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ABSTRACT. This paper introduces the Topp-Leone Burr X distribution (TLBXD), a novel
extension of the Burr X distribution, developed within the framework of the Topp-Leone-
G family. The TLBXD is designed to effectively model varying datasets, addressing the
limitations of classical distributions when applied to heterogeneous data. We derived
and presented key mathematical and statistical properties of the TLBXD, ensuring their
clarity and applicability for practical use. A simulation study was conducted to evaluate
the efficiency of different parameter estimation methods, including least squares (LS),
maximum product of spacings (MPS), weighted least squares (WLS), and maximum
likelthood (ML). The proposed distribution was applied to two real-world dates related
to the daily exchange rates of the Nigerian Naira against the EURO and RIYAL. The
TLBXD demonstrated superior performance compared to existing sub-models. In
addition to the data modeling, this research also applied the proposed distribution to
explore the predictive capabilities of machine learning and deep learning techniques
for exchange rate forecasting. Three machine learning models, including the Extreme
Gradient Boosting (XGBoost), Random Forest, and Light Gradient Boosting Machine
(LightGBM) were evaluated alongside a deep learning algorithm, the Long Short-Term
Memory (LSTM). The models were trained on 80% of the data set and tested on the
remaining 20% to assess prediction accuracy. The results reveal that the LSTM model
has significantly outperformed the machine learning models in forecasting exchange
rates, as evidenced by lower root means squared errors (RMSE) and mean absolute
errors (MAE) values.
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1. Introduction
An exchange rate is the price at which one currency can be swapped for another within a
nation or economic zone. Because it is used to determine the relative values of other
currencies, it is essential for understanding the dynamics of trade and capital flows. Two
elements affect the rates: domestic currency value and foreign currency value. Exchange rates
are subject to fluctuations due to many economic causes and variables. Exchange rates can
change for several reasons, for example: Currency values and exchange rates are impacted
by changes in interest rates. Assuming all other factors remain the same, a higher domestic
interest rate will lead to a rise in the demand for domestic currency as more foreign investors
will choose to invest at the higher interest rate, converting their foreign cash into local
currency. However, inflationary forces counteract it. Another example is currency values and
exchange rates, which are impacted by changes in inflation rates. When a local currency's
value decreases over time more quickly than other foreign currencies, a greater inflation rate
in that nation will, all other things being equal, reduce demand for that currency.
Furthermore, the total amount of debt that the federal government has is known as its debt.
It affects exchange rates and the value of currencies because a nation with more debt is less
likely to attract foreign investment, which fuels inflation. It reduces the value of the local
currency at exchange rates and exerts downward pressure on it. Consequently, [1] applied
some probability models in forecasting the Southeast Asian currencies against the British
Pound Sterling. Furthermore, [2] used another version of improved Dagun distribution to
model financial datasets.
The addition of a shape parameter on Burr X plays an important role in terms of capturing
the sensitive part of a given data thereby making the distribution possess heavy tails and a
wide range of skewness. An attempt to fit diverse lifetime datasets to classical distributions
has been very unsuccessful due to the heterogeneity of such datasets from assumed
homogeneous populations.
Some of these data generated from different areas of study have been known to exhibit
varying shapes, which makes it difficult for the known distributions to model. To cope with
this, an improved or extended form of the existing or classical distributions is required, as
compound distributions are found to be more robust when it comes to modelling data sets.
In the middle of the 20th century, [3] proposed different types of distribution functions for

which Burr Type X distribution (BXD) was among. Bayesian estimation based on the
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generalization of type-l hybrid censoring technique for Burr-X distribution by [4]. Another
powerful extended version of Burr X was studied by [5], Using the Burr X distribution under
the progressive-stress accelerated life test, several inferences based on progressively type-
Il censored data were examined by [6], The study examined revised test statistics for the
double Burr type X distribution and its applications to right censored reliability and medical
data by [7], also [8] proposed truncated Burr X-G class of distributions and also derived some
of its desirable properties. The odd log-logistic Burr-x family of distributions which produced
varieties of models was developed by [9], the Type | half logistic Burr X-G class by [10], and
a robust Burr X-G class by [11]. In the year 2022, some inferences for stress—strength
reliability of Burr X distribution based on ranked set sampling was carried out by [12], the
statistics for BDX under progressively type-Il censoring were studied by [13], and estimations
were performed under Ranked Set Sampling for the Kavya—Manoharan—Burr X distribution
by [14] and Gamma Odd Burr X-G Family was developed by [15] and Bayesian Inference
analysis of the Unit-Power Burr type X model was investigated by [16].

The Topp-Leone distribution (TL), often known as the |-shaped distribution, is one of the
continuous probability distributions used to represent lifespan datasets. This model was
generated by [17] and has a closed form. Numerous authors developed some extensions of
this distributions together with the exploration of its properties, for instant, [18] proposed
Topp—Leone—C family distribution which has one parameter and capable of producing varying
shapes, [19] explored and studied Power Topp-Leone distribution with its properties and
applied the distribution on engineering data, a new version of the TL-class of models was
studied by Muhammad et al. [20], an inference of multicomponent stress-strength reliability
following TL distribution using progressively censored data was studied by [21], inference of
Truncated Cauchy Power-Inverted TLdistribution under Hybrid Censored Scheme was
carried out by [22], [23] proposed Topp-Leone type Il exponentiated half logistic-G class
which is capable of producing varying shapes, Alpha Power Topp-Leone Distribution by [24],
a novel version of the Gamma-Topp-Leone-Type |I-Exponentiated Half Logistic-G class by
Oluyede and [25] and [26] studied the monotonic and non-monotonic hazard rates of
Transmuted Exponential-Topp Leone distribution.

In essence, distributions are important when it comes to modeling and analyses of real-life
data which led to the introduction of new distributions that are more robust when fitting

data sets. However, the fitness of the assumed lifetime distribution is crucial to the quality
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of any statistical analysis, which is one of the main driving forces for this work. The purpose

of this research is to provide an alternative flexible distribution that can handle different

skewed data sets that the current TL and Burr distributions are unable to adequately model.

We are motivated by the need for robust and adaptable models in financial and lifetime data

analysis, coupled with the growing importance of machine learning and deep learning in

predictive modelling. The Topp-Leone-G family provides a flexible framework without

introducing excessive complexity. The key achievements of the current investigation are as

follows:

L.

iw.

.

.

A novel flexible model, the TLBXD is developed, addressing the limitations of classical
probability distributions in effectively modelling heterogeneous financial data.
Describe a wide range of hazard rate patterns of the proposed distribution, thereby
broadening its utility in risk analysis.
employed machine learning and deep learning models including XGBoost, Random
Forest, LightGBM, and LSTM, for comparative prediction of exchange rates,
showcasing the TLBXD's potential in modern predictive analytics.
Utilized the maximum likelihood estimation procedure for assessing the inferential
features of the new distribution and to establish a comprehensive framework for
practitioners in both statistical modelling and machine learning domains.
provided a workable distribution with applications in engineering, banking, and other
fields for modelling asymmetric data, which is difficult for conventional distributions
and prediction models to handle well.
The remainder of this paper is organized as follows: Section 2 focuses on the development
of the TLBXD, including validity checks, graphical representations of the density and
hazard functions, and an exploration of the statistical properties of the new TLBXD.
Section 3 addresses the parameter estimation of the TLBXD, accompanied by simulation
studies using various estimation methods, such as maximum likelihood estimation, least
squares, maximum product of spacings, and weighted least squares. Section 4 discusses
the application of the proposed TLBXD in the context of exchange rate prediction,
particularly for the Nigerian Naira against the Euro and Riyal. Section 5 presents the
application of machine learning and deep learning models, including XGBoost, Random
Forest, LightGBM, and LSTM, to forecast exchange rate data, providing a comparative

analysis of their performance. Finally, Section 6 concludes the paper by summarizing the
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findings and potential implications of the proposed TLBXD and the predictive models
used in this study.
2. Materials and Methods
2.1 Topp-Leone Burr Type X Distribution. Al-Shomrant et al. [18] proposed the distribution
and probability density functions of the TL-G family which are respectively given as;
B(w; @) = D(w)“ (2— D(w))” (1)
and,
b(w; &) = 2ad (W) (1- D(w) ) D(W)* ™ (2 D(w))(H (2)
For, w,a >0

Now, consider the parent or baseline distribution to be Burr X with corresponding

distribution and density functions which are respectively given as follows:
210
D(w) =(1-¢™ ) 3)
and,
2 G
d(w) = 20we (1—e ) (4)

By substituting equations (3) and (4) in (1) and (2), the Topp-Leone Burr type X distribution
(TLBXD) was derived and has two shape parameters. The distribution and density functions

are as follows:
B(W.ar,0) =(L-e )9“ (2 ~(L-e )9) (5)
and,

b(W; @, 6) = dafwe™ (1— e )‘9_1 (1— (1— e )0)(1— e )H(H) (2 - (1— e )gj (6)

For, w,a,60 >0.

Equation (6) can be reduced as
b(w: @, 6) = dawe™ (1— e )9””1 (1_(1_ i )HJ(Z _(1_e—w2 )“’)

Fact 1: The pdf of a continuous random variable that follows TLBXD is equal to one.

a-1

[bw;, 0)dw =1
0

Proot:
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[ 4aome - )(1( S A e
)

asw—0,u—->0&wW—>ow,u—1,

du

e 20we™" (1-e™ )9_1

du
20we™ (1— e )gi1

j daowe™ (1-e ) (1-u)ud (2-u)"
0

j)‘ 2a(1—u)(u(2—u))a_ldu

Let, z=u(2-u)=2u—-u?du= dz
2(1—u)
1
j 205(1—u)z‘Hi
0 2(1-u)

1
az“‘ldz:o{z—} =1.
124 0

Indeed, the TLBXD is a proper distribution.
2.2 Graphical Representation of the TLBXD’s Density and Distribution Functions. Fig. 1

O ey

and 2 respectively exhibit the plots of the pdf and distribution function for a few chosen

parameter values.
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Figure 1. Plot of the pdf for TLBXD
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Figure 2. The plot of the distribution function for TLBXD
2.3 Statistical properties of TLBXD. Here, some basic features of TLBXD are provided in
an explicit form.
2.3.1 Asymptotic Behavior of the Distribution Function of the TLBXD. Here, the asymptotic

behavior of the TLBXD is examined by considering the limit asw— 0and w— wof the

density and distribution function.

[24

. . . _w? \7? w2 \?

uLnOB(w,a,e)=m(1—e ) (2—(1—e ) ) -0
and,

. . 2 \Oa VAN

limB(w;«a,6) = Ilm(l—e‘W ) (2—(1—e‘w ) j =1
These results further prove that the TLBXD is a proper (valid) distribution.

2.3.2 Survival and Hazard Functions of TLBXD. The explicit definitions of the survival and

hazard functions are, respectively, derived as follows:

S(w;,6) = 1—(1—e*W2 )9a (2 —(1—e*W2 )9 ja
(7)

4aOwe™ (1— e )H (1_ (1_ eV )9 j (1_ - )H(a—l) (2 ~ (1_ - )9 j
e et

and

a-1

h(w,«,6) =
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Fig. 3 and 4 show the plots of the survival and hazard functions for a few chosen values of

parameters.
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Figure 4. Plot of the hazard function of the TLBXD
Series expansion of the TLBXD

The density function in equation (6) can be rewritten as;

S e T

Recall that,
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So,
o) T =g oo
b(W; @, 0) = 4arwe ™ (1_ - )9—1 i; (-1)° [a:j (1_ (1_e—w2 H)M
again, [1_ (1-e )0)2‘”1 _ bi.: (1) (2ab+1j 1o )ab
but (1_ " )€;1+b>l _ 2 (-1 (chb) —1] oo
b(W: @, 0) = 4t Ha bi O (2o [aglj(ZabJr 1}(9(1?) _1Jwe“1*°)wz

b(w; @, 0) = 4aOM . we -
* athac —-1\(2a+1\(6(1+b)-1
where, M,, .= Z (—l) ; (a J( - j( (L+b) j
o a,b,c=0 a b C

2.3.3 Moment and Moment Generating Functions of TLBXD. Proposition 1: The r®
moment of TLBXD is provided by;

. 2050MaybyC (r +1j
="\ =
(1+c)2™ 1\2

* asbsc (=1 2a+1) 6(1+b)-1
Where, M_, . = (—l) i (0{ J[ " J[ (L+b) J
o a,b,c=0 a b C
Proof:
u=EW)= j Wb(W; &, 8)dw
0
p = [WaaOM,,  we O dw
0
=4aOM,,, [ W e " dw
0
1 1 2
2 y? Ey 2
Let, y=(@Q+c)w", w= o, dw= - dy

(1+c)2 (1+c)?
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a,b,c 1
0 (1+c)?
:2a9MabCTy(;+1)1 ydy:2056?MabC (r 1]
(1+c)2™ (1+c)2™ 1\2

The Moment Generating function (MGF)
Proposition 2: The MGF is given by;

0d'(1+c)2
2 abec (@ —1)(2a+1\( 6(L+b)-1
here, M_, . = —1)*°
e o= 5 ()
Proof:

M, (t) =E(e™) = Te‘wb(w; a,0)dw

0

oo 0 td
M, (t) = ! h(w; a, 8)dw = dz(‘@yd

= 2a0t°M | d
M, (t) :Z—gi (Eﬂ)
=0 d1(l+c)?

2.3.4 Quantile Function of TLBXD. Proposition 3: The quantile function (qf) of the

proposed model is simplified as;

1
13)2

1)6
=|-In 1[1\/1ua} (12)

Proof:
Recall that, the of the Topp-Leone-G is given as;

Q, .=D" [1\/1? J ,

Also,
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D(w; &, 0) =(1—e‘W2 )6

u= (1—e’W2 )9

)

S

u

Table 1. Some chosen measures of W ~TLBXD for some selected values of the parameters

a=05and #=05,1152&2.5.

0.5 1.0 1.5 2.0 25
Mean 0.2373 0.4469 0.5966 0.709 0.7976
Variance 0.0773 0.1134 0.1234 0.1245 0.1224
Skewness 1.7107 0.9887 0.7124 0.5714 0.4895

Kurtosis 6.2100 3.7905 3.2851 3.1281 3.0737
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Table 2. Some chosen measures of W ~TLBXD for some selected values of the parameters
f=05and «=05,1152&25.

0.5 1.0 1.5 2.0 2.5
Mean 0.2373 0.3733 0.4663 0.5358 0.5906
Variance 0.0773 0.0940 0.0977 0.0975 0.0960
Skewness 1.7107 1.2002 0.9948 0.8875 0.8239
Kurtosis 6.2100 4.4663 3.9939 3.8082 3.7224

From Table 1, we can see that as the value of the parameter “theta” rises and for a fixed
value of “alpha”, the mean also increases while skewness and kurtosis decrease as the
parameter “theta” increases. Furthermore, the variance decreases to some certain point and
increases as the value of “theta” gets large. Consequently, from Table 2, as the value of the
parameter “theta” increases and for a fixed value of “alpha”, the mean also increases while
skewness and kurtosis reduce as the parameter “theta” increases. Furthermore, the variance
reduces to some certain point and increases as the value of “theta” gets large.

2.3.5 Power Weighted Moments of the TLBX Distribution

P.= T w' f (w)F(w)*dw (13)

Where F(w) and f(w) are the cdf and pdf of any continuous distribution respectively. Now,

substituting the cdf and pdf of TLBXD in (13) gives,

rg-toofr e o) (1o oo |
flr-e7)" (2o ) | ow
aaofor e (1= o (e ) 2o T
0
P,= 4aHT wle ™ (1— e )WMH (1_<1_ e )Hj 1+ {1_ (1_ o )‘9 }Jamq)l v (14)
0

Consider the binomial expansion given as
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1+x)" =i(?)xi (15)

i=0
Applying (15) into (14), it becomes

P = 40{0T wle ™ (1-e )Ww_l (1— (1-e )ej 3 (a @ +iq) 4} {1— (1-e )9 }i dw

i=0

P = 40549? Wi (1-e )H“MH 3 (“ (1+iq) _1j {1— (1-e )H }M dw (16)
0 i=0

Let us consider the expansion
n (n) .
1-x)" :Z(—l)’(_jx‘ (17)
=0 J
Substituting (5) into (4), we have,

p :40{(9'TWr+1€WZ (1—67‘”2 )ea(1+q)—l n (Ot (1+-Q)—1jz( _p)! (I+1J( " )Hj dw
i—0

i= 1 j=0

1) (a (1+_q) —1j[i Jflj(l—e‘wz )ej dw
| J

@ 1 n
W )Ha(lJrq) 1

i,j=0

P — 4a92 Qi,jIWr+1e_Wz (1—e‘W )H[a(1+q)+1] dw
ij 0

Where Q, | = (1) (a(liq)—lj[iﬂ

=4aezn:0 Q"Jjwme_wzkzn; (_1)k[0[a(1+lcj)+ J]—lje_szdw
ij= —

0

P. _4aez Zi ik jw”le 0 gy

i,j,k=0
where,
Ola(l+a)+j|-1
Zi,j,k:Qi,j(_l)k( [ ( E) J] j
Now let,
m=@+k)w?; dw=—M
2(1+k)W

P =4ab > Z, i |wrem
& 2 k! 2(1+k)w

i,j,k=0
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r

=200 Zi iy ! J'(ijze‘mdm
ke (A+k)g\1+K

Pa= _2a9r Zijx (LH (18)
(14+k)2 " Fiko 2

where, Z; :Qi’j(_l)k (9[0! @+q)+ j]—l]

k

Which is the PWM of the TLBX distribution.
2.3.5 Maximum Likelihood Estimation (MLE) of TLBXD. The estimation of the unknown
parameters of TLBXD is as follows:

Let, W W,...,W, be a random sample (r.s) of size n from the from the TLBXD, then the log-
likelihood of the density function is derived as:

L=nlog4+nloga+nlog HJan:Iogwi —Zn:wf +(6a —1)Zn:log(1—e‘w‘2)
=1 i=1 i=1
(19)

+le (1—(1—e“%2)9j+(a—1)izl:|og(2—(1—eWiz)ej
% _n +Hznllog (1—e‘Wiz )+ian:Iog (2 —(1—e‘Wi2 )9) (20)

SL n n ) (1— e )0 In (1— e ) n (1— e )9 In (1— e )
—a:—+aZIog(1—e u)_z L (a-1)Y —
5 0 i=1 i=1 (1_(1_ewi ) ) i=1 (2_(1_ewi ) )

The ML Estimator of the parameters is derived by setting the equations (20 and 21) to zero.

(21)

The solutions will give the corresponding estimators of the parameters. From the look of the
equations, an optimization technique needs to be employed to numerically maximize the log-
like likelthood function.
3. Estimation of Parameter

Here, we discussed and presented different estimation approaches to estimate the TLBX
parameters, viz.: least-square (LS), maximum product of spacings (MPS), weighted least-
square (WLS), maximum likelihood (ML) methods. Here, the effectiveness of the estimation
processes in estimating the TLBXD parameters is assessed by Monte Carlo simulation
experiments. The steps of the simulation algorithm are explained as follows:

i set the sample size n and initialize the values of the parameters, @ and 6
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it to generate a random sample of size n from the TLBX distribution, use the quantile
function of the TLBXD

il compute the model's parameter estimates

iv. steps (it) and (iit) should be repeated N times.

The R software was used to run the simulation, and N = 1000 Monte Carlo replications
were used. We consider n=25, 50, 100, 200, 300, and 500, together with fixed model
parameter values.

From Tables 3 and 4, the methods that were employed in the estimation of the TLBXD's
parameters provide more efficient and consistent results as the sample size rises. The
estimates tend to move closer to the actual value as parameter as we have in Tables 3 and
4 as the size increases. Furthermore, the MSEs, Biases decreases with an increase in sample

size.

Table 3: Means, Biases, and MSEs for the different estimation procedures

n Parameter LSE MPS

Mean Bias MSE  Mean Bias MSE

25 a=1 1137 0137 0705 1.2135 0.2135 2.2629
60=15 1.9888 0.4888 1.738 25263 1.0263 4.2684

50 a=1 11075 0.1075 0514 11002 0.1002 1.0145
6=15 1.8201 03201 0908 21508 0.6508 2137

100 a=1 1.0826 0.0826 0353 1.0256 0.0256 0.4744
60=15 1.7088 0.2088 0521 1.8758 03758 09173

200 a=1 1.0593 0.0593 0.228 0.9954 -0.005 0.2257
60=15 1.628 0.128 0.292 17139 0.2139 0.3768

300 a=1 1.055 0.055 0166 09994 -6E-04 0.1659
60=15 15845 0.0845 0.2 1.6454 0.1454 0.2259

500 a=1 1.0331 0.0331 0105 0.9897 -0.01 0.0879

6=15 15602 0.0602 0.131 1.5967 0.0967 0.1278
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Table 4: Means, Biases, and MSEs for the different estimation procedures

N Parameter WLSE MLE
Mean Bias MSE Mean Bias MSE
25 a=1 1.178 0178 0.8825 13639 0.3639 0.4831
60=15 2.0453 05453 2.0813 1.4031 -0.097 0.2421
50 a=1 1.2088 0.2088 0.7644 1.2818 0.2818 0.3851
60=15 1.799 0299 1.0249 1.4381 -0.062 0.2104
100 a=1 11484 0.1484 04453 1.1959 0.1959 0.2964
6=15 1.6656 0.1656 05296 1479 -0.021 0.1831
200 a=1 11053 0.1053 0.2709 1.137 0.137  0.2099
6=15 15862 0.0862 0.2733 1.4979 -0.002 0.1508
300 a=1 1.0759 0.0759 01738 11135 0.1135 0.1602
6=15 15589 0.0589 0.1875 1.4921 -0.008 0.1177
500 a=1 1.045 0.045 01064 1.0795 0.0795 0.106

6=15 15427 0.0427 01179 1.4943 -0.006 0.0872

Table 5: Summary for the MSEs of the various methods of estimations

n Parameter LSE MPS WLSE MLE

25 a=1 0.705 22629 0.8825  0.4831
60=25 1.738 42684  2.0813  0.2421

50 a=1 0514 1.0145 0.7644  0.3851
0=25 0.908 2137 1.0249 02104

100 a=1 0.353 0.4744 04453  0.2964
60=25 0.521 09173 05296  0.1831

200 a=1 0.228 0.2257 02709  0.2099
60=25 0.292 03768 02733  0.1508

300 a=1 0.166 0.1659  0.1738  0.1602
0 =25 0.2 02259 01875 01177

500 a=1 0.105 0.0879  0.1064 0.106
0 =25 0.131 01278 01179  0.0872

Based on the summary results for the MSE in table 5, the MLE has the least value and as
such outperformed all the methods considered in this study.

From Tables 6 and 7, the methods that were employed in the estimation of the TLBXD's
parameters provide more efficient and consistent results as the sample size rises. The

estimates tend to move closer to the actual value as parameter as we have in Tables 6 and


https://doi.org/10.28924/ada/stat.4.11

Eur. J. Stat. 4 (2024) 10.28924/ada/stat.4.11 178

7 as the size increases. Furthermore, the MSEs, Biases decreases with an increase in sample

size.

Table 6: Means, Biases, and MSEs for the LSE and MPS estimation procedures

n Parameter LSE MPS

Mean Bias MSE Mean Bias MSE

25 a=1 11117 01117 05838 1.1386 0.1386 1.5149
6=25 31707 06707 3.4695 4.0859 15859 10.3551

50 a=1 1.0891 0.0891 04329 1.0648 0.0648 0.7917
6=25 29700 0.4700 2.0826 3.4527 0.9527 4.6674

100 a=1 1.0686 0.0686 0.2928 1.0303 0.0303 0.4756
6=2.5 27990 0.2990 1.1853 3.0886 0.5886 2.2966

200 a=1 1.0524 0.0524 0.1981 0.9970 -0.003 0.2161
6=2.5 26941 01941 0.7222 28354 03354 0.9575

300 a=1 1.0510 0.0510 0.1481 09942 -0.006 0.1505
6=25 26288 0.1288 05080 2.7434 0.2434 0.6212

500 a=1 1.0358 0.0358 0.1033 09870 -0.013 0.0818

6=25 25933 00933 0.3537 26606 0.1606 0.3450

Table 7: Means, Biases, and MSEs for the WLSE and MLE estimation procedures

N Parameter WLSE MLE
Mean Bias MSE Mean Bias MSE
25 a=1 1.1446 0.1446 07428 13985  0.3985  0.4692
0=25 3.2576 07576 42382 22267 -2733  0.5239
50 a=1 1.1426 0.1426 05398 13133 03133 03701
0=25 2.9539 0.4539  2.3056 2.293 -.207 0.4459
100 a=1 1.1232 01232 03588 1.2259  0.2259  0.2817
0=25 2.7544 0.2544 13119  2.3661 -1339 0.378
200 a=1 1.0839 0.0839 02088 1.1633  0.1633  0.1967
6=25 2.6377 01377 06943 24094 -0906  0.3044
300 a=1 1.0756 0.0756 01632  1.1322 01322  0.1508
0 =25 2.5886 0.0886  0.4950 2.425 -.075 0.2463
500 a=1 1.0491 0.0491 0.0997 1.0918 0.0918  0.0998

6 =25 2.5582 0.0582 03163  2.4501 -.0499 0.19
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Table 8: Summary for the MSEs of the various methods of estimations

n Parameter LSE MPS WLSE MLE

25 a=1 0.5838 15149 07428  0.4692
60=25 3.4695 10.3551 4.2382  0.5239

50 a=1 0.4329 07917 05398 0.3701
6=25 2.0826 46674 23056  0.4459

100 a=1 0.2928 0.4756 03588  0.2817
0=25 1.1853 22966  1.3119 0.378

200 a=1 0.1981 0.2161 0.2088  0.1967
0=25 0.7222 0.9575 0.6943  0.3044

300 a=1 0.1481 01505 01632  0.1508
0 =25 0.5080 0.6212 04950  0.2463

500 a=1 0.1033 0.0818  0.0997  0.0998

0 =25 0.3537 0.3450 0.3163 0.19

Based on the summary results for the MSE in table 8, the MLE has the least value and as
such outperformed all the methods considered in this study.

From Tables 3 and 4, the methods that were employed in the estimation of the TLBXD's
parameters provide more efficient and consistent results as the sample size increases. The
estimates tend to approach the actual value as parameter as we have in Tables 3 and 4 as

" n

n” increases. Furthermore, the MSEs, Biases reduces with an increase in sample size.

4. Exchange Rates Prediction Using Proposed TLBXD

In this study, two data sets are utilized to compare the performance of the generated Topp
Leone-Burr X model against other existing distributions, specifically the Burr X, Topp Leone,
and Marshall-Olkin-Burr X distributions. The data sets represent the daily Nigerian
exchange rate between the Euro and Saudi Riyal for the period from January 3rd, 2023, to
December 29th, 2023, and can be obtained at
https://www.cbn.gov.ng/rates/ExchRateByCurrency.asp.

Due to the Topp-Leone model's range intervals, the data sets were transformed using the
Topp-Leone's limitations, multiplying the observations by a constant k so thatk=5x10". The
goodness-of-fit measures for the Nigerian Naira to Saudi Riyal exchange rates data are

presented in Tables 9 and 10.
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Table 9: Goodness-of-fit measures for the Nigerian Naira to Saudi Riyal exchange rates

data

Model Estimate BIC AIC CAIC HQIC LL

TL-BX a=1092.0000 | -584.4836 -591.4532 | -591.4028 | -588.6453 297.7266
6=0.0061

TL a=0.5425 -396.8964 -400.3812 | -400.3645 | -398.9772 201.1906

BX 6=0.2004 -271.4084 -274.8932 | -274.8765 | -273.4892 138.4466

MO-BX k=0.0002 -566.0308 -573.0004 | -572.9500 | -570.1925 288.5002
0=2.2120

Table 10: Goodness-of-fit measures for the monthly Nigerian Naira to Euro exchange rates

data

Model Estimate BIC AlIC CAIC HQIC LL

TL-BX a=2618.0000 | -236.2518 -243.2214 -243.1710 -240.4135 123.6107
6=0.0086

TL a=16976 -173.0963 -176.5811 -176.5644 1751771 89.2906

BX 0=0.4461 49.8419 46.3571 46.3738 47.7610 -22.1785

MO-BX k=20.0100 485.5760 478.6064 478.6568 481.4143 -237.3032
6=0.1000

As shown in Tables 9 and 10, the suggested Topp Leone-Burr X distribution produced the
lowest values for the BIC, AIC, HQIC, and HQIC with relation to the alternative comparators,
resulting in the highest values for the LL. This demonstrates that the new distribution can

be chosen as the optimal distribution for both data sets.

5. Exchange Rates Prediction Using Machine Learning (ML) and Deep Learning (DL)
Models
The daily exchange rates of the Nigerian Naira against the EURO and RIYAL from January
2020 to December 2023 were analyzed in the previous section using probability distributions.
The objective was to compare the suggested distribution with other well-known distributions
from statistical literature, aiming to demonstrate the potential applicability of the proposed
TLBXD as a reliable lifetime model. In this section, we examine three machine learning
models and a deep learning algorithm in a comparative analysis, assessing their prediction

abilities using the same datasets. Extreme Gradient Boosting (XGBoost), Random Forest,


https://doi.org/10.28924/ada/stat.4.11

Eur. J. Stat. 4 (2024) 10.28924/ada/stat4.11 2ol

and Light Gradient Boosting Machine (LightGBM) are the machine learning models under
consideration. In contrast, the Long Short-Term Memory (LSTM) represents the deep
learning algorithm. The primary objective is to assess the accuracy of exchange rate forecasts
for both ML and DL techniques. In order to enable efficient model fitting, 80% of the data
has been set up for training, and the remaining 20% is retained for testing in order to assess
prediction accuracy.

Figure 5 shows the line graph of the Nigerian Naira's exchange rates against the EURO
and RIYAL for the period of January 2020 to December 2023 showed an apparent and
consistent increasing trend. That means that there was an obvious rise in these currency
values from June 2023 to December 2023. This sudden increase in currency rates highlights
the Naira's alarming decrease against the EURO and RIYAL. The depicted line graphs not
only serve as a visual representation of the currency fluctuations but also emphasize the
severity of the Naira's devaluation during the latter half of 2023. This decline is particularly
alarming, emphasizing the economic challenges faced by Nigeria in maintaining a stable
exchange rate.

The statement made by the recently elected president of Nigeria served as a major catalyst
for the spike in exchange rates and helped put this currency loss into perspective. He
announced the removal of oil subsidies in his inaugural speech as president. This policy
shift, intended to solve economic issues, had a noticeable and quick effect on the foreign
exchange market. The plotted data makes it evident that the removal of oil subsidies was a
major factor in the increase in EURO and RIYAL rates from June to December.

The justifications for the currency changes that have been found highlight how closely
economic policies and exchange rate movements are related. Despite being aimed at
addressing economic issues, the removal of oil subsidies clearly had a significant impact on
the value of the Naira relative to other currencies. This analysis illustrates the complex
relationship among economic factors that impact exchange rates and highlights the necessity

of having an in-depth understanding of the policy consequences on currency values.
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Figure 5: Plot of the daily Nigerian Naira to EURO and RIYAL exchange rates from
January 2020 to December 2023.

The findings were instructive regarding the comparison of deep learning and machine
learning models for predicting the exchange rates between the Nigerian Naira and the
EURO and RIYAL. Each distribution's performance was assessed using the main evaluation
metrics, such as RMSE and MAE, to give a thorough picture of the model's efficacy.

Table 11, presents the results of the competing models applied to the Naira against EURO
exchange rate, revealing varying degrees of accuracy and performance. The XGBoost and
Random Forest models exhibit similar levels of effectiveness, with RMSE and MAE values
around 425, indicating reasonable predictive capabilities. LightGBM, while still competitive,
shows a slightly higher error. In contrast to traditional machine learning models, the LSTM
model stands out with significantly lower RMSE and MAE values of 547 and 4.58,
respectively, indicating that the LSTM model excels in capturing the temporal patterns and
dynamics of the EURO exchange rate. The LSTM's performance suggests that it may be
well-suited for time series data with sequential dependencies.

A graphical depiction of the relative performance metrics for the different machine learning
model algorithms is shown in Figure 6. Finding the best accuracy scores attained by various

model algorithms is made easier with the help of the visual display.
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Table 11: Comparative performance of machine learning and deep learning models for

Nigerian Naira against EURO exchange rate.

Model RMSE MAE
XGBoost 425.3055 425.0334
Random Forest 424.6451 424.3535
LightGBM 428.1153 427.8973
LSTM 5.4722 4.5809
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Figure 6: Comparative performance metrics across various competing algorithms against

EURO exchange rate.

In Table 12, the evaluation results of machine learning models applied to the Naira against
RIYAL exchange rate depict distinct performance characteristics. Both XGBoost and Random
Forest models demonstrate comparable accuracy, with RMSE and MAE values around 103,
indicating their effectiveness in predicting RIYAL exchange rates. The LightGBM model,
while still providing reasonably accurate forecasts, exhibits slightly higher error metrics. In
contrast, the LSTM model outperforms all other models significantly, indicating remarkable
accuracy with minimal RMSE and MAE values of 1.08 and 0.93, respectively.

A graphical representation of the comparative performance measures amongst competing
algorithms can be found in Figure 7. Finding the best accuracy ratings that various model

algorithms have achieved is made easier with the help of this graphic depiction.
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Table 12: Comparative performance of machine learning and deep learning models for

Nigerian Naira against RIYAL exchange rate.

Model RMSE MAE
XGBoost 103.6061 103.5478
Random Forest 103.4412 103.3784
LightGBM 104.2547 104.2080
LSTM 1.0770 0.9347
SRMSE = MAE
120
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Figure 12: Comparative performance metrics across various competing algorithms for
RIYAL exchange rate.
6. Conclusion

This research introduces the Topp-Leone Burr X distribution (TLBXD), a novel and versatile
probability distribution derived from the Topp-Leone-G family. The TLBXD was specifically
developed to address the challenges of modelling heterogeneous datasets that classical
distributions struggle to accurately represent. Through comprehensive mathematical and
statistical derivations, we established the properties of the TLBXD, making it a valuable tool
for analyzing complex data structures. The application of the TLBXD to real-world datasets,
specifically the exchange rates of the Nigerian Naira against the EURO and RIYAL,
established the superior performance of the proposed distribution over existing sub-models.
The TLBXD effectively captured the variations in these financial time series, underscoring
its potential as a robust model for lifetime data analysis. In the prediction phase, we

compared the forecasting abilities of ML and DL models, including XGBoost, Random Forest,
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LightGBM, and LSTM. The LSTM model, a deep learning algorithm, consistently
outperformed the machine learning models in terms of accuracy, as reflected by significantly

lower RMSE and MAE values for both exchange rate datasets.
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