantnumber. Thus, the conditional expectation at T →∞ becomes,
E[Z1|Z2 > ≈] ∼

1

β
eβ log(1+t)g(α1,α2,δ)

√
2πβ log(1 + t)

−g′′(α1, α2, δ, β log(1 + t))
, (39)

as T = β log(1 + t).Now,
E[X1|X2 > ≈] ∼

1

β
eβ log(1+t)g(α1,α2,δ)

√
8πβ log(1 + t)

α21δβ log(1 + t)

∼
1

β
(1 + t)

β[1+
α2
α1β
−F ]
√

8π

α21δ
, ∀ (α1, α2) ∈ [0, 1]2, β > 1 and δ > 0 (40)

where F is a constant where F = (1− α2
2 ) + (1− α1

2 )α2α1 .
Corollary 9. Let Z1 and Z2 be two dependent random variables. For all (α1, α2) ∈ [0, 1]2, δ ≥ 0,
β > 1 and as t →∞, we have;

E[Z2|Z1 > ≈] ∼
1

β
(1 + t)

β
[
1+

α2
α1β
−
{
(1−α1

2
)+(1−α2

2
)
α2
α1

}]√
8π

α22δ
. (41)

To measure the non-exchangeability, we have to take the ratio of two conditional expectations[i.e E[Z1|Z2 > ≈] E[Z2|Z1 > ≈]−1]. Using conditions (40) and (41) we get;
E[Z1|Z2 > ≈]

E[Z2|Z1 > ≈]
∼

(1 + t)
β
[
1+

α2
α1β
−(1−α2

2
)−(1−α1

2
)
α2
α1

]
(1 + t)

β
[
1+

α1
α2β
−(1−α1

2
)−(1−α2

2
)
α1
α2

]
∀ (α1, α2) ∈ [0, 1]2, β > 1, δ > 0, and s0 ∈ [0,∞). (42)

From (42) it is clear that the ratio of two conditional expectations depends on some constant powerof (1 + t). In order to satisfy Laplace approximation we need just only two conditions, which are
β−1 + α1 > 1 and β−1 + α2 > 1. By the framework we also know that, (α1, α2) ∈ [0, 1]2, β >

1, δ > 0 and s0 ∈ [0,∞).
Remark 7. In (42) we can see that, if α1 = α2, the ratio the two conditional expectations becomes1. Intuitively, α1 = α2 means the KB4 copula is exchangeable. Then, there is no differencebetween two conditional expectations.
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Proposition 10. Suppose Z1 and Z2 are two dependent random variables. If α1 + β−1 < 1 and∫∞
0 eg(s,T ) < ∞, then the integrand function g slowly converges to a constant as t → ∞; where

(α1, α2) ∈ [0, 1]2, δ > 0, β > 1 and s ∈ [0, 0 + ε). In this case, conditional tail expectation
converges to

E[Z1|Z2 > ≈] ∼
1
�

(
1

1− 1
� −�1

)
,

as t →∞.

Proof. Now let us consider the other case when Laplace approximation does not work. We useWatson’s lemma if g′(s;T ) < 0. From our previous results we know, g(0, T ) = 0 and g(∞, T ) =

−∞. Again we know, g(s, T ) = 1+sβ−1−T−1[δ−1 log(eα1δsT+eα2δT−1)+(1−α1)sT+(1−α2)T ].Thus,
g(s, T ) = 1 +

s

β
−

1

T

[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T

]

=⇒ g′(s, T ) =
1

β
−

1

T

[
α1δTe

α1δsT

δ(eα1δsT + eα2δT − 1)
+ (1− α1)T

] (43)
Suppose we consider, like in the previous case β−1+α1−1 > 0 does not hold anymore as T →∞.Then we no longer can use Laplace approximation. We have to check if g′(s, T ) is decreasing in s.In this situation if we divide the numerator and denominator of the second term of the right handside of (43) by eα1sT , we get,

g′(s, T ) =
1

β
−

α1

1 + e(α2−α1s)δT − e−α1δsT
− (1− α1), w ith α2 > α1

=⇒ lim
s→0+, T→∞

g′(s, T ) =
1

β
− lim
s→0+, T→∞

α1

1 + e(α2−α1s)δT − e−α1δsT
− (1− α1)

=
1

β
+ α1 − 1 (44)

In order to show g′(s, T ) < 0 we have to assume β−1+α1 ≯ 1 where β > 1 and α1 ∈ [0, 1]. Nowwe can use Watson’s lemma. Here we are not using the Watson’s lemma directly. Since g(s, T )is a real function on the semi-infinite interval [0,∞) and in (0, 0 + ε] with ε > 0, this function iscontinuously differentiable and
sup

0+ε≤s≤∞
g(s, T ) ≤ g(0, T )− ψ, (45)

with ψ > 0.Now for g′(s, T ) we have g′(s, T ) < 0 as β−1 + α1 < 1 and s →∞. We can also write
g′(s, T ) = −as r−1 + o(s r−1) ∀ r > 0.

Now if we assume r = 1 then g′(s, T ) = −a. From our previous results we know that,
lims→0+, T→∞ g

′(s, T ) = β−1 − 1 + α1, which is a constant. Thus, −a = β−1 + α1 − 1 or,
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a = 1 − β−1 − α1 > 0. Assume there is another real and continuous function h(s, T ) ∈ [0,∞)such that,
h(s, T ) = bsm−1 + o(sm−1)with m > 0. More specifically we assume h(s, T ) = 1 in our case. Thus,

bsm−1 + o(sm−1) = 1 =⇒ b = 1 (46)
when m = 1.Finally, as we are assuming ∫∞0 eg(s,T )ds <∞. Now,∫ ∞

0

eg(s,T ) ds =

∫ ∞
0

e1+
s
β
− 1
T [ 1δ log(e

α1δsT+eα2δT−1)+(1−α1)sT+(1−α2)T ] ds

=

∫ ∞
0

e1+
s
β
− 1
δT
log(eα1δsT+eα2δT−1)−(1−α1)s−(1−α2) ds

= eα2
∫ ∞
0

e
s
β
− 1
δT
log(eα1δsT+eα2δT−1)−(1−α1)s ds

= ϑ

∫ ∞
0

e
s
β
− 1
δT
log(eα1δsT+eα2δT−1)−(1−α1)s ds, where ϑ = eα2 <∞

(47)
If we are able to show the integration in (47) is finite, then we are able to use Watson’s lemma.When T is very large [i.e., T →∞],∫ ∞

0

e
s
β
− 1
δT
log(eα1δsT+eα2δT−1)−(1−α1)s ds

≤
∫ α2

α1

0

e
s
β
−α1δsT

δT
−(1−α1)s ds +

∫ ∞
α2
α1

e
s
β
−α2δT

δT
−(1−α1)s ds as T →∞

=

∫ α2
α1

0

e
s
β
−α1s−(1−α1)s ds +

∫ ∞
α2
α1

e
s
β
−α2

δ
−(1−α1)s ds

=

∫ α2
α1

0

e

[
1
β
−α1−(1−α1)

]
s
ds + e−α2

∫ ∞
α2
α1

e

[
1
β
−(1−α1)

]
s
ds

=
e

[
1
β
−1
]
α2
α1

1
β − 1

+ e−α2
e

[
1
β
−(1−α1)

]
s

1
β − (1− α1)

∣∣∣∣∞α2
α1

(48)
It is clear that in (48) the first term is always finite . The second term in (48) is finite if α1+β−1 < 1which is obvious as β > 1. Watson’s lemma implies that the approximated value of the integral
I(T ) =

∫∞
0 eTg(s,T )ds with T ≥ 1 are all finite and the asymptotic approximation is

I(T ) ∼

(
1

1− 1β − α1

)(
T−1

)
eTg(0,T ) as, T →∞

=⇒ I(T ) ∼

(
1

1− 1β − α1

)(
T−1

)
e0 as, g(0, T ) = 0, T →∞ (49)
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=⇒ I(T ) ∼

(
1

1− 1β − α1

)(
T−1

)
as, g(0, T ) = 0, T →∞ (50)

Hence,(50) implies,
E[Z1|Z2 > ≈] ∼

(
1

1− 1β − α1

)(
β−1

)
as, g(0, T ) = 0, T →∞

∼
1

β

(
1

1− 1β − α1

)
as t →∞ (51)

This completes the proof. �

Corollary 11. Suppose Z1 and Z2 are two random variables. For all (α1, α2) ∈ [0, 1]2, δ > 0 and
β > 1 we have;

E[Z2|Z1 > ≈] ∼
1

β

(
1

1− 1β − α2

)
, (52)

as t →∞.

Again in this case in order to measure non-exchangeability we have to take the absolute differ-ence between two conditional expectations defined in (51) and (52) respectively. Conditions (51)and (52) yield
E[Z1|Z2 > ≈]

E[Z2|Z1 > ≈]
∼

(
1− 1β − α2
1− 1β − α1

) (53)
∀ (α1, α2) ∈ [0, 1]2, and β > 1

From (53) it is clear that the ratio of two conditional expectations goes to 1 as t →∞ if α1 = α2.If we carefully look at (51) and (52), both of the conditional expectations equal O(log(1 + t)−1). Ifwe do simulations we always get horizontal lines of E[Z1|Z2 > t] and E[Z2|Z1 > t] respectively.
Remark 8. In order to satisfy Watson’s lemma, we need just only two conditions, which are β−1 +

α1 < 1 and β−1+α2 < 1. By the framework we also know that, (α1, α2) ∈ [0, 1]2, β > 1, δ > 0,
and s ∈ [0, 0 + ε).

Remark 9. In (53) we observe that, if α1 = α2, the ratio of two conditional expectations becomes
1. Intuitively, α1 = α2 means the KB4 copula becomes exchangeable. Therefore, there is no
difference between two conditional expectations.

4.2. Weibull Margins. In this section, we delve into the Weibull distribution. We’ve opted for thisdistribution due to its sub-exponential nature. Utilizing this distribution offers the advantage ofaccommodating small sample sizes effectively. Our focus in this paper lies in developing a modelbased on extreme value theory, where we are particularly interested in the extremes. Essentially,when dealing with a density function, attention must be paid to its tails. Gathering sufficient dataon these tails, especially in extreme value theory, can be prohibitively expensive. For instance,
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Eur. J. Stat. 10.28924/ada/stat.4.7 20consider the incidence of tornadoes in certain regions of the United States. It’s well-known thatsome Southern regions have a higher tornado probability than others. Tornadoes are categorizedbased on severity, with EF-5 tornadoes being the most perilous. Within the realm of extreme valuetheory, we aim to ascertain the probability of EF-5 tornado occurrences. Given their rarity, dataavailability for EF-5 tornadoes is extremely limited, making acquiring a sizable dataset a costlyendeavor in this context.Consider another scenario, such as that found in economics and finance. Imagine an individualkeen on investing in the stock market, a realm known for its high volatility. When entering thismarket, investors calculate their expected returns based on the probabilities of both gaining andlosing money. Before committing funds, investors must bear a cost. By subtracting this costfrom the expected returns, one can derive the anticipated profit from investing in the market. Letus illustrate this with a simple model to elucidate the scenario. Consider an investor faces twopossibilities: either winning a sum (denoted as W ) or losing money (denoted as L). With onlytwo outcomes, the probabilities of winning and losing are equal, each being 1
2 . Consequently,the investor’s expected return from the stock market is expressed as E(R) = 1
2W + 1

2 (−L) [26].Such expectations align with Von Neumann-Morgenstern type returns. Assume that the investorincurs a cost of c before investing in the stock market. Thus, the expected profit for the investorbecomes E(R)− . Additionally, consider the extreme cases in this scenario, such as a complete lossof investment. Obtaining data on such losses is exceedingly scarce, and seeking more instancesof such data is costly. Therefore, predicting the occurrence of such investor losses necessitatesthe utilization of small datasets. In such cases, the Weibull distribution proves highly beneficial.Furthermore, this distribution offers visually intuitive graphical representations, facilitating a betterunderstanding of extreme behaviors simply by examining the plots. Furthermore, this distributionis useful in cancer studies [2, 8, 14–16,41,42].In this section, we examine Z1 and Z2, which are assumed to adhere to the Weibull distributioncharacterized by identical cumulative distribution functions F (z) = 1 − e−zγ for all z and γ > 0.Consequently, the survival function becomes F (z) = 1 − F (z) = e−z
γ for all z and γ > 0.The choice of a positive value for γ is motivated by the desire to emphasize significance at thetail of the distribution. We employ our KB4 copula in conjunction with this margin. Given theWeibull distribution’s ability to provide meaningful insights with relatively few observations, weanticipate that conditional expectations derived from it will offer a good fit for the tail. However,as these conditional expectations lack closed-form solutions, we explore the viability of employingLaplace Approximation or Watson’s lemma. Prior to delving into these methods, we transformthe integrand function into the form eg(s,T ) and verify if conditions such as g(0, T ) = 0 and

g(∞, T ) = −∞ hold. Throughout this paper, we denote s as a proxy for Z1. Subsequently, wediscover that Laplace Approximation is not applicable in this case, leaving Watson’s lemma asthe viable option. To obtain the exact value of conditional expectations when t → ∞. Finally,
E[Z1|Z2 > ≈] ∼ 
−1�(1
)(1 − �1)−1 as t → ∞ and T = tγ , which is constant. In a similar
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−1�(1
)(1−�2)−1 as t →∞ . Since both ofthem are constants, their ratio is going to be unity.
Proposition 12. Integrand of the conditional expectations are multiplicative separative of two mono-
tonic functions.

Proof. In this example we consider two dependent random variables Z1 and Z2 which follow Weibulldistribution with identical cumulative distribution functions F (z) = 1− e−zγ , ∀z, γ > 0. Now thesurvival function should be F (z) = 1 − F (z) = e−z
γ ∀x, γ > 0. Following [10] we will transformthe survival function F (t) → e−T or, T = − logF (t) = tγ , y = −logF (x) = xγ =⇒ z = y

1
γ .Differentiating totally both sides of the previous equation we get; dz = 1

γ y
1
γ
−1dy .Now, by using the method provided by [10] we get;

E(Z1|Z2 > ≈) =

∫ ∞
0

eT ζ̂(e−y , e−T )y
1
γ
−1γ−1dy

= γ−1T
1
γ

∫ ∞
0

eT ζ̂(e−sT , e−T )s
1
γ
−1ds,

= γ−1T
1
γ

∫ ∞
0

eT [1+
1
T
log Ĉ(e−sT ,e−T )]s

1
γ
−1ds (54)

= γ−1T
1
γ

∫ ∞
0

eTg(s;T )h(s)ds, ∀s ∈ [0,∞)

where, g(s, T ) = 1 + T−1 log ζ̂(e−sT , e−T ), and h(s) = s
1
γ
−1 > 0. �

Remark 10. Clearly, from the above two equations we can say that, the behavior of the conditionalexpectation depends on g(s, T ) function.
In order to check if Laplace approximation or Watson’s lemma is valid, we need to check twoconditions first, (i) g(0, T ) = 0 and, (ii) g(∞, T ) = −∞ first. After using KB4 copula in the gfunction above we have,

g(s, T ) = 1−
1

T

[
1

δ
log(eα1δsT + eα2δT − 1) + (1− α1)sT + (1− α2)T

] (55)
Thus,

g(0;T ) = 1−
1

T
[α2T + T − α2T ] = 1− 1 = 0 (56)

and,
g(∞, T ) = 1−

1

T
[
1

δ
log(e∞ + eα2δT − 1) +∞+ (1− α2)T ]

=⇒ g(∞, T ) = −∞, as T →∞. (57)
From the above discussion we can see that in the case of KB4 Copula with Weibull margins wecan have the g function which satisfies g(0, T ) = 0 and g(∞, T ) = −∞. Now in order to calculatethe conditional tail expectations we need to check if g′(0, T ) > 0 as T →∞.
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Claim 13. Khoudraji transformed Clayton Copula does not have any solution of conditional expec-
tations at the tail by Laplace Approximation.

Proposition 14. Suppose Z1 and Z2 are two dependent random variables. If γ > 1, conditional
tail expectation of KB4 Copula with Weibull margin goes to some constant,

E[Z1|Z2 > ≈] ∼ 
−1�
(
1



)
1

1−�1
as t →∞.

Proof. In order to satisfy Watson’s lemma we have to check if g(s;T ) is decreasing in s or if
g′(s, T ) < 0.We know from above;

g′(s, T ) = −
1

T
[

α1δTe
α1δsT

δ(eα1δsT + eα2δT − 1)
+ (1− α1)T ]

= −[
α1e

α1δsT

(eα1δsT + eα2δT − 1)
+ (1− α1)]

= −[
α1

(eα1δsT + eα2δT − 1)e−α1δsT
+ (1− α1)]

= −[
α1

e0 + e(α2−α1s)δT − e−α1δsT
+ (1− α1)

= −[
α1

1 + e(α2−α1s)δT − e−α1δsT
+ (1− α1)] < 0

=⇒ lim
T→∞

g′(s, T ) = −[α1 + 1− α1] = −1 < 0, i f α2 < α1, or

= −(1− α1) < 0, i f α2 > α1 (58)
From (58) we are sure that we need to use Watson’s lemma. As g(s, T ) is a real valued functionon the semi-infinite interval [0,∞) and in (0, 0 + ε] with ε > 0 this function is continuouslydifferentiable and

sup
0+ε≤s≤∞

g(s, T ) ≤ g(0, T )− ψ, (59)
with ψ > 0. Now for g′(s, T ) we have g′(s, T ) < 0 as 1β < 1 and s+ → 0. We can also write,

g′(s, T ) = −as r−1 + o(s r−1) ∀r > 0

Now, if we assume r = 1 then g′(s, T ) = −a. From our previous results we know that,
lims+→0, T→∞ g

′(s, T ) is either -1 or −(1−α1), based on the conditions described in (58). As weare concentrating on asymmetric copulas we better choose −(1 − α1) in order to maintain somenon-exchangeability. Thus, −a = −(1− α1) or, a = 1− α1 > 0.Let us assume there is another continuous real valued function h(s, T ) ∈ [0,∞) such that,
h(s) = bsm−1 + o(sm−1)

with m > 0. From (54) we know, h(s) = s
1
γ
−1 in our case. Thus,

bsm−1 + o(sm−1) = s
1
γ
−1 =⇒ b = 1, and m =

1

γ
(60)
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Eur. J. Stat. 10.28924/ada/stat.4.7 23Finally, a we are assuming ∫∞0 |h(s)|eg(s,T )ds < ∞. Let us find out the exact condition underwhich the whole integration becomes finite. After putting the value of g(s, T ) in the integrand wehave, ∫ ∞
0

|h(s)|eg(s,T ) ds

=

∫ ∞
0

|s
1
γ
−1| e1−

1
T
[ 1
δ
log(eα1δsT+eα2δT−1)+(1−α1)sT+(1−α2)T ] ds

= eα2
∫ ∞
0

s
1
γ
−1 e−

1
δT
log(eα1δsT+eα2δT−1)−(1−α1)s ds

≤ eα2
[∫ α2

α1

0

s
1
γ
−1 e−α2−(1−α1)s ds +

∫ ∞
α2
α1

s
1
γ
−1 e−(α1+1−α1)s ds

]
, at T →∞

= eα2
[
e−α2 e−(1−α1)s

1
γ
−1∑
i=0

(−1)
1
γ
−i−1 ( 1γ − 1)!

i !(α1 − 1)
1
γ
−i
s i
∣∣∣∣α2α1
0

+ e−s

1
γ
−1∑
i=0

(−1)
1
γ
−i−1 ( 1γ − 1)!

i !
s i
∣∣∣∣∞α2
α1

] (61)
If we carefully look at (61) both the terms on the right hand side is always finite. The main reasonsare we have e−s and γ > 0; which leads us three possibilities, γ ∈ (0, 1), γ = 1 and γ > 1. Letus discuss each of the cases separately. As we have e−s as the first term, it is always finite as
s → ∞. Now, only thing matters is the value of γ. When γ ∈ (0, 1), γ−1 − 1 takes the highestvalue when γ → 0. By assumption γ > 0. So γ−1 − 1 < ∞. Under this case we still possibilityto have s i →∞ as s →∞. Therefore, we need more restriction on γ. In this bound of (0, 1) s i isnot finite. Furthermore, when γ = 1, s i → ∞ as s → ∞. Hence, we need γ > 1 to make s i < ∞for any large s .By Watson’s lemma we can write the approximated value of the integral I(T ) =

∫∞
0 eTg(s,T )dswith T ≥ 1 are all finite and the asymptotic approximation is;

I(T ) ∼ Γ

(
1

γ

)
1

1− α1

(
T−

1
γ

)
eTg(0,T ) as, T →∞

I(T ) ∼ Γ

(
1

γ

)
1

1− α1

(
T−

1
γ

)
as, T →∞ and e0 = 1 (62)

From equation (54) we know,
E[Z1|Z2 > ≈] ∼ 
−1�

(
1



)
1

1−�1
a∼ ≈→∞ an T = ≈
, (63)

where α1 ∈ [0, 1], γ > 0 and t →∞. This completes the proof. �

Claim 15. In the similar fashion if X1 and X2 are two dependent random variables then, E[Z2|Z1 >
≈] ∼ 
−1�

(
1



)
1

1−�2
, as t →∞ and T = tγ , ∀ γ > 0.
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Γ(t) ∼

1− α2
1− α1

, (64)
as (α1, α2) ∈ [0, 1]2, γ > 0 and t →∞.
Remark 11. If we do not consider non-exchangeability lims+→0,T→∞ g

′(s, T ) = −1, which is also
a constant . Thus, −a = −1 or, a = 1 > 0. If we do Watson’s lemma then, the expressions
of two conditional expectations should be, E[Z1|Z2 > ≈] ∼ 
−1�

(
1



)
and E[Z2|Z1 > ≈] ∼


−1�
(
1



)
respectively as t →∞.

4.3. Exponential Margins. Finally, we utilize the non-exchangeable transformation of the ClaytonCopula with exponential margins as proposed by [17]. This distribution holds significant propertiesin the literature, such as being part of the exponential family, lacking memory, and crucially, exhibit-ing characteristics of a Poisson process. Being a Poisson process implies that at extreme values, thedistribution stabilizes to a constant. The primary focus of our paper is to explore extreme eventsand ascertain their probability of occurrence across various domains including nature, actuarialscience, econometrics, and finance [37]. Additionally, we aim to identify a slow variation functioncapable of elucidating conditional tail expectations. The determinant of non-exchangeability rep-resents the ratio of two conditional tail-order expectations. Towards the conclusion of this section,we present simulation results within this framework.To derive the tail conditional expectations following [10] we are able to show that the integrandfunction can be decomposed into g(.) and h(.) > 0 functions which are multiplicatively separa-ble. Here, g(.) is a monotonically decreasing function which satisfies, g(0,− log(F (t))) = 0 and
g(∞,− log(F (t))) = −∞ as t → ∞. As this integration does not have any closed form solu-tion, we try to use different simulation methods. We finally end up with Watson’s lemma. In thiscase Laplace approximation does not work as g′(0, log(F (t))) ≯ 0 but, g′(s,− log(F (t))) < 0 as
t → ∞; where t is the proxy of X2 and F (.) is the survival function and always in [0, 1]. Afterusing Watson’s lemma we get our tail non-exchageability as

E(Z1|Z2 > ≈)

E(Z2|Z1 > ≈)
∼


1 if α2 > α1;
1−α2
1−α1 if α2 < α1;
1−α2

2

1−α1
2

if α2 = α1;
where α1 and α2 are non-exchangeable components under [17] non-exchangeable transformation ofClayton Copula. In the above expression we can easily see that, at extreme values our measure ofnon-exchangeability goes to a constant irrespective of the relation between the non-exchangeablecomponents. At the end of this section as we do the simulation we can see that, our simulation-results are consistent with the results corresponding to numerical integrations with certain levelsof error.
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Eur. J. Stat. 10.28924/ada/stat.4.7 25We know the cumulative distribution function of exponential type is F (z) = 1−e−λz , ∀x ∈ [0,∞).Thus, the survival function becomes, F (x) = 1 − F (x) = e−λz , λ > 0, and ∀ z ∈ [0,∞). Inthe following propositions we are trying to derive a slow variation function of conditional tailexpectations.
Proposition 16. Integrand of the conditional expectations of Khoudraji transformed Clayton Copula
with exponential margin is multiplicatively separative of two monotonic functions one of which is
strictly positive and other is decreasing.

Proof. Following [10] we transform the survival function F (t) → e−T , or, T = − logF (t) =

− log e−λt = λt . Now, y = logF (z) = − log e−λz = λz . As, y = λz then after totally differentiatethis equation n both sides we get dy = λdz =⇒ dz = λ−1dy . Thus, dy = sdT + Tds = Tds ,as we are assuming T is constant.Now,
E[Z1|Z2 > ≈] =

∫ ∞
0

eT Ĉ(e−y , e−T )λ−1dy, ∀λ > 0

= λ−1T

∫ ∞
0

eT Ĉ(e−sT , e−T )ds, ∀s ∈ [0,∞)

= λ−1T

∫ ∞
0

eT (1+
1
T
log Ĉ(e−sT ,e−T )ds, ∀s ∈ [0,∞) (65)

where, g(s, T ) = 1 +T−1 log ζ̂(e−sT , e−T ) and , h(s) = 1 > 0. Clearly, from (65) we can say that,the behavior of the conditional expectation depends on g(s, T ) function. �

In this scenario, we observe that g(0, T ) = 0 and g(∞, T ) = −∞ as T tends to infinity.Consequently, we have the option to employ either Laplace Approximation or Watson’s lemma.Should we opt for the former, we must additionally verify if g′(0, T ) > 0 as T approaches infinity.Upon examination, we ascertain that this condition is not satisfied. Thus, we are compelled toresort to Watson’s lemma. Prior to applying Watson’s lemma, it is imperative to confirm if g(s, T )exhibits a decreasing trend with respect to s .
Lemma 17. In the context of the Khoudraji transformed Clayton Copula, the function g demon-
strates a decreasing trend with respect to s , with its value contingent upon the non-exchangeable
coefficients of the Copula.

Proof. We know from above;
g′(s;T ) = −

1

T

[
α1δTe

α1δsT

δ(eα1δsT + eα2δT − 1)
+ (1− α1)T

]
= −

[
α1

(eα1δsT + eα2δT − 1)e−α1δsT
+ (1− α1)

]
= −

[
α1

1 + e(α2−α1s)δT − e−α1δsT
+ (1− α1)

]
< 0

=⇒ lim
T→∞

g′(s;T ) = −[α1 + 1− α1] = −1 < 0, i f α2 < α1

https://doi.org/10.28924/ada/stat.4.7


Eur. J. Stat. 10.28924/ada/stat.4.7 26

or , = −(1− α1) < 0, i f α2 > α1

or , = −
(

1−
α1
2

)
< 0, i f α2 = α1 (66)

From (66) we are sure that we can use Watson’s lemma. Thus, g is decreasing in s and the valuedepends on the coefficients of non-exchangeability [i.e. α1, α2]. �

Claim 18. Let Z1 and Z2 be two dependent random variables. Conditional tail expectation of
KB4 Copula with Exponential margins goes to some constant as t → ∞ and the measure of tail
non-exchangeability can be written as;

E[Z1|Z2 > ≈]

E[Z2|Z1 > ≈]
∼


1 if α2 > α1;
1−α2
1−α1 if α2 < α1;
1−α2

2

1−α1
2

if α2 = α1.

where α1 and α2 are non-exchangeable components.

5. Concluding remarks
Heavy-tailed distributions and copulas provide a unified methodology for examining crises, sig-nificant fluctuations, dependency, and contagion effects in the realms of economics and finance.Our manuscript primarily concentrates on assessing the degree of tail non-exchangeability. Webegin by introducing metrics tailored for quantifying the strength of tail non-exchangeability, em-ploying conditional tail expectations [35]. Following this, we present theoretical outcomes fornon-exchangeable bivariate copulas generated using Khoudraji’s methodology, along with threedistinct types of univariate marginals [12]. Our results underscore the heightened importanceof tail non-exchangeability particularly when Pareto marginals are employed. Consequently, weadvocate for transforming each marginal distribution to conform to a Pareto distribution. In ourendeavor to identify tail non-exchangeability, we propose an analytical framework. Throughout ouranalysis, we examine a specific type of Archimedean copula, namely the Clayton Copula, pairedwith exponential, Pareto, and Weibull margins.This type of tail non-exchangeability carries significance in the field of time series analysis, es-pecially when evaluating the evolution of two random variables over time [26]. Such occurrences areapparent when examining the interchangeability of market shares between two separate companiesoperating within the same industry [24, 29, 38, 40]. If these shares demonstrate interchangeabil-ity, it becomes feasible to forecast future share prices for one company based on the informationregarding the other. Looking forward, we can investigate the existence of tail interchangeabilityamong different soccer positions across diverse teams. For example, our approach can be utilizedto examine the interchangeability of goal dynamics between two strikers from different clubs in theEuropean Football League [39]. Should these dynamics exhibit interchangeability, it suggests thata club can smoothly substitute one striker with another once the contract of the first striker expires.
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Eur. J. Stat. 10.28924/ada/stat.4.7 27A similar analysis can be carried out for various batting positions in cricket matches involvingdifferent teams [36].In the domain of infectious disease modeling, the widely utilized susceptibility-infection-recovery(SIR) framework becomes relevant [34]. Our approach facilitates the assessment of exchangeabilityby analyzing various SIR datasets across two regions [27, 28, 30, 32]. Should exchangeability beconfirmed, it indicates that implementing a particular vaccination strategy could result in diseaserecovery within those regions [31]. This adaptable methodology extends its utility to a wide arrayof fields, demonstrating its capacity to derive valuable insights from different types of data [25].
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