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A New Survival Regression Model with Application to HIV Data
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Abstract. Many studies are being conducted in the modern world to extend the life expectancy ofpeople suffering from a range of illnesses, including fatal conditions like cancer and HIV/AIDS. Manypatients are therefore anticipated to be permanently cured or cured for some time. A new survivalregression model was proposed to study HIV data. An advantage of the new distribution is that itoutperforms some of the existing distributions in the lifetime literature. We obtain the estimates of theparameters of the proposed model using the method of maximum likelihood. The survival regressionmodel was fitted to a data set of 100 observations. Additionally, Cox-Snell residual analysis wasconsidered. The proposed model proved its significance by fitting the HIV data well compared toother models. The proposed model can be recommended to fit data of this kind.

1. Introduction
Many studies are being conducted in the modern world to extend the life expectancy of peoplesuffering from a range of illnesses, including fatal conditions like cancer and HIV/AIDS. Manypatients are therefore anticipated to be permanently cured. They are not affected by "death" and arelong-term survivors. We refer to these individuals as cured patients[1]. The human immunodeficiencyvirus (HIV) continues to be one of the biggest threats to public health since it has taken the livesof around 33 million people globally. HIV-positive individuals can live long, healthy lives if theytake Antiretroviral medication (ART). However, in the absence of medical intervention, an individualliving with HIV has an increased risk of developing Acquired Immunodeficiency Syndrome (AIDS),a serious illness. In addition to statistics and mathematics, probability distributions have beenwidely used in the applied sciences, engineering, and biological sciences. As a result, probabilitydistributions are always developing significantly to accurately represent real-world situations and
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Eur. J. Stat. 10.28924/ada/stat.4.10 2evaluate real-world data more effectively. In the process, other generalized distributions with moreparameters and flexibility than the current one have been developed over the previous ten years,based on various modification techniques. However, according to [2], there are a lot of issues toresolve and examine when dealing with real data because any classical or conventional probabilitydistributions do not take into account the various features of the data.The Weibull distribution is one of the most popular distributions used to simulate lifespan datawith consistent failure rates. Nevertheless, the Weibull distribution does not suit non-monotonefailure rates very well. Beta Modified Weibull was investigated by [3]. Alpha power Topp-LeoneWeibull distribution was considered by [4]. Weibull distribution has been applied to predict healthevents by [5]. Weibull regression and machine learning survival models were considered by [6].In reliability and lifespan data analysis, several modified Weibull distributions with extra pa-rameters have recently been proposed and investigated as lifetime distributions. This includes thelog-exponentiated Weibull regression model by [7], the Beta exponentiated Weibull distributionby [8], the Odd Log-Logistic Exponentiated Weibull Distribution by [9], as well as the New Gen-eralized Exponentiated Fréchet–Weibull Distribution by [10]. Moreover, a thorough review of theWeibull model with a focus on various parameterizations was presented by [11].This paper presents a new extension of Weibull distribution using the Inverse Lomax Odd Ex-ponentiated generator. The foundation of this extension lies in survival analysis. The extensionproposed herein aims to provide an application to the Hiv dataset. The structure of the remainingsections of this paper is outlined as follows: Section 2 describes the methodology of the newextension of Weibull distribution, estimation of the parameters of the model, and residual analysis.The results and discussion are presented in Section 3. The paper is concluded in Section 4.
2. The Log-Inverse Lomax Odd Exponentiated Weibull Distribution (Log-ILOEWD)

The Inverse Lomax Odd Exponentiated family of distributions proposed by [12] has the cumulativedistribution function (CDF) and probability density function (PDF) given as:
F (x ;λ, γ, θ,∆) =

[
1 + λ

{
(1− G(x ; ∆))

G(x ; ∆)

}θ]−γ
; x > 0, λ, γ, θ,∆ > 0 (1)

and
f (x ;λ, γ, θ,∆) =

θγλg(x ; ∆)[1− G(x ; ∆)]θ−1

[G(x ; ∆)]θ+1

[
1 + λ

[
(1− G(x ; ∆))

G(x ; ∆)

]θ]−(1+γ) (2)
Where G(x ; ∆) is a baseline CDF. For survival regression, we consider the Weibull distribution ofthis form G(x ; η, κ) = 1 − e−(ηx)κ and g(x ; η, κ) = ηκκxκ−1e−(ηx)

κ as the baseline distribution.Then, the CDF and PDF of the ILOEWD are given by:
F (x ; η, κ, γ, θ, λ) =

1 + λ

(
e−(ηx)

κ

[1− e−(ηx)κ ]

)θ−γ η, κ, γ, θ, λ > 0 (3)
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f (x ; η, κ, γ, θ, λ) =

θηκκλγxκ−1[e−(ηx)
κ

]θ−1e−(ηx)
κ

[1− e−(ηx)κ ]θ+1

[
1 + λ

(
e−(ηx)

κ

[1− e−(ηx)κ ]

)θ]−(1+γ)
η, κ, γ, θ, λ (4)

where η, and λ are the scale parameters, and κ, γ, and θ, are the shape parameters. Let
Y = log(X), η = e−µ, and κ = 1

δ . Moreover, Let Y follows log-ILOEWD with parameters (θ,
λ,γ,µ,δ). Since Y = log(X), dydx = 1

x =⇒ dx
dy = x = ey . To find the density function of Y, webegin with the random variable transformation of the form
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Then, finally, the transformed PDF and survival function of the ILOEWD can be given as:

f (y ; δ, µ, γ, θ, λ) =
λγθe( y−µδ )e

−
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e
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;

δ, µ, γ, θ, λ > 0 (5)
and

S(y ; δ, µ, γ, θ, λ) = 1−
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1− e−e(
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Also let us define the standardized random variable Z as Z = (y − µ)/δ. Then, equation (5) canbe re-written as

f (z ; γ, θ, λ) =
λγθeze−(e

z )[e−e
(z)

]θ−1

δ[1− e−e(z) ]θ+1

1 + λ

(
e−e

(z)[
1− e−e(z)

])θ−(1+γ) (7)
The linear regression model that is connecting the dependent variable yi and the covariates orindependent variables mi1, mi2, mi3, .....mip is given by

yi =

p∑
j=1

mi ,jτj + δzi , i = 1, 2, 3, ...., n. (8)
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Eur. J. Stat. 10.28924/ada/stat.4.10 4where zi is the random error with density presented in equation (7) with µ=0 and δ=1, µi =∑p
j=1mi ,jτj , ø = (τ1, τ2, τ3, ....τp)′ is a p× 1 vector associated with the independent variables.Equation (8) can be used to fit different kinds of data in which the covariates have significant effectson the response variable.

2.1. Inference for the Log-ILOEWD. Think of a size-n random sample poised by (y1, δ1, x1),
(y2, δ2, x2), (y3, δ3, x3), . . . , (yn, δn, xn), where y i = min {log(Ti), log(Ci)} , δi is the censor-ing indicator in which 0 is censored and 1 is failure, and xi is connected to the covariate vector asthe i th individual. Lets assume that the observed lifespan and censoring time are independent andthat there is no informative censoring. Equation (8) provides the model’s log-likelihood function forthe vector of parameter Φ = (θ, λ, γ, δ, τ ′)′ takes the form:

l(Φ; y) =
∑
i∈F

log[f (y ; Φ)] +
∑
i∈C

log[S(y ; Φ)] (9)
where the set of censored observations is indicated by C, and the set of uncensored observationsis denoted by F , f (y ; Φ) is the density given by equation (5) and S(y ; Φ) is the survival functionin equation (6). More details can be found in [13] and [14].
2.2. Residual Analysis for the Log-ILOEWD Model. Following the Log-ILOEWD’s formulation,the examination of the residuals is a crucial step. It is employed to confirm whether the model’sunderlying assumptions have changed significantly. Here, Cox and Snell’s residual is taken intoaccount. One kind of residual used in survival analysis to evaluate a survival model’s goodness-of-fit is the Cox-Snell residual. They offer a means of assessing the degree to which the modelmatches the observed survival data. They are able to be stated as:

ei = −log {S(yi ; xi)} ; i = 1, 2, 3, 4, . . . , n. (10)
The following provides the Cox-Snell residuals corresponding to the Log-ILOEWD regressionmodel:

ei = −log

1−

1 + λ

 e−e
( y−µδ )[

1− e−e(
y−µ
δ )
]

θ
−(γ) ; i = 1, 2, 3, 4, . . . , n. (11)

If the fitted model is sufficient, the residuals have an exponential distribution as expected [13].
3. Results and Discussions of the Data

3.1. Data Description. This HIV data is from the Health Maintenance Organization-Human Im-munodeficiency Virus(HMO-HIV+) study as reported by [15]. The data consists of a data framewith 100 observations on 7 variables. The variables are the patients (id) from 1-100, the date theparticipants entered the study, the date of the end of the study, survival time (between entry andend of the study), age, drug(No=0, Yes=1), as well as censoring(I=Death, 0=Alive). For this study,
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Eur. J. Stat. 10.28924/ada/stat.4.10 5the survival time (in month) is considered as the dependent variable (yi), while the covariates aredrug(x1), placebo (x2), age less or equal 25 (x3), age between 26 and 30 (x4), age between 31 to35 (x5), age between 36 to 40 (x6), and age between 41 to 51 (x7). The Log-ILOEWD model wasfitted alongside the Log-Topp Leone Odd Log-Logistic Weibull Distribution (Log-TLOLLWD) by [?],as well as Log-Weibull Distribution (Log-WD). This data is also available in R as AidsSurvival.dfunder the Bolstad2 package by [16].Table (1) reports the estimated parameter values, the -2ll, and the Akaike Information Criteria(AIC) for the regression model fitted by maximum likelihood estimation (MLE). Given that the Log-ILOEWD regression model has the lowest AIC and -2ll values among the other regression models(Log-TLOLLWD, Log-WD), we may infer that the Log-ILOEWD regression model yields a superiorfit. At the 5% level, the regression parameters τ0, τ1, τ3, τ4, τ5, and τ7 are determined to bestatistically significant for the Log-ILOEWD model. Moreover, the parameters θ, λ, as well as γwere also significance. The computed regression parameters indicate that drug-using people haveshorter lifespans than non-drug-using people. Furthermore, people’s lifetimes get shorter as theyget older. The fitted regression equation is given in equation (12).
yi = τ0 +

7∑
j=1

τjxi j + δzi ; i = 1, 2, 3, . . . , 100. (12)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

y

f
(
y
)

θ = 0.5,λ = 0.5,γ = 0.5,δ = 0.5,µ = 0.5

θ = 1,λ = 0.5,γ = 1,δ = 0.5,µ = 0.5

θ = 1.5,λ = 0.5,γ = 1.5,δ = 0.5,µ = 0.5

θ = 2,λ = 0.5,γ = 2,δ = 0.5,µ = 0.5

θ = 2.5,λ = 0.5,γ = 2.5,δ = 0.5,µ = 0.5

Figure 1. PDF of the Log-ILOEWD at various parameter values
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Figure 2. Survival function of the Log-ILOEWD at various parameter values
Figures (1) and (2) show the PDF and Survival function of the Log-ILOEWD. The PDF can takevarious shapes based on the choice of the parameter values.

Table 1. MLEs for four fitted models to Hiv Data and values of the -2ll and AIC statistic.Log-ILOEWD Log-TLOLLWD Log-WDParameter Estimate P-value Estimate P-value Estimate P-value
θ 0.8758 0.02016 5.5592 0.2901 — —
λ 0.1697 0.4341 2.7216 0.0075 — —
γ 6.7628 0.41645 — — — —
δ 1.1778 0.2109 7.5595 0.3812 0.8851 2.2E-16
τ0 0.7264 0.6002 5.7699 0.0025 -1.5156 0.0184
τ1 -0.1804 0.0001 -1.9071 0.0569 1.9303 2.88E-08
τ2 0.6669 0.3367 -1.1476 0.2112 3.0433 2.2E-16
τ3 3.1159 0.0129 2.6186 0.0108 3.2857 0.0026
τ4 1.3354 0.2695 0.8447 0.3896 1.724 0.0869
τ5 1.1139 0.3464 0.5316 0.5759 1.5908 0.10497
τ6 0.8294 0.4916 0.1465 0.8796 1.3928 0.1588
τ7 0.3319 0.7811 -0.3477 0.7163 0.6944 0.481-2ll 251.948 254.457 258.426AIC 275.948 276.457 276.426Rank 1 3 2
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Table 2. MLEs for four fitted Models to Cox-Snell Residuals and values of the -2lland AIC Statistic.Log-ILOEWD Log-TLOLLWD Log-WD
Parameter Estimate P-value Estimate P-value Estimate P-value

θ 34.0409 0.0714 0.0226 <2.2E-16 — —
λ 0.7453 0.9628 6.7060 2.661E-14 — —
γ 0.2645 0.0114 — — — —
δ 11.6796 0.7127 0.7031 9.172E-16 0.8517 <2.2E-16
τ0 2.5799 0.7396 5.001 <2.2E-16 5.2131 <2.2E-16
τ1 0.7457 0.8513 3.9091 <2.2E-16 4.8601 <2.2E-08
τ2 1.4342 0.7184 4.2724 <2.2E-16 3.8268 <2.2E-16
τ3 2.2410 0.0013 20.0261 0.0013 3.3830 0.0006
τ4 1.2257 0.0460 1.3964 0.0005 1.8194 0.0432
τ5 1.0552 0.0636 1.0631 0.0009 1.6046 0.1049
τ6 0.9184 0.1209 0.8440 0.0069 0.8615 0.3268
τ7 0.4586 0.4392 1.0510 0.0041 0.8615 0.3268-2ll 241.1869 271.2702 257.5180AIC 273.1869 293.2702 275.5180Rank 1 3 2

Table (1) shows that Log-ILOEWD is the best model with minimum values of the -2ll and AIC.At 5% level, the regression parameters τ1 and τ3 are determined to be significant for the Log-ILOEWD. Moreover, the parameter θ is also significant. The computed regression parametersindicated that drug-using people have shorter lifespans than non-drug-using people. Table (2)indicated that the Log-ILOEWD is the best fitted model. Also, the Cox-Snell residual plots forthe HIV survival models (Log-ILOEWD, Log-TLOLLWD, and Log-WD) are shown in figures (3),(4), and (5) respectively. On the plots, the Y-axis shows the transformed residuals and the X-axisshows the residuals (differences between predicted and actual survival probabilities). Plots showthat compared to the expected exponential curves for the log-TLOLLWD and log-WD, the expectedexponential curve for the Log-ILOEWD model is more similar to the actual curve. Log-ILOEWD istherefore the optimal model.
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Figure 3. The Cox-Snell residual plot of the Log-ILOEWD for the fitted Hiv data

Figure 4. The Cox-Snell residual plot of the Log-WD for the fitted Hiv data

Figure 5. The Cox-Snell residual plot of the Log-TLOLLWD for the fitted Hiv data
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Eur. J. Stat. 10.28924/ada/stat.4.10 93.2. Applications of Kaplan-Meier Survival Probability. A non-parametric statistic called theKaplan-Meier estimator sometimes referred to as the product-limit estimator, is used in survivalanalysis to calculate the survival function given lifetime data. This technique, which was proposedby [17], is frequently used in medical research to calculate the percentage of patients that survivefor a specific time following therapy. The survival function, which indicates the likelihood that apatient will survive past a specific time, can be estimated in an intuitive manner using the Kaplan-Meier estimator. This is essential to comprehending how well medicines work over time. Here, theKaplan-Meier survival probability for the two datasets was presented.
Table 3. Kaplan-Meier Survival Probability for the Hiv DatasetTimes (in Month) Number of Risk Number of event Survival probability Standard Error Lower 95% C.I Upper 95% C.I1 100 12 0.88 0.0325 0.819 0.9462 83 5 0.827 0.0382 0.755 0.9053 73 9 0.725 0.0462 0.64 0.8224 61 2 0.701 0.0477 0.614 0.8015 56 4 0.651 0.0504 0.56 0.7586 49 2 0.625 0.0517 0.531 0.7357 46 6 0.543 0.0546 0.446 0.6628 39 2 0.515 0.0553 0.418 0.6369 35 1 0.501 0.0556 0.403 0.62210 32 1 0.485 0.056 0.387 0.60811 28 1 0.468 0.0566 0.369 0.59312 25 2 0.43 0.058 0.33 0.5615 19 1 0.408 0.0592 0.307 0.54256 5 1 0.326 0.0869 0.193 0.55

Table (3) presents the Kaplan-Meier survival probability for the Hiv Dataset, while Figures(6), (7), (8), and (9) shows the Hiv data Kaplan-Meier survival curve, fitted Log-ILOEWD, Log-TLOLLWD, and Log-WD to Hiv survival probability and Kaplan-Meier, respectively. From thetable, a steeper decline in survival probability between months 3 and 7 can be noticed, followedby a more gradual decrease. This might suggest a higher risk of death during this earlier period.

Figure 6. Hiv data Kaplan-Meier Survival Curve
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Eur. J. Stat. 10.28924/ada/stat.4.10 10Figure (6) is the graphical representation of Table (3). From the graph, one can notice that thesurvival probability generally decreases over time, as expected. This indicates that the probabilityof surviving without the event (death) decreases as the follow-up time increases.

Figure 7. Hiv data Kaplan-Meier and Log-ILOEWD Survival Curve

Figure 8. Hiv Kaplan-Meier and Log-WD Survival Curve
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Figure 9. Hiv Kaplan-Meier and Log-TLOLLWD Survival Curve
Figures (7), (8), and (9) show the fitted Log- ILOEWD, Log-TLOLLWD, and Log-WD to HIVsurvival probability and Kaplan-Meier, respectively. Figure (7) indicated that Log-ILOEWD is thebest-fitted model.

4. Conclusion
In this paper, a survival regression model called Log-ILOEWD were introduced and fitted to HIVdata. The parameters of the Log-ILOEWD was estimated using the method of maximum likelihood.Cox-Snell residuals were presented as exploratory data analysis. Moreover, the Kaplan-Meiersurvival probability for the data was also considered. The proposed model appears to be the bestwhen comparing with two other models, based on the HIV data. However, other datasets can beemployed to fit Log-ILOEWD perhaps with other models.
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