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Abstract. The Clayton copula is a mathematical tool used in copula theory to model dependencebetween random variables. It is a notable member of the Archimedean copula family and is bestknown for its ability to capture tail dependence. In this article, we present a new modified variantof the Clayton copula that aims to improve its flexibility. The proposed modification scheme perturbsits Archimedean nature by integrating a bivariate product of logarithmic functions and an additionaltuning parameter. The elaborated copula benefits from a more nuanced representation of the copuladensity, and negative dependence can be obtained in a regular manner. We study its properties,including limit results showing some connection with the Gumbel-Barnett copula, important relatedfunctions, modifications and extensions, simulation of random couples of values, various lower andupper bounds, various tail dependences, and the correlation properties through the medial correlationand the Kendall tau. As an example of probability application, a new modified bivariate Gaussiandistribution is presented via equations and graphics. Finally, two special cases of copula are dis-cussed, including a simple single-parameter copula, which is intended to be a practical alternativeto the Clayton copula. A brief analysis on simulated data shows that it may be preferable to theClayton copula according to the Akaike information criterion. The overall result contributes to theadvancement of the theoretical foundations of copula-based modeling techniques.

1. Introduction
1.1. Context. In the field of statistical modeling, the concept of copula has emerged as a powerfultool for characterizing dependence structures between random variables. It was introduced by Sklarin 1959 (see [27]), and over time has gained importance in fields as diverse as finance, insurance,hydrology, genetics, neuroscience, environmental science, telecommunications, and reliability engi-neering. Copula theory is based on the so-called Sklar theorem, which states that any multivariatedistribution can be decomposed into its marginal distributions and a copula function. This separa-tion allows researchers and practitioners to analyze specific dependence behaviors independently,facilitating a more nuanced understanding of complex data sets. The established copulas are nu-merous, as evidenced by the books by [17], [21] and [11]. From the basic Gaussian copula, which
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Eur. J. Stat. 10.28924/ada/stat.4.9 2is often used in financial modeling because of its simplicity, to the more complex copulas of theArchimedean family, such as the Ali-Mikhail-Haq, Clayton, Gumbel and Frank copulas, each hasdifferent properties for capturing dependence structures and tail dependence characteristics. Theyprovide a versatile toolbox for modeling different degrees of association, from linear to non-linearand asymmetric relationships. We can refer to [21] and, for a modern and global study, to [18].Recent copula creation work includes the various extended FGM copula families (see [2], [1] and [9])and the variable-power copula families (see [4] and [5]). In addition, the introduction of vine copulasfurther extends this diversity by allowing the combination of simpler copulas to represent complexdependence structures in high-dimensional data (see [19]).
1.2. On the Clayton copula. To understand the motivation behind this article, a retrospectiveexamination of the Clayton copula is essential. To begin with, it was created by Clayton in1978 (see [6]) and, as already mentioned, it is one of the most famous Archimedean copulas (seeagain [17], [21] and [11]). Considering a parameter a > 0, the standard version of the Claytoncopula is derived from the following strict generator function:

φ†(t) = t−a − 1, t > 0,

and can be expressed as
C†(u, v) = φ−1†

[
φ†(u) + φ†(v)

]
=
(
u−a + v−a − 1

)−1/a
, (u, v) ∈ [0, 1]2.

The coefficients of lower and upper dependence are λl = 2−1/a and λu = 0, respectively, implyingthat the Clayton copula is lower tail dependent but not upper tail dependent. Furthermore, theClayton copula converges to the independence copula when a → 0+, and to the minimum copula
C◦(u, v) = min(u, v) when a → +∞. The Kendall tau has the unit range [0, 1]. Therefore, it canonly account for positive dependence. On the other hand, a well-known modified Clayton copulacan be presented, which allows for negative dependence. Considering a ∈ [−1,+∞)/{0}, it isderived from the following (non-strict) generator function:

φ‡(t) =
t−a − 1

a
, t > 0,

and the related pseudo-inverse function φ[−1]‡ (t), i.e., φ[−1]‡ (t) = φ−1‡ (t) = (at + 1)−1/a for t ∈
[0, φ‡(0)], and φ

[−1]
‡ (t) = 0 for t > φ‡(0) (with φ‡(0) = −1/a for a ∈ [−1, 0)), and can beexpressed as

C‡(u, v) = φ
[−1]
‡

[
φ‡(u) + φ‡(v)

]
=
{

max
[(
u−a + v−a − 1

)
, 0
]}−1/a

=


(
u−a + v−a − 1

)−1/a
, (u, v) ∈ [0, 1]2 such that u−a + v−a > 1,

0, elsewhere.
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Eur. J. Stat. 10.28924/ada/stat.4.9 3When a → −1+, it tends to the maximum copula C?(u, v) = max(u + v − 1, 0). The negativedependence is achieved for a ∈ [−1, 0). In this case, this modified Clayton copula is non-regular;its support depends on a and corresponds to a restricted region, breaking the symmetry about thediagonal from the vertices (0, 1) to (1, 0). Furthermore, it is also proved that it cannot properlycapture higher negative dependence (see [17], [21] and [11]). The Clayton copula, in its standard ormaximum modified form, has been at the heart of several important applied studies, including [8],[12], [22], [24] and [20]. It has also served as the main example for testing an artificial intelligencesystem in [14], mainly because of its simple expression and all the deep computational knowledgearound it.In order to provide suitable alternatives with the same mathematical ingredients, several articleshave focused on extensions of the Clayton copula by modifying its strict generator function. Inparticular, in [7], the following weighted Clayton strict generator function is proposed:
φ/(t) =

t−a − 1

a
(1− bta), t > 0,

under the following parameter conditions: b ∈ [0, 1], a ≥ 0, or b < 0 and b(a−1) +a+ 1 ≥ 0. Theassociated Archimedean copula has a sophisticated expression (see [7, Remark 2.2]), but it has theadvantages of being regular and of achieving negative dependence thanks to the combined actionof the parameters a and b. It is shown in [7, Subsection 3.4] that the corresponding Kendall tau hasthe optimal range [−1, 1]. In the same vein, a more simple approach was studied in [3]. It consistsof considering the following parameter-extended Clayton strict generator function:
φ.(t) = (at−b − 1)c − (a − 1)c , t > 0,

under the following parameter conditions: b > 0, c > 0 and a ≥ max[1, (b + 1)/(bc + 1)]. Thecorresponding Archimedean copula is expressed as
C.(u, v) = φ−1. [φ.(u) + φ.(v)]

= a1/b
{

[(au−b − 1)c + (av−b − 1)c − (a − 1)c ]1/c + 1
}−1/b

, (u, v) ∈ [0, 1]2.

This copula is regular, and it can reach the negative dependence thanks to the combined actionof the parameters a, b, and c . For some parameter-value tests, it is shown in [3, Tables 1 and 2]that the corresponding Kendall tau has the range [−0.31, 0.75], but a larger numerical analysissuggests the range [−0.31, 1]. The two copulas above thus provide interesting alternatives to theClayton copula because of their regularity and possible negative dependence. However, this isachieved by directly modifying the generator function and manipulating several parameters.
1.3. Contributions. In this article, we develop an original approach to extend the standard Claytoncopula beyond the modification of the corresponding strict generator function. We aim to determine
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Eur. J. Stat. 10.28924/ada/stat.4.9 4a simple bivariate function ψ(u, v) such that
C(u, v) =

[
u−a + v−a + ψ(u, v)− 1

]−1/a
, (u, v) ∈ [0, 1]2, (1)

is a valid copula that is regular, covers both negative and positive dependence, and depends on areasonable number of parameters. It can also be expressed as
C(u, v) = φ−1†

[
φ†(u) + φ†(v) + ψ(u, v)

]
or

C(u, v) =
{[
C†(u, v)

]−a
+ ψ(u, v)

}−1/a
.

In this way, we deliberately perturb the Archimedean structure inherent in the standard Claytoncopula, while retaining its basic mathematical components in an effort to extend its modelingcapabilities. A similar idea can be found implicitly in the BB4 copula created in [16, Example 5.3],which is expressed as Equation (1) with ψ(u, v) = −[(u−a − 1)−b + (v−a − 1)−b]−1/b and b > 0.However, this complex functional perturbation was mainly aimed at flexibilizing the (positive) taildependence of the Clayton copula; the negative dependence detected by the correlation measureswas not achieved. Our approach is different. We consider ψ(u, v) as a product of logarithmicfunctions modulated by a single tuning parameter, i.e., ψ(u, v) = b log(u) log(v) with b ≥ 0,strategically designed to establish a link with the Gumbel-Barnett copula, a well-known copula thatexhibits negative dependence (see [21]). We first establish the conditions on the parameters thatmake the new copula valid. We then conduct a comprehensive study of its properties, including limitresults, associated functions, simulation of random pairs of values, natural extensions, exhaustivebounds, tail dependences, correlation measures that clarify both negative and positive dependences,and bivariate distribution generation with an example related to the bivariate Gaussian distribution.We supplement the analysis with relevant figures and numerical tables. We also present twopractical versions of the copula. A brief analysis on simulated data shows that it may be preferableto the Clayton copula on the basis of the Akaike information criterion. Given the widespreadapplications of the Clayton copula, we expect a similar perspective on our proposed modification.However, the applied aspect is left to future work.
1.4. Article organization. The rest of the article is as follows: Section 2 describes the proposedClayton copula. Section 3 is devoted to its main properties. Some special cases are discussed inSection 4. A conclusion is provided in Section 5.

2. Modified Clayton Copula
Let us present the copula concept in the standard bivariate absolutely continuous setting, asrecalled below (see [21]).
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Definition 2.1. Under the bivariate absolutely continuous setting, the following definition of a cop-
ula is adopted: A copula is a function defined on [0, 1]2, say A(u, v), (u, v) ∈ [0, 1]2, differentiable
on (0, 1)2, and satisfying the two assumptions below.

(a): A(u, 1) = u, A(1, v) = v , A(u, 0) = A(0, u) = 0,

(b): ∂2

∂u∂v
A(u, v) ≥ 0.

Throughout the article, the bivariate absolutely continuous setting will be taken into account.Mathematically speaking, proving assumption (b) can be more difficult than proving assumption
(a); it may require extensive mathematical developments (tedious differentiations, factorizations,inequalities, etc.).In light of Definition 2.1 and the copula construction elucidated in Equation (1) with a judiciousfunction ψ(u, v), the proposition below introduces our modified Clayton copula.

Proposition 2.2. Let us consider the following bivariate function:

C(u, v) =
[
u−a + v−a + b log(u) log(v)− 1

]−1/a
, (u, v) ∈ [0, 1]2. (2)

Then it is a copula for a > 0 and a(a + 1) ≥ b ≥ 0.

Proof. The proof is based on the verification of (a) and (b) in Definition 2.1. Let us concentratefirst on (a). For any u ∈ [0, 1], since log(1) = 0, we immediately have
C(u, 1) =

[
u−a + 1−a + b log(u) log(1)− 1

]−1/a
= (u−a)−1/a = u.

Using a similar approach, for any v ∈ [0, 1], we also obtain C(1, v) = v .On the other hand, for any u ∈ [0, 1], since a > 0, we have limv→0+ v
a log(v) = 0. This impliesthat

C(u, 0) = lim
v→0+

[
u−a + v−a + b log(u) log(v)− 1

]−1/a
= lim
v→0+

v
[
u−av a + 1 + bv a log(u) log(v)− v a

]−1/a
= lim
v→0+

v × (0 + 1 + 0− 0)−1/a = 0.

Similarly, for any v ∈ [0, 1], we obtain C(0, v) = 0. As a result of the above developments, (a) isfulfilled.Let us now consider (b). For any (u, v) ∈ (0, 1)2, by using several differentiation rules andappropriate factorizations, we establish that
∂2

∂u∂v
C(u, v) =

1

a2 [buav a log(u) log(v) + ua(1− v a) + v a]2
×

ua−1v a−1
[
u−a + v−a + b log(u) log(v)− 1

]−1/a
[aJ(u, v) +K(u, v)] ,

where
J(u, v) = a2 + bua(v a − 1)− (a + 1)bua log(v)− bv a + a
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K(u, v) = −bv a log(u)

[
a2 − bua log(v) + a

]
.Therefore, given a > 0, proving J(u, v) ≥ 0 and K(u, v) ≥ 0 are sufficient to establish

∂2C(u, v)/(∂u∂v) ≥ 0, i.e., (b).Since a > 0 and b ≥ 0, we have −bv a log(u) ≥ 0, a2 ≥ 0 and −bua log(v) ≥ 0, which implythat K(u, v) ≥ 0. On the other hand, under the assumptions a > 0 and a(a + 1) ≥ b ≥ 0, since
b(1− ua)(1− v a) ≥ 0 and −(a + 1)bua log(v) ≥ 0, we have

J(u, v) = a2 + buav a − bua − bv a + a − (a + 1)bua log(v)

= a(a + 1)− b + b(1− ua)(1− v a)− (a + 1)bua log(v)

≥ a(a + 1)− b ≥ 0.

Hence, (b) is satisfied, ending the proof. �

Let us call the copula in Equation (2) the logarithmic-modified Clayton (LMC) copula. It is thecopula described in Equation (1) with
ψ(u, v) = b log(u) log(v).

Obviously, by taking b = 0, it corresponds to the standard Clayton copula and, for any b ≥ 0, thefollowing copula ordering holds: For any (u, v) ∈ [0, 1]2, since b log(u) log(v) ≥ 0, we have
C(u, v) ≤ C†(u, v).

This inequality implies, among other things, that certain correlation measures associated with theLMC copula are smaller than those associated with the Clayton copula. Further exploration of thisclaim will be done in Subsection 3.5. While the conditions a > 0 and a(a+ 1) ≥ b ≥ 0 may seemstringent due to the interdependence of a and b, there are practical alternatives, such as b = acwith c ∈ [0, 1], or b = a(a + 1). These specific configurations will be discussed in Section 4.To get a representative idea of the LMC copula, Figure 1 plots it for some values of a and b thatsatisfy the required assumptions. The package plotly of the R software was used for this purpose(see [23] and [25]).
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(i) (ii)

(iii) (iv)
Figure 1. Contour plots of the LMC copula for (i) a = 1 and b = 2, (ii) a = 10 and
b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

The contours of the LMC copula in this figure are more or less round or square, at differentlevels and increasing in value (in a sense), depending on the values of a and b. This illustratesboth the validity of the copula and its versatility.In the remainder of the study we will examine the main properties of the LMC copula and discusshow it contributes to developments in modified Clayton copulas.
3. Properties

This section focuses on limit results, related functions, simulation of random couples of val-ues, copula bounds, tail dependence, certain correlation measures, and a new bivariate Gaussiandistribution, all derived from the LMC copula.
3.1. Limit results. Some copula limits of the LMC copula are now examined. The next propositioninvestigates the limit of the LMC copula when a→ 0+ and an additional assumption on b.
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Proposition 3.1. Let (u, v) ∈ [0, 1]2 and C(u, v) be the LMC copula with a > 0 and a(a+ 1) ≥
b ≥ 0. Suppose that lima→0+ b = 0 and lima→0+ b/a = c with c ∈ [0, 1], then we have

lim
a→0+

C(u, v) = C4(u, v),

where C4(u, v) = uv exp [−c log(u) log(v)] is the Gumbel-Barnett copula with parameter c (see
[21]). When c = 0, it is reduced to the independence copula.

Proof. By the basic properties of a copula, the result is immediate for the corner points (0, 0),
(0, 1), (1, 0) and (1, 1), so let us consider (u, v) ∈ (0, 1)2. Owing to the equivalence exp(t) ∼ 1+twhen t → 0, we get

lim
a→0+

C(u, v) = lim
a→0+

[
u−a + v−a + b log(u) log(v)− 1

]−1/a
= lim
a→0+

exp

[
−

1

a
log {exp[−a log(u)] + exp[−a log(v)] + b log(u) log(v)− 1}

]
= lim
a→0+

exp

{
−

1

a
log [1− a log(u)− a log(v) + b log(u) log(v)]

}
.

Using the limit assumptions lima→0+ b = 0, it is clear that lima→0+ a log(u) + a log(v) −
b log(u) log(v) = 0. This, combined with the equivalence log(1 + t) ∼ t when t → 0, gives

lim
a→0+

C(u, v) = lim
a→0+

exp

[
log(u) + log(v)−

b

a
log(u) log(v)

]
= uv lim

a→0+
exp

[
−
b

a
log(u) log(v)

]
.

The assumption lima→0+ b/a = c with c ∈ [0, 1] implies that
lim
a→0+

C(u, v) = uv exp [−c log(u) log(v)] = C4(u, v),

which ends the proof. �

These limit results highlight the role of the parameters a and b and why the LMC copula differsfrom the Clayton copula. Indeed, it means that for a and b/a closed to 0, the LMC copula can havethe behavior of the Gumbel-Barnett copula, and it is known that the Gumbel-Barnett copula canreach negative dependence (with a Kendall tau in the range [−0.361, 0]). Therefore, for some valuesof the parameters, the LMC copula is expected to reach both negative and positive dependence,while maintaining regularity, unlike the (standard or modified) Clayton copula. This comment willbe supported numerically in Subsection 3.5.The proposition below shows that the limit property of the standard Clayton copula for a→ +∞still holds for the LMC copula.
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Proposition 3.2. Let (u, v) ∈ [0, 1]2 and C(u, v) be the LMC copula with a > 0 and a(a+ 1) ≥
b ≥ 0. Then we have

lim
a→+∞

C(u, v) = C◦(u, v).

We recall that C◦(u, v) = min(u, v).

Proof. By the basic properties of a copula, the result is immediate for the corner points (0, 0),
(0, 1), (1, 0) and (1, 1), so let us consider (u, v) ∈ (0, 1)2. We have

lim
a→+∞

C(u, v) = lim
a→+∞

[
u−a + v−a + b log(u) log(v)− 1

]−1/a
= lim
a→+∞

exp

[
−

1

a
log {exp[−a log(u)] + exp[−a log(v)] + b log(u) log(v)− 1}

]
.

For any a(a+ 1) ≥ b ≥ 0, even if b depends on a (such as b = a(a+ 1) at the maximum order withrespect to a), for a → +∞, since u−a = exp[−a log(u)] → +∞ and v−a = exp[−a log(v)] → +∞with an exponential rate, we have
u−a + v−a + b log(u) log(v)− 1 ∼ u−a + v−a ∼ [min(u, v)]−a = [C◦(u, v)]−a .

Therefore, we have
lim

a→+∞
C(u, v) = lim

a→+∞
exp

[
−

1

a
log
{

[C◦(u, v)]−a
}]

= C◦(u, v).

The proof is achieved. �

Thus, the important min-copula limit property of the Clayton copula is preserved for the LMCcopula.These comprehensive results are advantages for the LMC copula, among other properties to beexamined in the next sections.
3.2. Related functions. A number of important functions that are derived from the LMC copula arenow described.
3.2.1. Useful functions. The LMC copula density is a hidden ingredient of the proof of (b) inProposition 2.2; it is given by

c(u, v) =
∂2

∂u∂v
C(u, v) =

1

a2 [buav a log(u) log(v) + ua(1− v a) + v a]2
×

ua−1v a−1
[
u−a + v−a + b log(u) log(v)− 1

]−1/a×{
a
[
a2 + bua(v a − 1)− (a + 1)bua log(v)− bv a + a

]
− bv a log(u)

[
a2 − bua log(v) + a

]}
,

(u, v) ∈ [0, 1]2,

with the limits at the vertices (0, 0), (0, 1), (1, 0) and (1, 1). In full generality, the copula densityis of interest because the more flexible the copula density, the more the associated copula model
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Eur. J. Stat. 10.28924/ada/stat.4.9 10is adaptable to versatile dependence structures. Due to the functional complexity of c(u, v), agraphical study is preferable to an analytical one. Thus, Figure 2 shows it for some values of aand b that satisfy the necessary assumptions.

(i) (ii)

(iii) (iv)
Figure 2. Contour plots of the LMC copula density for (i) a = 1 and b = 2, (ii)
a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.

The contours of the LMC copula density are very different for the considered values of a and b.This demonstrates a high degree of adaptability for the underlying dependence model.On the other hand, the two conditional LMC copulas are given by
C1(u, v) =

∂

∂u
C(u, v)

= −
1

au

[
b log(v)− au−a

] [
u−a + v−a + b log(u) log(v)− 1

]−1−1/a (3)
and

C2(u, v) =
∂

∂v
C(u, v) = C1(v , u)

= −
1

av

[
b log(u)− av−a

] [
u−a + v−a + b log(u) log(v)− 1

]−1−1/a
, (u, v) ∈ [0, 1]2. (4)
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Eur. J. Stat. 10.28924/ada/stat.4.9 11The first conditional copula is useful for simulating a couple of values (u∗, v∗) from a random vector
(U, V ) having the LMC copula as a cumulative distribution function. The standard simulationscheme is as follows:

• Simulate a couple of independent values (u∗, w), each from the uniform distribution over
[0, 1].
• Determine numerically the value v∗ satisfying the following non-linear equation: w =

C1(u∗, v∗), where C1(u, v) is given by Equation (3).
• Consider (u∗, v∗) as the generated couple of values.For any positive integer n, we can repeat the process n times to have n couples of values from

(U, V ). As an illustration, for four different parameter configurations on a and b, Figure 3 depicts
n = 100 such simulated couples of values. The package rootSolve of the R software was used forthe second step of the process (see [28]).

(i) (ii)

(iii) (iv)
Figure 3. Plots of n = 100 simulated couples of values from a random vector (U, V )having the LMC copula as cumulative distribution function for (i) a = 1 and b = 2,(ii) a = 10 and b = 1, (iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.
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Eur. J. Stat. 10.28924/ada/stat.4.9 12From this figure, we can see the different types of dependence trends, with a more or less clearstructure and with some specific clusters of points.Simulated couples of values can also be used to test the behavior of different parametric esti-mation procedures by varying the number n; the larger n is, the more the procedures have to provetheir efficiency.The simulation scheme will be used in Subsection 4.2, to compare the fits of a special LMCcopula and the Clayton copula.On the other hand, the conditional copulas are also involved in the definition of correlationmeasures, such as the Kendall tau, as will be shown later.
3.2.2. Derived copulas. The LMC copula can be used to derive other new copulas with little effort.Based on some schemes presented in [21], still under the assumptions a > 0 and a(a+ 1) ≥ b ≥ 0,a short list of them is given below.

• We define the u-flipping LMC copula by
Ci(u, v) = v − C(1− u, v)

= v −
[
(1− u)−a + v−a + b log(1− u) log(v)− 1

]−1/a
, (u, v) ∈ [0, 1]2.

• We introduce the v-flipping LMC copula by
Ck(u, v) = u − C(u, 1− v)

= u −
[
u−a + (1− v)−a + b log(u) log(1− v)− 1

]−1/a
, (u, v) ∈ [0, 1]2.

• We define the survival LMC copula by
Cג(u, v) = u + v − 1 + C(1− u, 1− v)

= u + v − 1 +
[
(1− u)−a + (1− v)−a + b log(1− u) log(1− v)− 1

]−1/a
,

(u, v) ∈ [0, 1]2.

All of them offer a new dependence model based on the Clayton copula.Another interesting scheme is the one elaborated in [10]. It allows for flexibility and asymmetryof a given copula. In particular, with the use of power functions as in [10, Corollary 4], the followingresult holds: For any a > 0, a(a+ 1) ≥ b ≥ 0, c ∈ [0, 1] and d ∈ [0, 1], we define a new copula by
C�(u, v) = ucvdC(u1−c , v1−d)

= ucvd
[
u−a(1−c) + v−a(1−d) + b(1− c)(1− d) log(u) log(v)− 1

]−1/a
, (u, v) ∈ [0, 1]2.

Clearly, for c 6= d , it is not diagonally symmetric. The parameters c and d add versatility to theLMC copula, but complicate the mathematical scheme; there is a risk of over-parameterisation froma practical point of view.
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3.3. Copula bounds. As for any copula, the Fréchet-Hoeffding result holds (see [21]). It ensuresthat the LMC copula satisfies the following copula inequalities: C?(u, v) ≤ C(u, v) ≤ C◦(u, v),i.e.,

max(u + v − 1, 0) ≤
[
u−a + v−a + b log(u) log(v)− 1

]−1/a ≤ min(u, v).In fact, for the LMC copula, these general bounds can be improved under some additional as-sumptions on a and b. A better lower bound, which has a quadrant dependence interpretation, isdescribed below.
Proposition 3.3. Let (u, v) ∈ [0, 1]2 and C(u, v) be the LMC copula with a > 0 and a2 ≥ b ≥ 0.

Then we have

C(u, v) ≥ uv.

Proof. For a > 0 and b ≤ a2, we have
u−a + v−a + b log(u) log(v)− 1 ≤ u−a + v−a + a2 log(u) log(v)− 1

= u−a + v−a + log(u−a) log(v−a)− 1.

Now, by using the inequality log(t) ≤ t − 1 for t > 0, since u−a ≥ 1 and v−a ≥ 1, we have
0 ≤ log(u−a) ≤ u−a − 1 and 0 ≤ log(v−a) ≤ v−a − 1, which imply that log(u−a) log(v−a) ≤
(u−a − 1)(v−a − 1). Therefore, we have

u−a + v−a + b log(u) log(v)− 1 ≤ u−a + v−a + (u−a − 1)(v−a − 1)− 1 = u−av−a.

Raising the two sides at the negative power −1/a, we get
C(u, v) =

[
u−a + v−a + b log(u) log(v)− 1

]−1/a ≥ (u−av−a)−1/a = uv.

The desired limit result is demonstrated. �

It follows from Proposition 3.3 that, under the assumptions a > 0 and a2 ≥ b ≥ 0, the lower bound
C?(u, v) is improved and that the LMC copula has the positive quadrant dependence property. Thiswas known for the Clayton copula, i.e., b = 0, and now extends to the LMC copula with a2 ≥ b ≥ 0.Under a complementary assumption, the next result suggests an improved upper bound for theLMC copula.

Proposition 3.4. Let (u, v) ∈ [0, 1]2 and C(u, v) be the LMC copula with a > 0 and a2 ≤ b ≤
a(a + 1). Then we have

C(u, v) ≤
{

[C◦(u, v)]−α + (1− ua)(1− v a)
}−1/a

,

upper bound which is clearly smaller than C◦(u, v).
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Proof. For a > 0 and a2 ≤ b ≤ a(a + 1), we have
u−a + v−a + b log(u) log(v)− 1 ≥ u−a + v−a + a2 log(u) log(v)− 1

= u−a + v−a + log(u−a) log(v−a)− 1.

Now, by using the inequality log(t) ≥ (t − 1)/t for t > 0, since u−a ≥ 1 and v−a ≥ 1, we have
log(u−a) ≥ (u−a−1)/u−a ≥ 0, log(v−a) ≥ (v−a−1)/v−a ≥ 0, implying that log(u−a) log(v−a) ≥
(u−a − 1)(v−a − 1)/(u−av−a). Therefore, we have

u−a + v−a + b log(u) log(v)− 1 ≥ u−a + v−a +
1

u−av−a
(u−a − 1)(v−a − 1)− 1

= u−a + v−a − ua − v a + (uv)a

≥ [min(u, v)]−α + 1− ua − v a + (uv)a

= [C◦(u, v)]−α + (1− ua)(1− v a)

Raising the two sides at the negative power −1/a, we get
C(u, v) =

[
u−a + v−a + b log(u) log(v)− 1

]−1/a
≤
{

[C◦(u, v)]−α + (1− ua)(1− v a)
}−1/a

.

The stated upper bound is obtained. �

The interest in the obtained bounds is mainly theoretical but contributes to the understandingof the LMC copula.
3.4. Tail dependence. Several types of tail dependence in the LMC copula are now investigated,based on the formulas in [21]. First, the lower left tail dependence parameter is given by

λ1 = λl = lim
u→0+

C(u, u)

u
= lim
u→0+

{
2u−a + b[log(u)]2 − 1

}−1/a
u

= 2−1/a.

It is the same as the standard Clayton copula; the parameter b plays no role in it. Thus, the LMCcopula is lower left tail dependent. In fact, it is the only tail dependence it has. Indeed, the lowerright tail dependence parameter is obtained as
λ2 = lim

u→0+
u − C(1− u, u)

u

= lim
u→0+

u −
[
(1− u)−a + u−a + b log(1− u) log(u)− 1

]−1/a
u

= 0,

since C(u, v) is symmetric, the corresponding upper left tail dependence parameter is determinedby
λ3 = lim

u→0+
u − C(u, 1− u)

u
= λ2 = 0and the upper right tail dependence parameter is given by
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λ4 = λu = lim
u→1−

1− 2u + C(u, u)

1− u

= lim
u→1−

1− 2u +
{

2u−a + b[log(u)]2 − 1
}−1/a

1− u = 0.

Thus, we have λ2 = λ3 = λ4 = 0, supporting the claim.
3.5. Correlation measures. Let us now examine some correlation measures associated with theLMC copula, namely the medial correlation and the Kendall tau. We refer again to [21] for thedetails of these measures.
3.5.1. Medial correlation. First, the medial correlation of the LMC copula is indicated as follows:

M = 4C

(
1

2
,

1

2

)
− 1 = 4

{
2a+1 + b[log(2)]2 − 1

}−1/a − 1,

with log(2) ≈ 0.693. The effects of a and b on it is clear. In particular, for a fixed value of a > 0,
M is a decreasing function with respect to b, and for a fixed value of b > 0, M is a decreasingfunction with respect to a. Furthermore, M can be non-positive. It is the case for a > 0 and

a(a + 1) ≥ b ≥ max

{
1

[log(2)]2
[
1 + 22a − 2a+1

]
, 0

}
.

These conditions happen when a is small enough, which is consistent with the limit copula resultdescribed in Proposition 3.1. We illustrate this claim in Tables 1 and 2 by calculating M forselected values of a and b satisfying a > 0 and a(a + 1) ≥ b ≥ 0. In fact, Table 2 focuses on thespecial case b = a(a + 1) and small values for a.
Table 1. Values of the medial correlation of the LMC copula for some values of aand b satisfying a > 0 and a(a+ 1) ≥ b ≥ 0 (when it is not true, the cross symbol
× is put).

b 0.0 0.05 0.1 0.2 0.5 0.9 1.1 1.3 1.5 2 2.5 3 4 5
a = 7 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.811 0.811 0.811 0.811 0.81
a = 2 0.512 0.509 0.507 0.502 0.487 0.467 0.458 0.449 0.44 0.418 0.397 0.377 0.339 0.304
a = 1 0.333 0.323 0.312 0.292 0.234 0.165 0.134 0.104 0.075 0.01 × × × ×

a = 0.5 0.196 0.166 0.136 0.08 −0.065 × × × × × × × × ×

a = 0.1 0.046 −0.15 −0.307 × × × × × × × × × × ×
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Table 2. Values of the medial correlation of the LMC copula for some small valuesof a > 0 and b = a(a + 1).
a 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
−0.377 −0.33 −0.285 −0.242 −0.201 −0.161 −0.123 −0.087 −0.052 −0.019

From these tables, based only on the selected values of the parameters, we find that M ∈
[−0.377, 0.812], but further numerical tests with large a extend this interval to [−0.377, 1]. Thisshows that the LMC copula can achieve both negative and positive dependences, which is verydifferent from the standard Clayton copula. This is particularly true for the single-parameter LMCcopula defined with b = a(a + 1) and a > 0, as observed in Table 2.
3.5.2. Kendall tau. Based on C1(u, v) and C2(u, v) specified in Equations (3) and (4), respectively,the Kendall tau of the LMC copula has the following integral expression:

τ = 1− 4

∫ 1
0

∫ 1
0

C1(u, v)C2(u, v)dudv

= 1− 4

∫ 1
0

∫ 1
0

1

a2uv

[
b log(v)− au−a

] [
b log(u)− av−a

]
×[

u−a + v−a + b log(u) log(v)− 1
]−2−2/a

dudv.

The integrated term is too sophisticated from an analytical point of view to expect a nice expression.Nevertheless, based on the behavior of the medial correlation and the limit result in Proposition3.1, it is plausible that this measure is negative for small values of a. We support this claim inTables 3 and 4 with a numerical work; we determine τ for selected values of a and b satisfying
a > 0 and a(a+ 1) ≥ b ≥ 0. Table 4 focuses on the special case b = a(a+ 1) and small values of
a.

Table 3. Values of the Kendall tau of the LMC copula for some values of a and bsatisfying a > 0 and a(a + 1) ≥ b ≥ 0.
b 0.0 0.05 0.1 0.2 0.5 0.9 1.1 1.3 1.5 2 2.5 3 4 5

a = 7 0.778 0.778 0.778 0.778 0.777 0.777 0.776 0.776 0.776 0.775 0.775 0.774 0.773 0.772
a = 2 0.5 0.498 0.496 0.491 0.478 0.462 0.453 0.445 0.438 0.418 0.4 0.382 0.349 0.317
a = 1 0.333 0.324 0.314 0.296 0.244 0.183 0.154 0.127 0.101 0.041 × × × ×

a = 0.5 0.2 0.17 0.142 0.09 −0.043 × × × × × × × × ×

a = 0.1 0.048 −0.142 −0.286 × × × × × × × × × × ×
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Table 4. Values of the Kendall tau of the LMC copula for some small values of
a > 0 and b = a(a + 1).

a 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
−0.356 −0.306 −0.259 −0.214 −0.171 −0.131 −0.092 −0.056 −0.021 0.013

Some numerical monotonic patterns with respect to a and b are observed, but they cannotbe validated by rigorous analysis. For the considered parameter scenarios, we find that τ ∈
[−0.356, 0.778], but further numerical tests with large a extend it to τ ∈ [−0.356, 1]. Thus, theanalysis of the Kendall tau also confirms that the LMC copula can reach both negative and positivedependences. Again, this is particularly true for the single-parameter LMC copula defined with
b = a(a + 1) and a > 0, as seen in Table 4.
3.6. The LMC Gaussian distribution. The LMC copula can be used to generate a variety of bi-variate distributions. In particular, by considering the LMC copula and the standard Gaussiandistribution for the marginal distributions, we define a new bivariate Gaussian distribution by thefollowing cumulative distribution function:

F (x, y) = C[Φ(x),Φ(y)]

=
{

[Φ(x)]−a + [Φ(y)]−a + b log[Φ(x)] log[Φ(y)]− 1
}−1/a

, (x, y) ∈ R2,

where Φ(x) denotes the cumulative distribution function of the standard Gaussian distribution, i.e.,
Φ(x) =

1√
2π

∫ x

−∞
exp

(
−
u2

2

)
du, x ∈ R.

Let us call the corresponding bivariate distribution the LMC Gaussian distribution. Based on theLMC copula density, the corresponding probability density function is obtained as
f (x, y) = ϕ(x)ϕ(y)c [Φ(x),Φ(y)]

=
ϕ(x)ϕ(y)

a2 {b[Φ(x)]a[Φ(y)]a log[Φ(x)] log[Φ(y)] + [Φ(x)]a{1− [Φ(y)]a}+ [Φ(y)]a}2
×

[Φ(x)]a−1[Φ(y)]a−1
{

[Φ(x)]−a + [Φ(y)]−a + b log[Φ(x)] log[Φ(y)]− 1
}−1/a×{

a
[
a2 + b[Φ(x)]a{[Φ(y)]a − 1} − (a + 1)b[Φ(x)]a log[Φ(y)]− b[Φ(y)]a + a

]
− b[Φ(y)]a log[Φ(x)]

[
a2 − b[Φ(x)]a log[Φ(y)] + a

]}
, (x, y) ∈ R2,

where ϕ(x) denotes the probability density function of the standard Gaussian distribution, i.e.,
ϕ(x) =

1√
2π

exp

(
−
x2

2

)
, x ∈ R.
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Figure 4. Contour plots (left column) and shape plots (right column) of the LMCGaussian probability density function for (i) a = 1 and b = 2, (ii) a = 10 and b = 1,(iii) a = 0.1 and b = 0.05, and (iv) a = 1.5 and b = 2.
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Eur. J. Stat. 10.28924/ada/stat.4.9 19From this figure, we can see how the classical Gaussian bell shape is simultaneously skewedand deformed at its base, with various weights on the tails. For the configuration (ii), we see amultimodal phenomenon, certainly caused by the large value of a, the reasonable value of b, andthe combined presence of power and logarithmic functions. This versatility of shape makes theLMC Gaussian distribution interesting for further study in various bivariate modeling scenarios(bivariate noise, regression modeling, bivariate data analysis beyond the standard Gaussian case,etc.).
4. Special Copulas

Two special cases of the LMC copula are now highlighted because of their practical design.
4.1. Two-parameter practical LMC copula. Choosing b = ac with c ∈ [0, 1], which is possiblesince ac ≤ a ≤ a(a + 1), the LMC copula can be expressed as

C(u, v) =
[
u−a + v−a + ac log(u) log(v)− 1

]−1/a
, (u, v) ∈ [0, 1]2.

It is of particular interest because a and c are completely independent, since lima→0+ b = 0 and
lima→0+ b/a = c with c ∈ [0, 1], according to Proposition 3.1, the Gumbel-Barnett copula withparameter c is obtained as a limit when a→ 0+, the Clayton copula is recovered with c = 0, andit can reach negative and positive dependences. This last claim is supported by Table 5.

Table 5. Values of the Kendall tau of the LMC copula for some some values of aand b such that b = ac with a > 0 and c ∈ [0, 1].
c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a = 0.1 0.048 0.004 −0.036 −0.073 −0.108 −0.142 −0.173 −0.203 −0.232 −0.259 −0.286
a = 0.4 0.167 0.134 0.103 0.074 0.047 0.020 −0.005 −0.029 −0.052 −0.075 −0.096
a = 1 0.333 0.314 0.296 0.278 0.261 0.244 0.228 0.213 0.197 0.183 0.168
a = 6 0.750 0.749 0.748 0.746 0.745 0.744 0.743 0.742 0.741 0.739 0.738

As expected, negative values appear in this table for small values of a. Despite a slight restrictionof the parameter domain, this variant can be considered as a practical version of the LMC copulabecause of the independence of the parameters and the fact that the main properties are conserved.Therefore, it is sufficiently motivated for various applications where the Clayton copula model isnot the optimal choice.
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Eur. J. Stat. 10.28924/ada/stat.4.9 204.2. Single-parameter LMC copula. A special single-parameter LMC copula has been sketchedin several parts of the article. It is defined by choosing b = a(a+ 1) with a > 0, and is expressedas
C(u, v) =

[
u−a + v−a + a(a + 1) log(u) log(v)− 1

]−1/a
, (u, v) ∈ [0, 1]2.

This version is interesting because, with the tune of only one parameter, since lima→0+ b = 0 and
lima→0+ b/a = 1, according to Proposition 3.1, the Gumbel-Barnett copula with parameter 1 isobtained as a limit when a → 0+, and it can reach the negative and positive dependences asalready shown in Tables 2 and 4. However, the Clayton copula cannot be recovered. Therefore, itmust be considered as a real alternative with similar mathematical ingredients.In this case, the parameter a can simply be estimated by the omnibus estimation method, alsocalled the canonical maximum likelihood method, as described in [13] and [26]. As a basic descrip-tion, let us consider observations drawn from a continuous random vector, such as (X, Y ). Thus,let n be the number of observations of this vector, and (x1, y1), . . . , (xn, yn) be the observationsrepresenting the data. Then, the omnibus estimate of a is obtained as

ã = argmaxa>0

n∑
i=1

log
{
c
[
F̃ (xi), G̃(yi); a

]}
,

where c(u, v ; a) refers to the associated copula density with the indication of the dependence withrespect to a,
F̃ (x) =

1

n + 1

n∑
j=1

I{xj ≤ x}, G̃(y) =
1

n + 1

n∑
j=1

I{yj ≤ y},

and I{S} denotes the indicator function with respect to a given set S (see [13] and [26]). Forsingle-parameter copula model comparisons, we can define the Akaike information criterion as
AIC = −2

n∑
i=1

log
{
c
[
F̃ (xi), G̃(yi); ã

]}
+ 2.

Basically, the smaller the value of the AIC associated with a (single-parameter) copula, the betterthe copula is at capturing the underlying dependence behind the data. Illustrative examples areperformed. In Figure 5, we simulate n = 200 couples of values from a random vector (X, Y ) havingthe single-parameter LMC copula as cumulative distribution function for two different values of a.
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(i) (ii)
Figure 5. Plots of n = 200 simulated couples of values from a random vector (X, Y )having the single-parameter LMC copula as cumulative distribution function for (i)
a = 0.7 and (ii) a = 1.5, with the omnibus estimates of a and associated AICs.

For comparison purposes, under the scenario a = 0.7, we have ã = 0.7473 and the AIC of thesingle-parameter LMC copula is −13.1329, while that obtained for the Clayton copula is 1.0905;the LMC copula is the best, which is not surprising since the data have been generated from it.Under the scenario a = 1.5, we have ã = 1.5430 and the AIC of the single-parameter LMC copula is
−46.9004, while the AIC obtained for the Clayton copula is −44.7007; the LMC copula is again thebest as expected. This brief numerical study shows that, for some data sets, the single-parameterLMC copula can be more efficient in capturing the dependence structure than the Clayton copula.

Remark 4.1. The choice b = a2 in the LMC copula is really different from the choice b = a(a+1)

because it does not permit the negative dependence. This can be deduced from Proposition 3.3,
the inequality C(u, v) ≥ uv implying that M ≥ 0 and τ ≥ 0.

5. Conclusion
In conclusion, this article introduces a novel modification of the Clayton copula, which departsfrom its Archimedean nature in order to increase flexibility. The proposed variant is characterizedby an additional bivariate product of logarithmic functions and a tuning parameter. It provides anuanced representation of the corresponding copula density. Regularity and negative dependencecan be achieved simultaneously. The study explores the properties of the new copula, relatesit to the Gumbel-Barnett copula, elucidates the simulation of random pairs of values, variousbounds and tail dependencies, and examines correlation properties. In addition, the article gives aprobability application with a modified bivariate Gaussian distribution. Two special copula cases
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Eur. J. Stat. 10.28924/ada/stat.4.9 22are also discussed. A brief numerical work is performed to demonstrate the practical alternativeto the Clayton copula. The results contribute to the advancement of the theoretical foundations ofcopula-based modeling techniques. Some possible perspectives of this work are formulated below.
• One can consider other choices for the function ψ(u, v) in Equation (1), perhaps of non-constant sign for a higher level of perturbation of the Clayton copula.
• One can investigate a higher-dimensional version of the proposed copula, such as thetrivariate variant, defined as
C(u, v , w) =

[
u−a + v−a + w−a + b log(u) log(v) log(w)− 1

]−1/a
, (u, v , w) ∈ [0, 1]3,

where a and b are two parameters in ranges of values to be determined (even if the valuesof b are logically negative to make sense to the power −1/a).
• More generally, beyond the Clayton copula setting, based on a well-established strictgenerator function φe(t) and a well-chosen perturbation function ψ(u, v), one can explorethe modeling horizons opened by copulas of the following form:

Ce(u, v) = φ−1e [φe(u) + φe(v) + ψ(u, v)] , (u, v) ∈ [0, 1]2.

These ideas need further examination, which we leave for future work.
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