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ABSTRACT. In this paper, we present the Alpha power generalized odd generalized 
exponential-G (APGOGE-G) family of distributions and provides the most common 
shapes of the hazard rate function: increasing, decreasing, bathtub, and inverted 
bathtub. We provide some of its structural properties. We estimate the parameters by 
maximum likelihood estimation method, and perform a simulation study to verify the 
asymptotic properties of the estimator for the inverse Weibull baseline. The practicality 
of the new APGOGE-Rayleigh model is shown through application to uncensored real 
dataset. 

 
 

1. INTRODUCTION 
One of the preferred research fields in the probability distribution submitted is the 

development of new distributions starting with a baseline distribution with parameters to 
current distributions for creating groups to exhibit flexibility. Numerous techniques for adding 
a parameter to distributions have been put forth and utilized to simulate outcomes in a 
variety of applicable domains, including economics, environmental sciences, architecture, 
biological research, etc. Over time, statistical distributions have drawn a lot of interest. 
Because of this, its appeal has evolved throughout time and to make these new families of 
distributions more adaptive and highly desirable, distribution theory researchers have 
extended baseline distributions with new parameters. The Alpha power (AP) transformation 
family [1] has emerged as a useful model in the biological sciences, engineering, medicine, 
and other areas. The cumulative distribution function (CDF) and probability density function 
(PDF) of the AP family are 
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Recent extensions of AP transformation family include: AP Marshall-Olkin-G (APMO-G) 
family [2], extended AP-G family [3], transmuted AP-G family [4], exponential-AP-G family 
[5], AP transformed Weibull-G family [6], new-extended AP family [7], generalized AP family 
[8], Gull AP-G family [9] and so on. [10] introduced the generalized odd generalized 
exponentiated (GOGE-G). This family was created using the T-X family [11]. The CDF of 
the GOGE-G family distributions is 
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and the corresponding PDF is 
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For , 0    and  ;H x   is the baseline CDF with vector parameter  . The survival function 

(SF) of the GOGE-E family is  
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where    ; 1 ; .H x H x
     

The generalisations of the GOGE-G family include the alternative GOGE-G family [12], 
transmuted-GOGE family [13], and GOGE extended one parameter skew-t distribution [14]. 
The motivation for this study is based on the increased flexibility attained by combining the 
AP-transformation family and the GOGE-G family in modelling real-life datasets. This new 
family can be used with right-or-left skewed and heavy-tailed datasets. In comparison to the 
GOGE-G family, the APGOGE-G family has multiple shapes for the hazard rate function, 
such as increasing, decreasing, increasing-decreasing, decreasing-increasing, bathtub and 
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inverted bathtub. The APGOGE-G family can be expressed as an infinite linear combination 
of the exponentiated-G (Exp-G) distribution and other statistical qualities can be inferred 
using this property. We develop and study this new family known as the APGOGE-G family 
by amalgamating the AP-transformation and GOGE-G families of distributions. The rest of 
the article will be organised as follows. Section 2 comprise the APGOGE-G family, linear 
representation and structural properties. the maximum likelihood estimation method for 
estimating the parameters is presented in Section 3. Special cases of the new family are 
offered in Section 4 and simulation study using the inverse Weibull as the baseline model 
is presented in Section 5. Section 6 deals with application by fitting a real dataset with the 
APGOGE-Rayleigh model. Finally, we conclude the paper in Section 7. 
 
 

2. THE APGOGE-G FAMILY AND ITS PROPERTIES 
This section presents the new APGOGE-G family and explicit developments of the structural 
properties. The CDF and PDF of the new family achieved through amalgamation of the AP 
transformation family and GOGE-G family are presented as follows 
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Henceforth, the random variable  X APGOGE   with  , , ,      has density function in 

Eq. (7). The survival and hazard rate functions of the X is specified as 
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and 
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2.1 QUANTILE FUNCTION 
The quantile function of X, say  Q u found by inverting Eq. (6) is given by 
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Hence, random numbers can be generated from the APGOGE-G family for specified baseline 
CDF using Eq. (10). 

2.2 LINEAR REPRESENTATION 
Here, a useful representation for Eq. (7) of the APGOGE-G family is presented. For 

0, 1   , using the power series expansion 
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and the generalized Binomial series expansion expressed as 
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Which holds for 1z  and 0b   real non-integer, then Eq. (7) is written as 

     

   

     
   

 
1 ;1 1

;

2
, 0

; ; 1 log 1 1
,

!1 1 ;

b H xa

H x
APGOGE

a b

h x H x
f x e

a bH x





 




     

 

  




   
  

    

   (13) 

Utilizing Eq. (11), we have 
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Hence, Eq. (13) reduces to 
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Utilizing Eq. (12), the preceding equation takes the form 
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where            1 1
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      is the Exp-G family with power parameter 
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For 1  , using Eq. (11) again, we have  
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where            1 1
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      is the Exp-G family with power parameter 

 1b c    and 
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Therefore, the linear representation of the PDF for the APGOGE-G family is specified as 
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By integrating Eq. (18), the linear representation of the CDF for the APGOGE-G family is 
specified as 
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where  ;H x   is the CDF of the Exp-G family with power parameter  . 

 
2.3 RAW AND INCOMPLETE MOMENTS, MOMENT GENERATING FUNCTION 

The rth raw moment of X is defined by     .r r
r X x f x dx




      The rth moment of the 

APGOGE-G family obtained using the linear representation is specified as 
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where Z denotes the Exp-G distribution with power parameter  . By setting 1r   in Eq. 

(20), the mean of X is obtained. For most baseline distributions, the last integral can be 
numerically computed. Further, the rth incomplete of the APGOGE-G family, say  t

r  is 

specified as 
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The last integral in Eq. (21) denotes the rth incomplete moment of Z . 

The moment generating function (MGF) of X, say    tX
XM t e   for the APGOGE-G family 

is specified as 
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2.4 ORDER STATISTICS 

Let 1 2, , , nx x x  be a random sample from the APGOGE.G family, and the sequence 

1: 2: :n n n nx x x    are the corresponding order statistics (O.S) from the sample. The PDF of 

the jth O.S, say :j nX  is  
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where     is the beta function. By inserting Eqs. (6) and (7) into Eq. (23), and expanding 

using Eqs. (11) and (12). The PDF of :j nX  is specified as 
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where 
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2.5 ENTROPIES 
The Rényi entropy of a random variable X described as the variability of uncertainty is 
expressed as 

   1
log ,   0 and 1.

1
I X f x dx
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For 0,  1,   in Eq. (7) and expanding using Eqs. (11) and (12), we have 
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Therefore, the Rényi entropy of the APGOGE-G family is specified as 
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The q-entropy of the APGOGE-G family is specified as 
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The Shannon entropy (SE) considered as a special case of the Rényi entropy when 1   is 
expressed as   logSE f x      . Therefore, the SE for the APGOGE-G family can be 

obtained from Eq. (27). 
 
 

3. MAXIMUM LIKELIHOOD ESTIMATION 
The maximum likelihood estimator is utilized to estimate the parameters of the APGOGE-G 
family for observed samples. Let  X APGOGE G  , where  , , ,

T     is the vector of 

unknown parameters. The log-likelihood function    is specified as 
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The nonlinear system of equations can be solved numerically utilizing R-programming, 
Maple, Mathematical and SAS due to its intricacy. In this work, R-programming software 
will be utilized. 

4. SPECIAL CASES OF APGOGE-G MODEL 
We introduce three models generated by the APGOGE-G family. 

4.1. APGOGE-INVERSE WEIBULL (APGOGEIW) MODEL 
Consider the parent distribution to be the inverse Weibull with CDF and PDF given by 

 ; , xx e
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and 
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Figure 1 depicts the PDF and HRF plots of the APGOGEIW model. The HRF can be 
increasing, decreasing, increasing-decreasing, decreasing-increasing, therefore indicating 
that flexibility is provided by the extra shape parameters. 

 
Figure 1: The PDF (a) and HRF (b) plots of the APGOGEIW

 model with selected parameters 
values. 
 

4.2. APGOGE-RAYLEIGH (APGOGER) MODEL 

The CDF and PDF of the Rayleigh is given by  
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The CDF and PDF of the  APGOGE R  model,  , , ,      are specified as 
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and 
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Figure 2 depicts the PDF and HRF plots of the APGOGER model. The HRF can be 
increasing-decreasing and upside-down bathtub, indicating that flexibility is provided by the 
extra shape parameters. 

 
Figure 2: The PDF (a) and HRF (b) plots of the APGOGER model with selected parameters 
values. 
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Figure 3 depicts the PDF and HRF plots of the APGOGEBHE model. The HRF can be 
decreasing, and decreasing-increasing, indicating that flexibility is provided by the extra 
shape parameters. 

 
Figure 3: The PDF (a) and HRF (b) plots of the APGOGEBHE

 model with selected parameters 
values. 
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5. SIMULATION 
A simulation study is executed by using the inverse Weibull (IW) for baseline to examine 
the accuracy of the MI estimator of the parameters (pa.). The procedure entails generating 
samples from the  APGOGE , , , ,IW       model utilizing the inversion method for different 

parameter groupings (Gps). The number of replicates is 1000, the sample size is n = 
50,100,250, with three groupings: 1.0, 1.1, 0.03, 1.0, 0.3          (Gp1); 

1.0, 1.5, 0.05, 1.6, 1.3          (Gp2); and 1.0, 2.0, 0.1, 1.9, 2.0          (Gp3). The 

BFGS algorithm is adopted in the R-programming to maximize Eq. (29) and we compute the 
ML estimates (MLEst), average biases (AVBs), mean square errors (MSEs) and mean relative 
error (MREs) from each generated dataset. The simulation results are reported in Table 1. 
The estimates are quite stable and approach the true parameter values with minimal bias as 
the sample size increases.  
 
Table 1: Simulation results for APGOGEIW model. 

Groupings n Pa. MLEst AVB MSE MRE 

Gp1 

50n  

  0.989 -0.011 0.000 0.011 
  1.181 0.081 0.007 0.074 
  0.000 -0.030 0.001 0.998 
  0.974 -0.026 0.001 0.026 
  0.369 0.069 0.005 0.232 

100n  

  0.989 -0.011 0.000 0.011 
  1.185 0.085 0.007 0.077 
  0.000 -0.030 0.001 0.998 
  0.972 -0.028 0.001 0.028 
  0.371 0.071 0.005 0.236 

250n  

  0.987 -0.013 0.000 0.013 
  1.189 0.089 0.008 0.081 
  0.000 -0.030 0.001 0.998 
  0.969 -0.031 0.001 0.031 
  0.372 0.072 0.005 0.240 

Gp2 50n  

  1.031 0.031 0.001 0.031 
  1.615 0.115 0.015 0.077 

  0.000 -0.050 0.002 0.996 
  1.525 -0.075 0.006 0.047 
  1.344 0.044 0.002 0.034 
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100n  

  1.035 0.035 0.001 0.035 
  1.608 0.108 0.013 0.072 
  0.000 -0.050 0.002 0.996 
  1.520 -0.080 0.007 0.050 
  1.349 0.049 0.003 0.038 

250n  

  1.037 0.037 0.001 0.037 
  1.601 0.101 0.012 0.111 
  0.000 -0.050 0.002 0.050 
  1.517 -0.083 0.007 0.083 
  1.354 0.054 0.003 0.055 

Gp3 

50n  

  0.876 -0.124 0.015 0.124 
  2.115 0.115 0.014 0.058 
  0.000 -0.100 0.010 0.996 
  1.805 -0.095 0.009 0.050 
  2.103 0.103 0.012 0.051 

100n  

  0.872 -0.128 0.016 0.128 
  2.110 0.110 0.012 0.055 

  0.000 -0.100 0.010 0.996 
  1.811 -0.089 0.008 0.047 
  2.094 0.094 0.010 0.047 

250n  

  0.869 -0.131 0.017 0.131 
  2.109 0.109 0.012 0.054 
  0.000 -0.100 0.010 0.996 
  1.817 -0.083 0.007 0.044 
  2.082 0.082 0.007 0.041 

 
6. NUMERICAL APPLICATION 

Here, we provide an application of the proposed APGOGE-Rayleigh (APGOGER) model to 
a lifetime data. The real data is the glass fibre strengths of 1.5 cm collected by employees 
at the UK National Physical Laboratory and analysed by [2]. The observations are 
0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 
1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 
1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 
1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 
2.00, 2.01, 2.24 
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The performance of the suggested model is checked by the goodness of fit criteria (AIC, 
CAIC, BIC, HQIC), and the P-value. For more details of the goodness of fit criteria, we refer 
to see [14-15]. Overall, the probability-model with least values of these statistics would be 
said to perform better than others. Hence, the proposed APGOGER model is compared with 
the Exponential (E), Gamma exponential (GE), Beta exponential (BE), Beta gamma 
exponential (BGE), Weibull gamma exponential (WGE), Beta Burr xii (BBXII), Weibull Burr 
xii (WBXII), Kumaraswamy Burr xii (KBXII), generalized odd generalized Rayleigh (GOGER) 
and Rayleigh (R) distributions. Table 2 reports the estimated parameter values of the models 
and the goodness of fit measures. Thus, it is apparent that the proposed model has the least 
values for the goodness of fit measures which suggest that fits better than the other 
competing models.  
 
Table 2: The MLEs and information criteria. 

Model MLE CAIC AIC BIC 

 , , ,RAPGOGE      1.583  1.329  7.658  1.079   - 34.924 33.497 38.296 

 , , , ,KBXII       0.397 0.685 1.753 2.115 12.329 36.973 35.920 46.636 

 , , , ,BBXII       0.603 3.963 2.414 3.518 8.118 39.591  38.538  49.254   

 , , ,WBXII      0.036 1.489 1.269 3.436 0.036 38.229  37.540  46.112   

 , ,GOGER     1.832 1.762 - 1.057 - 37.463  37.056  43.486   

 , ,BE     17.779 22.722 - 0.390 - 54.661 54.254 60.683 

 ,GE    2.610 31.303 - - - 179.726 179.660 181.803 

 , , ,BGE      0.4125 93.465 0.923 22.612 - 39.889 39.199 47.772 

 , ,WGE     56.881 4.893 - 0.222 - 36.063 35.656 42.085 

 R   - - - 0.842 - 101.582 101.647 103.725 

 E   - - - 0.664 - 36.063 35.656 42.085 

 
 
Figure 4 shows the fitted density and distribution plots of the APGOGER model and some 
competitive models to the dataset. It is clear from the plots that the APGOGER model 
provides close fit to the real-life dataset. 
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Figure 4. Empirical density and distribution plots for APGOGER and some competitive 
models 
 

7. CONCLUSION 
The paper presents a new family of distributions called Alpha Power generalized odd 
generalized (APGOGE-G) family. The desirable properties of the new family are derived and 
three special models are introduced. In other to estimate the parameters of the new family, 
the maximum likelihood estimation procedure is utilized and assessed through simulation 
study. Additionally, to appraise the performance of the new family, the APGOGER was fitted 
to a real dataset. The empirical results showed that the new APGOGER model provides a 
better fit to the dataset as compared to other models. Future researchers may propose new 
flexible models by using the new family and existing baseline distributions. 
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