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ABSTRACT. In this paper, we present the Alpha power generalized odd generalized
exponential-G (APGOGE-G) family of distributions and provides the most common
shapes of the hazard rate function: increasing, decreasing, bathtub, and inverted
bathtub. We provide some of its structural properties. We estimate the parameters by
maximum likelihood estimation method, and perform a simulation study to verify the
asymptotic properties of the estimator for the inverse Weibull baseline. The practicality
of the new APGOGE-Rayleigh model is shown through application to uncensored real

dataset.

1. INTRODUCTION

One of the preferred research fields in the probability distribution submitted is the
development of new distributions starting with a baseline distribution with parameters to
current distributions for creating groups to exhibit flexibility. Numerous techniques for adding
a parameter to distributions have been put forth and utilized to simulate outcomes in a
variety of applicable domains, including economics, environmental sciences, architecture,
biological research, etc. Over time, statistical distributions have drawn a lot of interest.
Because of this, its appeal has evolved throughout time and to make these new families of
distributions more adaptive and highly desirable, distribution theory researchers have
extended baseline distributions with new parameters. The Alpha power (AP) transformation
family [1] has emerged as a useful model in the biological sciences, engineering, medicine,
and other areas. The cumulative distribution function (CDF) and probability density function
(PDF) of the AP family are
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Recent extensions of AP transformation family include: AP Marshall-Olkin-G (APMO-G)
family [2], extended AP-G family [3], transmuted AP-G family [4], exponential-AP-G family
[5], AP transformed Weibull-G family [6], new-extended AP family [7], generalized AP family
[8], Gull AP-G family [9] and so on. [10] introduced the generalized odd generalized
exponentiated (GOGE-Q). This family was created using the T-X family [11]. The CDF of
the GOGE-G family distributions is
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and the corresponding PDF is
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For x,5>0 and H(x;¢) is the baseline CDF with vector parameter ¢. The survival function
(SF) of the GOGE-E family is
_f(X;{)K B
SFooer (1) =1-41=e " L

()
where H(x;¢) =1-H(x;¢) .

The generalisations of the GOGE-G family include the alternative GOGE-G family [12],
transmuted-GOGE family [13], and GOGE extended one parameter skew-t distribution [14].
The motivation for this study is based on the increased flexibility attained by combining the
AP-transformation family and the GOGE-G family in modelling real-life datasets. This new
family can be used with right-or-left skewed and heavy-tailed datasets. In comparison to the
GOGE-G family, the APGOGE-G family has multiple shapes for the hazard rate function,

such as increasing, decreasing, increasing-decreasing, decreasing-increasing, bathtub and
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inverted bathtub. The APGOGE-G family can be expressed as an infinite linear combination
of the exponentiated-G (Exp-G) distribution and other statistical qualities can be inferred
using this property. We develop and study this new family known as the APGOGE-G family
by amalgamating the AP-transformation and GOGE-G families of distributions. The rest of
the article will be organised as follows. Section 2 comprise the APGOGE-G family, linear
representation and structural properties. the maximum likelihood estimation method for
estimating the parameters is presented in Section 3. Special cases of the new family are
offered in Section 4 and simulation study using the inverse Weibull as the baseline model
is presented in Section 5. Section 6 deals with application by fitting a real dataset with the

APGOGE-Rayleigh model. Finally, we conclude the paper in Section 7.

2. THE APGOGE-G FAMILY AND ITS PROPERTIES
This section presents the new APGOGE-G family and explicit developments of the structural
properties. The CDF and PDF of the new family achieved through amalgamation of the AP

transformation family and GOGE-G family are presented as follows
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Henceforth, the random variable X ~ APGOGE (®) with @ =(x, 8,a,¢) has density function in

Eq. (7). The survival and hazard rate functions of the X is specified as
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21 QUANTILE FUNCTION
The quantile function of X, say Q(u)found by inverting Eq. (6) is given by
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Hence, random numbers can be generated from the APGOGE-G family for specified baseline
CDF using Eq. (10).

2.2 LINEAR REPRESENTATION
Here, a useful representation for Eq. (7) of the APGOGE-G family is presented. For

a>0,a#1, using the power series expansion

z

a =

oga) . (11)
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and the generalized Binomial series expansion expressed as
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Which holds for |z| <land »>0 real non-integer, then Eq. (7) is written as
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For a =1, using Eq. (11) again, we have
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where 4, . (x:¢)=x(b+c+1)H (x; .,/) "h(x;¢) is the Exp-G family with power parameter

k(b+c+1) and
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Therefore, the linear representation of the PDF for the APGOGE-G family is specified as

0
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By integrating Eq. (18), the linear representation of the CDF for the APGOGE-G family is
specified as
i KC+d+l xé’) O.’>0, (Zil,
Fir6oce (x) = d;
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where H,_(x;¢) is the CDF of the Exp-G family with power parameter «.

2.3 RAW AND INCOMPLETE MOMENTS, MOMENT GENERATING FUNCTION
The " raw moment of X is defined by 4 =E(X")=["x"s(x)ax. The r" moment of the

APGOGE-G family obtained using the linear representation is specified as

z BME[ K(HMJ a>0, a#l,
{7 (20)

Z"gbcE[ x(+d+1:| (Z:L
where Z_denotes the Exp-G distribution with power parameter . By setting =1 in Eq.
(20), the mean of X is obtained. For most baseline distributions, the last integral can be
numerically computed. Further, the r* incomplete of the APGOGE-G family, say o is
specified as

Z Gaf A by (68)dx, >0, azl,

ol =] (21)
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The last integral in Eq. (21) denotes the rth incomplete moment of Z_.
The moment generating function (MGF) of X, say M, (t):E(e’X) for the APGOGE-G family

is specified as
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2.4  ORDER STATISTICS
Let x,x,,...,x, be a random sample from the APGOGE.G family, and the sequence
x,, <%, <...<x, are the corresponding order statistics (O.S) from the sample. The PDF of
the j" O.S, say x,, is

—J

S (T 23)

where B(-) is the beta function. By inserting Eqs. (6) and (7) into Eq. (23), and expanding
using Egs. (11) and (12). The PDF of X, is specified as
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25  ENTROPIES
The Rényi entropy of a random variable X described as the variability of uncertainty is

expressed as

]ﬂ(X):

1 v 2
1_/110g£f(x) dx, A>0and A#1. (25)

For >0, a=1,in Eq. (7) and expanding using Eqgs. (11) and (12), we have
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Therefore, the Rényi entropy of the APGOGE-G family is specified as
I; (X):nlog{;()lg(d"- h K(c+d+2)-2+1 (x é’) :| (27)

K c+d+i

where h o0 (6¢)=[x(c+d+2)-2+1|H(x:¢) “h(x¢)" is the Exp-G family with

power parameter x(c+d+A4)-A+1 and

5., = (xp) i (1) (log )" 2* (b+ A) [ﬂ(cm)—/l][—(mu)}

dmoatel(a-1) [x(c+d+A)-A+1] b d

The g-entropy of the APGOGE-G family is specified as
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The Shannon entropy (SE) considered as a special case of the Rényi entropy when 171 is

expressed as SE=E{-[log f(x)]}. Therefore, the SE for the APGOGE-G family can be
obtained from Eq. (27).

3. MAXIMUM LIKELIHOOD ESTIMATION
The maximum likelihood estimator is utilized to estimate the parameters of the APGOGE-G

family for observed samples. Let X ~ APGOGE—-G(®), where q)z(x,ﬂ,a,g)T is the vector of

unknown parameters. The log-likelihood function ¢(®) is specified as
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The nonlinear system of equations can be solved numerically utilizing R-programming,
Maple, Mathematical and SAS due to its intricacy. In this work, R-programming software

will be utilized.
4, SPECIAL CASES OF APGOGE-G MODEL

We introduce three models generated by the APGOGE-G family.

41. APGOGE-INVERSE WEIBULL (APGOGEw) MODEL
Consider the parent distribution to be the inverse Weibull with CDF and PDF given by
H(x;n,7)=e™" and h(xn,7)=nrx""e™ n,y>0 . The CDF and PDF of the APGOGE,, (®)

model, ® =(x, 8,a,n,7) are specified as

Fleo)=| el (30)
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and
)T ey
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Figure 1 depicts the PDF and HRF plots of the APGOGEw model. The HRF can be
increasing, decreasing, increasing-decreasing, decreasing-increasing, therefore indicating

that flexibility is provided by the extra shape parameters.

(a) (b)
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Figure 1: The PDF (a) and HRF (b) plots of the APGOGE,w model with selected parameters

values.

42. APGOGE-RAYLEIGH (APGOGEr) MODEL

n.2

The CDF and PDF of the Rayleigh is given by H(x;n):l—e_ng and h(xn)=nxe? ,n>0 .

The CDF and PDF of the APGOGE, (®) model, ® =(x, 8,a,n) are specified as
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Figure 2 depicts the PDF and HRF plots of the APGOGEr model. The HRF can be
increasing-decreasing and upside-down bathtub, indicating that flexibility is provided by the

extra shape parameters.
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Figure 2: The PDF (a) and HRF (b) plots of the APGOGERr model with selected parameters

values.

43. APGOGE-BURR-HARKE EXPONENTIAL (APGOGEgHe) MODEL
Consider the CDF and PDF of the Burr-Harke exponential as the parent distribution given

" and h(x;m)=ne™ —2+77x2 ,7>0 . The CDF and PDF of the APGOGE,,,, (®)
1+nx (1+77x)

by H(x;n)=1-

model, ® =(x, B,a,n) are specified as

F(x®)= a-l (34)
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Figure 3 depicts the PDF and HRF plots of the APGOGEgue model. The HRF can be

decreasing, and decreasing-increasing, indicating that flexibility is provided by the extra

shape parameters.
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Figure 3: The PDF (a) and HRF (b) plots of the APGOGEgHe model with selected parameters

values.
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5. SIMULATION
A simulation study is executed by using the inverse Weibull (IW) for baseline to examine
the accuracy of the MI estimator of the parameters (pa.). The procedure entails generating
samples from the APGOGE,, (x,p,a,n,7) model utilizing the inversion method for different
parameter groupings (Gps). The number of replicates is 1000, the sample size is n =
50,100,250, with three groupings: x=10,8=1.1,a=0.03,7=1.0,y=0.3 (Gp1);
k=1.0,4=15a=005n=16y=13 (Gp2); and x=1.0,=2.0,a=0.1,7=1.9,y=2.0 (Gp3). The
BFGS algorithm is adopted in the R-programming to maximize Eq. (29) and we compute the
ML estimates (MLEst), average biases (AVBs), mean square errors (MSEs) and mean relative
error (MREs) from each generated dataset. The simulation results are reported in Table 1.
The estimates are quite stable and approach the true parameter values with minimal bias as

the sample size increases.

Table 1: Simulation results for APGOGEw model.

Groupings n Pa. MLEst AVB MSE MRE
K 0.989 -0.011 0.000 0.011

B 1.181 0.081 0.007 0.074

n=>50 a 0.000 -0.030 0.001 0.998

n 0.974 -0.026 0.001 0.026

4 0.369 0.069 0.005 0.232

K 0.989 -0.011 0.000 0.011

B 1.185 0.085 0.007 0.077

Gp1 n=100 a 0.000 -0.030 0.001 0.998
n 0.972 -0.028 0.001 0.028

7 0.371 0.071 0.005 0.236

K 0.987 -0.013 0.000 0.013

B 1.189 0.089 0.008 0.081

n =250 a 0.000 -0.030 0.001 0.998

n 0.969 -0.031 0.001 0.031

7 0.372 0.072 0.005 0.240

K 1.031 0.031 0.001 0.031

s 1.615 0.115 0.015 0.077

Gp2 n=>50 a 0.000 -0.050 0.002 0.996
n 1.525 -0.075 0.006 0.047

4 1.344 0.044 0.002 0.034
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K 1.035 0.035 0.001 0.035

B 1.608 0.108 0.013 0.072

n=100 a 0.000 -0.050 0.002 0.996
n 1,520 -0.080 0.007 0.050

7 1.349 0.049 0.003 0.038

K 1.037 0.037 0.001 0.037

B 1.601 0.101 0.012 0.111

n =250 a 0.000 -0.050 0.002 0.050
n 1517 -0.083 0.007 0.083

7 1.354 0.054 0.003 0.055

K 0.876 -0.124 0.015 0.124

B 2.115 0.115 0.014 0.058

n=50 a 0.000 -0.100 0.010 0.996
n 1.805 -0.095 0.009 0.050

7 2.103 0.103 0.012 0.051

K 0.872 -0.128 0.016 0.128

B 2110 0.110 0.012 0.055

Gp3 n=100 a 0.000 -0.100 0.010 0.996
n 1.811 -0.089 0.008 0.047

7 2.094 0.094 0.010 0.047

K 0.869 -0.131 0.017 0.131

B 2109 0.109 0.012 0.054

n =250 a 0.000 -0.100 0.010 0.996
n 1.817 -0.083 0.007 0.044

e 2.082 0.082 0.007 0.041

6. NUMERICAL APPLICATION
Here, we provide an application of the proposed APGOGE-Rayleigh (APGOGER) model to
a lifetime data. The real data is the glass fibre strengths of 1.5 cm collected by employees

at the UK National Physical Laboratory and analysed by [2]. The observations are

055, 074, 077, 081, 0.84, 1.24, 093, 1.04, 111, 113, 130, 1.25,
1.48, 1.36, 139, 142, 148, 151, 149, 149, 150, 150, 155 152,
1.61, 158, 159, 160, 161, 1.63, 161, 161, 162, 162, 167, 1.64,
1.70, 168, 1.68, 169, 170, 178 173, 176, 176, 177, 1.89, 1.81,
200, 201, 224
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The performance of the suggested model is checked by the goodness of fit criteria (AIC,
CAIC, BIC, HQIC), and the P-value. For more details of the goodness of fit criteria, we refer
to see [14-15]. Overall, the probability-model with least values of these statistics would be
said to perform better than others. Hence, the proposed APGOGERr model is compared with
the Exponential (E), Gamma exponential (GE), Beta exponential (BE), Beta gamma
exponential (BGE), Weibull gamma exponential (WGE), Beta Burr xii (BBXII), Weibull Burr
xit (WBXII), Kumaraswamy Burr xii (KBXII), generalized odd generalized Rayleigh (GOGER)
and Rayleigh (R) distributions. Table 2 reports the estimated parameter values of the models
and the goodness of fit measures. Thus, it is apparent that the proposed model has the least
values for the goodness of fit measures which suggest that fits better than the other

competing models.

Table 2: The MLEs and information criteria.
Model MLE CAIC AlIC BIC
APGOGE, (K, ﬂ,a,ry) 1.583 1.329 7.658 1.079 - 34.924 33.497 38.296

KBXII (K, p,a,n, /1) 0.397 0.685 1.753 2115 | 12329 | 36.973 | 35920 | 46.636

BBXII (K', p,o,m, /1) 0.603 3.963 2414 3.518 8.118 39.591 38.538 | 49.254

WBXII (k, B, c,1) 0.036 1.489 1.269 | 3436 | 0.036 | 38229 | 37540 | 46.112

GOGER (x, B,7) 1.832 | 1.762 - 1.057 - 37.463 | 37.056 | 43.486
BE(x, B,17) 17779 | 22722 | - 0.390 - 54661 | 54.254 | 60.683
GE (x, ) 2,610 | 31.303 - - - 179.726 | 179.660 | 181.803
BGE (k, f,a.,1) 0.4125 | 93.465 | 0.923 | 22612 - 39.889 | 39.199 | 47.772
WGE (x, B,1) 56.881 | 4.893 - 0222 - 36.063 | 35.656 | 42.085
R(n) - - . 0.842 - 101582 | 101.647 | 103.725

E (1) - - - 0.664 - 36.063 | 35.656 | 42.085

Figure 4 shows the fitted density and distribution plots of the APGOGERr model and some
competitive models to the dataset. It is clear from the plots that the APGOGEr model

provides close fit to the real-life dataset.
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Figure 4. Empirical density and distribution plots for APGOGER and some competitive

models

7. CONCLUSION
The paper presents a new family of distributions called Alpha Power generalized odd
generalized (APGOGE-GQ) family. The desirable properties of the new family are derived and
three special models are introduced. In other to estimate the parameters of the new family,
the maximum likelihood estimation procedure is utilized and assessed through simulation
study. Additionally, to appraise the performance of the new family, the APGOGER was fitted
to a real dataset. The empirical results showed that the new APGOGER model provides a
better fit to the dataset as compared to other models. Future researchers may propose new

flexible models by using the new family and existing baseline distributions.
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