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Abstract. A new asymmetric counterpart of the Laplace distribution is introduced, the Arctan-Laplace
distribution. Its mathematical properties are studied. Flexibility of the proposed distribution family
is demonstrated using a real data set.

1. Introduction

The Laplace distribution dates back to the 18th century, it was introduced by Pierre-Simon
de Laplace in [21]. There exist many modifications of the Laplace distribution nowadays. One
such well-known generalization of the Laplace distribution is the asymmetric Laplace distribution
of Hinkley and Revankar (see [14]), its properties are described in detail in [18]. The pdf of this
distribution is

p(x ;µ, σ, κ) =






√
2
σ

κ
1 + κ2

exp

{
−
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2
σκ |x − µ|

}
, if x < µ;

√
2
σ

κ
1 + κ2

exp

{
−
√

2κ
σ |x − µ|

}
, if x ≥ µ

(1)

(the pdf is given in a slightly reparametrized form).
Other families based on the Laplace distribution include the alpha-skew-Laplace distribution

(see [13]), the Balakrishnan-alpha-beta-skew-Laplace Distribution (see [36]), the beta-Laplace dis-
tribution (see [4]), the flexible skew Laplace distribution of Yilmaz (see [42]), the Kumaraswamy
Laplace distribution (see [27]), the Marshall-Olkin Esscher transformed Laplace distribution (see
[10]), a modification based on taking a difference of exponentiated exponentially distributed ran-
dom variables (see [38]), the skew-symmetric-Laplace distribution (see [29]), the three-parameter
asymmetric Laplace distribution of Yu and Zhang (see [43]), to name but a few. Kozubowski and
Nadarajah gave in [19] a good (but rather limited) review of Laplace distribution variations.

The Laplace distribution along with its numerous modifications was applied, in particular, in
such areas as finance and economics (see [3], [12], [31], [33], [39], [41]) engineering and technology
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(see [15], [16], [22] [23], [28]), the natural sciences ( [11], [17], [32], [34], [37], [40]). A wide range of
Laplace distribution applications is also discussed in [18].

We propose a new generalization of the Laplace distribution by transforming its cdf. Our ap-
proach is based on a modification of a method of generating new distributions described in [2]. The
Arctan-X family is defined in [2] as a distribution family with the cdf

FA(x) =
4

π
arctan(F (x)),

where F (x) is the cdf of the parent distribution.
We derive a new distribution from a parent distribution as follows: the cdf of the generalized

Arctan-X distribution is defined as

FGA(x ; γ) =
1

arctan(γ)
arctan(γF (x)),

where F (x) is the cdf of the original distribution (γ = 1 yields the Arctan-X family of Alkhairy et
al.). The case when X is the Laplace distribution corresponds to the generalized Arctan-Laplace
(GATL) distribution family.

The generalized Arctan-Laplace distribution is a skewed one, the skewness is regulated by the
parameter γ. Therefore it is suitable for modeling asymmetric data such as returns of a financial
time series. The paper is organized as follows. We investigate theoretical properties of the new
distribution in Section 2: expressions for the cdf, the pdf and the quantile functions are provided,
unimodality is proved and the formula for the mode is obtained; we also derive the moments,
investigate behavior of the skewness and the kurtosis and obtain the Rényi entropy. The GATL
distribution is applied to a real data set in Section 3 in order to illustrate its usefulness. Lastly,
concluding remarks are given in Section 4.

2. Properties

Denote by Lapl(θ, φ) the Laplace distribution with the parameters θ and φ, its cdf is

FL(x) =





(1/2) exp{(x − θ)/φ}, x ≤ θ;

1− (1/2) exp{−(x − θ)/φ}, x > θ.

Definition. The generalized Arctan-Laplace distribution with the parameters γ, θ and φ (where
γ ∈ (0; +∞), θ ∈ R, φ ∈ (0; +∞)) is defined as a distribution with the cdf

F (x ; γ, θ, φ) =
1

arctan(γ)
arctan(γFL(x)).

We will use notation GATL(γ, θ, φ) for the generalized Arctan-Laplace distribution with the
parameters γ, θ and φ.



The generalized Arctan-Laplace distribution cdf can be rewritten as

F (x ; γ, θ, φ) =






1

arctan(γ)
· arctan

(
(γ/2) exp{(x − θ)/φ}

)
, x ≤ θ;

1

arctan(γ)
· arctan

(
γ − (γ/2) exp{−(x − θ)/φ}

)
, x > θ.

(2)

The pdf of GATL(γ, θ, φ) distribution is

p(x ; γ, θ, φ) =






γ

2φ arctan γ
·

exp{(x − θ)/φ}
1 + (γ2/4) exp{2(x − θ)/φ} , x ≤ θ;

γ

2φ arctan γ
·

exp{−(x − θ)/φ}
1 + γ2(1− (1/2) exp{−(x − θ)/φ})2 , x > θ.

Remark. We will use notation p(x) and F (x) instead of p(x ; γ, θ, φ) and F (x ; γ, θ, φ) corre-
spondingly when this is unambiguous.

Plots of the pdfs for GATL(γ, 0, 1) distributions for γ = 1.6, γ = 2.5 and γ = 5 are shown in
Fig. 1, Fig. 2 and Fig. 3 correspondingly.

Let us mention some special and limiting cases of the GATL distribution.

• The GATL(1, θ, φ) distribution is the Arctan-Laplace distribution in the sense of Alkhairy
et al.
• It is easy to see that GATL(γ, θ, φ) distribution converges to the Laplace distribution with

the parameters θ and φ as γ → 0+. It can also be proved that

lim
γ→0+

p(x ; γ, θ, φ) = pL(x ; θ, φ),

where pL(x ; θ, φ) is the pdf of Lapl(θ, φ).

Figure 1. The pdf of GATL for γ = 1.6, θ = 0, φ = 1



Figure 2. The pdf of GATL for γ = 2.5, θ = 0, φ = 1

Figure 3. The pdf of GATL for γ = 5, θ = 0, φ = 1

2.1. Quantiles and Modes. It is easy to verify that the quantile function of GATL(γ, θ, φ) distri-
bution is

Q(u) =






θ + φ ln
(

(2/γ) tan(u arctan γ)
)
, u ∈ (0; u0];

θ − φ ln
(

2− (2/γ) tan(u arctan γ)
)
, u ∈ (u0; 1),

(3)

where
u0 =

arctan(γ/2)

arctan γ
.

Theorem 2.1.1. GATL(γ, θ, φ) distribution is unimodal. Its mode is
1) x0 = θ + (1/2) ln(4/γ2), if γ ∈ (2; +∞);

2) x0 = θ, if γ ∈ (0; 2].
Proof. It is enough to prove this fact for θ = 0 and φ = 1.
Obviously

p′x(x ; γ, 0, 1) = c ′γ

p′L(x)
(

1 + γ2(FL(x))2
)
− 2γ2(pL(x))2FL(x)

(
1 + γ2(FL(x))2

)2 (4)

for any x 6= 0, where c ′γ = γ/ arctan γ, pL(x) and FL(x) are correspondingly the pdf and the cdf
of the Laplace distribution with the parameters θ = 0 and φ = 1. It follows from (4) that

sgn
(
p′x(x ; γ, 0, 1)

)
= sgn

(
1− (γ2/4)e2x

)
, x ≤ 0,



and
sgn

(
p′x(x ; γ, 0, 1)

)
= −sgn

(
1 + γ2 − (γ2/4)e−2x

)
, x > 0.

But
1 + γ2 − (γ2/4)e−2x ≥ 1 +

3

4
γ2 > 0, x > 0.

Therefore p(x) decreases on (0;∞).
It is evident now that the point of the global maximum for p(x) is x0 = 0 when γ ∈ (0; 2] and

x0 = (1/2) log(4/γ2) when γ ∈ (2; +∞). �

2.2. Moments. Denote by µ′n;γ and µn;γ correspondingly the n-th moment and the n-th central
moment of GATL(γ, 0, 1).

Let us find the n-th moment µ′n;γ of GATL(γ, 0, 1).
Theorem 2.2.1. The n-th moment of GATL(γ, 0, 1) is

µ′n;γ =
n!

2i arctan γ

(
(−1)n (Lin+1(iγ/2)− Lin+1(−iγ/2))+Lin+1

(
γ

2(−i + γ)

)
−Lin+1

(
γ

2(i + γ)

))
,

(5)
where Lin(z) is the polylogarithm.

Proof. Let us represent µ′n;γ as

µ′n;γ =

∫ 0

−∞
xnp(x ; γ, 0, 1)dx +

∫ ∞

0

xnp(x ; γ, 0, 1)dx =
γ

arctan γ
I
(n)
L +

γ

arctan γ
I
(n)
R ,

where
I
(n)
L =

arctan γ

γ

∫ 0

−∞
xnp(x ; γ, 0, 1)dx =

∫ 0

−∞

(1/2)xnex

1 + (γ2/4)e2x
dx, (6)

I
(n)
R =

arctan γ

γ

∫ ∞

0

xnp(x ; γ, 0, 1)dx =

∫ ∞

0

(1/2)xne−x

1 + γ2 (1− (1/2)e−x)2
dx. (7)

Let us transform the integral I(n)L . We have:

I
(n)
L =

1

2
(−1)n

∫ ∞

0

yney

(γ2/4) + e2y
dy =

1

2
(−1)nI ′L, (8)

where
I ′L =

∫ ∞

0

yney

(γ2/4) + e2y
dy =

1

2

∫ ∞

0

yn

ey − iγ/2
dy +

1

2

∫ ∞

0

yn

ey + iγ/2
dy

=
n!

iγ
(Lin+1(iγ/2)− Lin+1(−iγ/2)) . (9)

The formula
Lis(z) =

z

Γ(s)

∫ ∞

0

y s−1

ey − z dy

was used (see [30], p. 611).
Let us rewrite the integral I(n)R . Since

e−x

1 + γ2 (1− (1/2)e−x)2
= −

1

iγ

(
z2

ex − z2
−

z1
ex − z1

)
,



where
z1 =

γ

2(−i + γ)
, z2 =

γ

2(i + γ)
,

we have

I
(n)
R = −

1

2iγ

(
z2

∫ ∞

0

xndx

ex − z2
− z1

∫ ∞

0

xndx

ex − z1

)
= −

n!

2iγ
(Lin+1(z2)− Lin+1(z1)) . (10)

Now (5) follows from (8), (9) and (10). �

Remark. The n-th moment of GATL(γ, θ, φ) (denote it by µ′n;(γ,θ,φ)) can be expressed as

µ′n;(γ,θ,φ) =

n∑

k=0

(
n

k

)
φkθn−kµ′k;γ ,

where µ′0;γ = 1.
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Figure 4. The skewness of GATL(γ, 0, 1) as a function of γ

Skewness
Figure 4 shows the skewness of GATL(γ, 0, 1),

η3;γ =
µ3;γ

µ
3/2
2;γ

.

Kurtosis
Figure 5 displays the excess kurtosis of GATL(γ, 0, 1) distribution,

η4;γ =
µ4;γ

µ22;γ
− 3.

Theorem 2.2.2.
lim
γ→0+

η3;γ = 0, lim
γ→0+

η4;γ = 3.

Proof. Suppose that {γn} is such a sequence that limn γn = 0 (we can assume that supn γn < 2)
and ξn ∼ GATL(γn, 0, 1). And let ζ ∼ Lapl(0, 1).
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Figure 5. The excess kurtosis of GATL(γ, 0, 1) as a function of γ

Let us prove that the sequence {|ξn|q} is uniformly integrable for q = 1, 2, 3, 4. In order to do
this it is enough to show that

sup
n

Eξ2qn <∞, q = 1, 2, 3, 4. (11)

First of all, let us verify that

Lis(z) = z + o(z), z → 0, (12)

for s > 1. Indeed (let |z | < 1),

Lis(z) = z + z2
∞∑

n=2

zn−2

ns
,

where ∣∣∣∣∣

∞∑

n=2

zn−2

ns

∣∣∣∣∣ ≤
1

2s
+

∞∑

k=1

|z |k

ks
=

1

2s
+ Lis(|z |)

is bounded in {z : |z | < 1} since Lis(z) is an analytic function in this ball.
Let us continue the proof of (11). We obtain using Theorem 2.2.1 and (12):

Eξ2qn = µ′γn;2q ≤
q!

2| arctan γn|

(
|Liq+1(iγn/2)− Liq+1(−iγn/2)|

+

∣∣∣∣Liq+1

(
γn

2(−i + γn)

)
− Liq+1

(
γn

2(i + γn)

)∣∣∣∣

)
=

q!

2| arctan γn|
(An|γn|+ o(γn)), (13)

where supn |An| <∞, and now it is evident that {Eξ2qn } is bounded.
Now ξn

d−→ ζ and uniform integrability of {|ξn|q} imply that

Eξqn → Eζq, q = 1, 2, 3, 4 (14)



(see [35], p. 14, Theorem A). It follows from (14) that

η3;γ → η3;0 = 0, γ → 0+,

and

η4;γ → η4;0 = 3, γ → 0+,

where η3;0 and η4;0 are the skewness and the excess kurtosis of Lapl(0; 1) distribution correspond-
ingly.

2.3. Entropy. Let us obtain the Rényi entropy of the GATL distribution.
Theorem 2.3.1. The Rényi entropy Hλ of GATL(γ, θ, φ) distribution is

Hλ = lnφ+
1

1− λ

(
− lnλ+ λ ln

γ

2 arctan γ
+ ln

(
3F2

(
λ,
λ

2
,
λ+ 1

2
;
λ+ 1

2
,
λ+ 2

2
;−
γ2

4

)

+
1

(γ2 + 1)λ
F1

(
λ;λ, λ;λ+ 1;

γ

2γ + 2i
,

γ

2γ − 2i

)))
, (15)

where 3F2 is the generalized hypergeometric function and F1 is the Appell function.
Proof. It suffices to prove (15) for θ = 0 and φ = 1. We have:

Hλ =
1

1− λ ln

(∫

R1
pλ(x ; γ, 0, 1)dx

)
=

1

1− λ ln Iλ,

where

Iλ =

∫

R1
pλ(x ; γ, 0, 1)dx = I

(1)
λ + I

(2)
λ ,

I
(1)
λ =

∫ 0

−∞
pλ(x ; γ, 0, 1)dx, (16)

I
(2)
λ =

∫ ∞

0

pλ(x ; γ, 0, 1)dx. (17)

The integral in (16) can be rewritten as follows:
∫ 0

−∞
pλ(x ; γ, 0, 1)dx = 2λ

(
1

γ arctan γ

)λ
Ĩ
(1)
λ , (18)

where

Ĩ
(1)
λ =

∫ 0

−∞

exp{λx}dx
(4/γ2 + exp{2x})λ =

∫ 1

0

yλ−1dy

(y2 + (2/γ)2)λ

= (γ2/4)λ ·
1

λ
· 3F2

(
λ,
λ

2
,
λ+ 1

2
;
λ+ 1

2
,
λ+ 2

2
;−
γ2

4

)
(19)

(formula 3.254 from [44] was used).

The integral in (17) can be transformed this way:
∫ ∞

0

pλ(x ; γ, 0, 1)dx =

(
γ

2 arctan γ

)λ
Ĩ
(2)
λ , (20)



where

Ĩ
2)
λ =

∫ ∞

0

(
exp{−x}

1 + γ2(1− (1/2) exp{−x})2

)λ
dx

=

∫ 1

0

yλ−1dy

(1 + γ2(1− y/2)2)λ
=

1

(γ2 + 1)λ

∫ 1

0

yλ−1dy
(

1− γy
2γ+2i

)λ (
1− γy

2γ−2i
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1

λ(γ2 + 1)λ
F1

(
λ;λ, λ;λ+ 1;

γ

2γ + 2i
,

γ

2γ − 2i

)
(21)

(formula 16.15.1 from [30] was applied).
Now (15) follows from (18)–(21). �

3. Applications

We will demonstrate now the usefulness of the GATL distribution family. We will fit the GATL
distribution to a financial dataset and compare the quality of fit with that of competing models.

Our dataset consists of the daily returns ξk = ηk+1−ηk (where ηk is the stock price on day k) for
FCX stock from July 26, 2016 to November 2, 2016 (see [9]). The alternative distribution families
are the following modifications of the Laplace distribution: the asymmetric Laplace distribution
(ASL) (see [18], this parametrization is denoted by AL in the book); the truncated-exponential
skew-symmetric Laplace distribution (TESSL), see [25]; the exponentiated generalized Laplace
distribution (EGL), see [5], and the geometric exponential Poisson Laplace distribution (GEPL),
see [24], [26].

The pdfs of these distributions are as follows:

pASL(x ; θ, φ, κ) =






√
2
φ

κ
1 + κ2

exp

{
−
√

2
φκ
|x − θ|

}
, if x < θ;

√
2
φ

κ
1 + κ2

exp

{
−
√

2κ
φ
|x − θ|

}
, if x ≥ θ.

κ > 0;
pTESSL(x ; θ, φ, λ) =

λ

1− exp{−λ}pL(x) exp{−λFL(x)},

λ ∈ R;
pEGL(x ; θ, φ, a, b) = abpL(x)(1− FL(x))a−1 (1− (1− FL(x))a)b−1 ,

a > 0, b > 0;

pGEPL(x ; θ, φ, ν, ρ) = ν(1− ρ)(1− exp{−ν})
pL(x) exp{−ν + νFL(x)}

(1− exp{−ν} − ρ+ ρ exp{−ν + νFL(x)})2
,

ν > 0, ρ ∈ (0; 1), for the ASL, the TESSL, the EGL and the GEPL distributions correspondingly,
where pL(x) and FL(x) are respectively the pdf and the cdf of the Lapl(θ, φ) distribution.

All calculations were performed using the R software (including packages AdequacyModel [1],
dfoptim [7] and fitdistrplus [8]). The values of the maximum likelihood estimates for these
distributions are given in Table 1.



The following goodness-of-fit criteria were used for comparison of the models: the log-
likelihood l , the AIC, the BIC and the HQIC. Table 2 contains the values of these criteria. The
fitted GATL distribution corresponded to the best results according to all goodness-of-fit statistics.

The histogram and the density of the fitted GATL distribution for FCX dataset are shown in
Figure 6.

Table 1. MLEs

Model Estimates

GATL θ̂ = 0.0200, φ̂ = 0.2402, γ̂ = 0.8559

ASL θ̂ = 0.0200, φ̂ = 0.3265, κ̂ = 1.1128

TESSL θ̂ = 0.1818, φ̂ = 0.2454, λ̂ = 2.0939

EGL θ̂ = 0.0961, φ̂ = 1.4215, â = 6.7056, b̂ = 43.2157

GEPL θ̂ = −0.0368, φ̂ = 0.2330, ν̂ = 1.4324, ρ̂ = 0.3857

Table 2. Model comparison criteria

Model l AIC BIC HQIC

GATL −16.220 38.439 45.185 41.118

ASL −16.318 38.635 45.380 41.314

TESSL −16.876 39.752 46.498 42.432
EGL −16.704 41.408 50.402 44.980

GEPL −16.932 41.864 50.858 45.437

Figure 6. The histogram and the fitted GATL pdf for FCX dataset

4. Conclusions

A new generalization of the Laplace distribution is proposed, the Arctan-Laplace distribution.
Various properties of the new distribution are studied including modes, the moments, the behavior



of the skewness and the kurtosis, the Rényi entropy. A real data set is fitted to the Arctan-Laplace
model. The fit results show that the Arctan-Laplace distribution is superior to competing families.

References

[1] AdequacyModel: Adequacy of probabilistic models and general purpose optimization. https://cran.r-project.
org/package=AdequacyModel.

[2] I. Alkhairy, M. Nagy, A.H. Muse, E. Hussam, The Arctan-X family of distributions: properties, simulation, and
applications to actuarial sciences, Complexity 2021 (2021), 4689010. https://doi.org/10.1155/2021/4689010.

[3] Y. Arata, Firm growth and Laplace distribution: the importance of large jumps, J. Econ. Dyn. Control 103 (2019),
63–82. https://doi.org/10.1016/j.jedc.2019.01.009.

[4] G.M. Cordeiro, A.J. Lemonte, The beta Laplace distribution, Stat. Prob. Lett. 81 (2011), 973–982. https://doi.
org/10.1016/j.spl.2011.01.017.

[5] G.M. Cordeiro, E.M.M. Ortega, D.C.C.D. Cunha, The exponentiated generalized class of distributions, J. Data Sci.
11 (2021), 1–27. https://doi.org/10.6339/JDS.2013.11(1).1086.

[6] M.L. Delignette-Muller, C. Dutang, Fitdistrplus: an R package for fitting distributions, J. Stat. Softw. 64 (2015),
1–34. https://doi.org/10.18637/jss.v064.i04.

[7] dfoptim: Derivative-free optimization. https://cran.r-project.org/package=dfoptim.
[8] fitdistrplus: Help to fit of a parametric distribution to non-censored or censored data. https://cran.r-project.

org/package=fitdistrplus.
[9] Freeport-McMoRan Inc. (FCX) Stock price. https://finance.yahoo.com/quote/FCX.

[10] D. George, S. George, Marshall–Olkin esscher transformed Laplace distribution and processes, Brazil. J. Prob. Stat.
27 (2013), 162–184. https://doi.org/10.1214/11-BJPS163.

[11] M. Geraci, M. Bottai, Quantile regression for longitudinal data using the asymmetric Laplace distribution, Bio-
statistics 8 (2007), 140–154. https://doi.org/10.1093/biostatistics/kxj039.

[12] M. Haas, S. Mittnik, M.S. Paolella, Modelling and predicting market risk with Laplace–gaussian mixture distribu-
tions, Appl. Financial Econ. 16 (2006), 1145–1162. https://doi.org/10.1080/09603100500438817.

[13] S.S. Harandi, M.H. Alamatsaz, Alpha-Skew-Laplace distribution, Stat. Prob. Lett. 83 (2013), 774–782. https:
//doi.org/10.1016/j.spl.2012.11.024.

[14] D.V. Hinkley, N.S. Revankar, Estimation of the pareto law from underreported data, J. Econometrics 5 (1977), 1–11.
https://doi.org/10.1016/0304-4076(77)90031-8.

[15] P. Johannesson, K. Podgórski, I. Rychlik, Laplace distribution models for road topography and roughness, Int. J.
Vehicle Perform. 3 (2017), 224. https://doi.org/10.1504/IJVP.2017.085032.

[16] S. Jorjandi, H. Rabbani, R. Kafieh, Z. Amini, Statistical modeling of optical coherence tomography images by
asymmetric normal Laplace mixture model, in: 2017 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, IEEE, Seogwipo, 2017: pp. 4399–4402. https://doi.org/10.1109/EMBC.
2017.8037831.

[17] O. Julià, J. Vidal-Mas, N.S. Panikov, J. Vives-Rego, Skew-Laplace and cell-size distribution in microbial axenic
cultures: statistical assessment and biological interpretation, Int. J. Microbiol. 2010 (2010), 191585. https://doi.
org/10.1155/2010/191585.

[18] S. Kotz, T.J. Kozubowski, K. Podgórski, The Laplace distribution and generalizations, Birkhäuser, Boston, 2001.
https://doi.org/10.1007/978-1-4612-0173-1.

[19] T.J. Kozubowski, S. Nadarajah, Multitude of laplace distributions, Stat. Papers 51 (2010), 127–148. https://doi.
org/10.1007/s00362-008-0127-2.

https://cran.r-project.org/package=AdequacyModel
https://cran.r-project.org/package=AdequacyModel
https://doi.org/10.1155/2021/4689010
https://doi.org/10.1016/j.jedc.2019.01.009
https://doi.org/10.1016/j.spl.2011.01.017
https://doi.org/10.1016/j.spl.2011.01.017
https://doi.org/10.6339/JDS.2013.11(1).1086
https://doi.org/10.18637/jss.v064.i04
https://cran.r-project.org/package=dfoptim
https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=fitdistrplus
https://finance.yahoo.com/quote/FCX
https://doi.org/10.1214/11-BJPS163
https://doi.org/10.1093/biostatistics/kxj039
https://doi.org/10.1080/09603100500438817
https://doi.org/10.1016/j.spl.2012.11.024
https://doi.org/10.1016/j.spl.2012.11.024
https://doi.org/10.1016/0304-4076(77)90031-8
https://doi.org/10.1504/IJVP.2017.085032
https://doi.org/10.1109/EMBC.2017.8037831
https://doi.org/10.1109/EMBC.2017.8037831
https://doi.org/10.1155/2010/191585
https://doi.org/10.1155/2010/191585
https://doi.org/10.1007/978-1-4612-0173-1
https://doi.org/10.1007/s00362-008-0127-2
https://doi.org/10.1007/s00362-008-0127-2


[20] T.J. Kozubowski, K. Podgorski, Skew Laplace distributions. I. Their origins and inter-relations, Math. Scientist 33
(2008), 22–34.

[21] P.S. Laplace, Mémoire sur las probabilité des causes par les èvénemens, Mém. Math. Phys. 6 (1774), 621–656.
[22] D. Lee, R. Baldick, Probabilistic wind power forecasting based on the laplace distribution and golden search, in:

2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), IEEE, Dallas, 2016: pp. 1–5.
https://doi.org/10.1109/TDC.2016.7519992.

[23] M.M. Meerschaert, T.J. Kozubowski, F.J. Molz, S. Lu, Fractional laplace model for hydraulic conductivity, Geophys.
Res. Lett. 31 (2004), 2003GL019320. https://doi.org/10.1029/2003GL019320.

[24] S. Nadarajah, V.G. Cancho, E.M.M. Ortega, The geometric exponential poisson distribution, Stat. Methods Appl. 22
(2013), 355–380. https://doi.org/10.1007/s10260-013-0230-y.

[25] S. Nadarajah, V. Nassiri, A. Mohammadpour, Truncated-exponential skew-symmetric distributions, Statistics 48
(2014), 872–895. https://doi.org/10.1080/02331888.2013.821474.

[26] S. Nadarajah, R. Rocha, Newdistns: an R package for new families of distributions, J. Stat. Softw. 69 (2016), 1–32.
https://doi.org/10.18637/jss.v069.i10.

[27] M.M. Nassar, The Kumaraswamy Laplace distribution, Pak. J. Stat. Oper. Res. 12 (2016), 609–624. https://doi.
org/10.18187/pjsor.v12i4.1485.

[28] V.K. Nath, A. Mahanta, Image denoising based on Laplace distribution with local parameters in Lapped Transform
domain, in: Proceedings of the International Conference on Signal Processing and Multimedia Applications, Seville,
Spain, pp. 1–6, (2011).

[29] V. Nekoukhou, M.H. Alamatsaz, A family of skew-symmetric-Laplace distributions, Stat. Papers 53 (2012), 685–696.
https://doi.org/10.1007/s00362-011-0372-7.

[30] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST handbook of mathematical functions, Cambridge
University Press, (2010).

[31] A. Punzo, L. Bagnato, Modeling the cryptocurrency return distribution via laplace scale mixtures, Physica A: Stat.
Mech. Appl. 563 (2021), 125354. https://doi.org/10.1016/j.physa.2020.125354.

[32] B. Purkait, Grain-size distribution patterns of a point bar system in the Usri River, India, Earth Surf. Process. Landf.
31 (2006), 682–702. https://doi.org/10.1002/esp.1290.

[33] S.T. Rachev, A. SenGupta, Laplace-Weibull mixtures for modeling price changes, Manage. Sci. 39 (1993), 1029–1038.
https://doi.org/10.1287/mnsc.39.8.1029.

[34] J. Reyes, M.A. Rojas, P.L. Cortés, J. Arrué, A more flexible asymmetric exponential modification of the laplace
distribution with applications for chemical concentration and environment data, Mathematics 10 (2022), 3515.
https://doi.org/10.3390/math10193515.

[35] R.J. Serfling, Approximation theorems of mathematical statistics, Wiley, (2002).
[36] S. Shah, P.J. Hazarika, S. Chakraborty, M. Alizadeh, The Balakrishnan-alpha-beta-skew-Laplace distribu-

tion: properties and applications, Stat. Optim. Inf. Comp. 11 (2022), 755–772. https://doi.org/10.19139/

soic-2310-5070-1247.
[37] D.L. Sharma, M.F. D’Antuono, W.K. Anderson, Small grain screenings in wheat—using the grain size distribution

for predicting cultivar responses, Aust. J. Agric. Res. 57 (2006), 771–779. https://doi.org/10.1071/AR05272.
[38] H.M. Srivastava, S. Nadarajah, S. Kotz, Some generalizations of the Laplace distribution, Appl. Math. Comp. 182

(2006), 223–231. https://doi.org/10.1016/j.amc.2006.01.091.
[39] A.A. Trindade, Y. Zhu, B. Andrews, Time series models with asymmetric Laplace innovations, J. Stat. Comp. Simul.

80 (2010), 1317–1333. https://doi.org/10.1080/00949650903071088.
[40] S. Wang, T. Zhao, H. Zheng, J. Hu, The STIRPAT analysis on carbon emission in Chinese cities: an asymmetric

laplace distribution mixture model, Sustainability 9 (2017), 2237. https://doi.org/10.3390/su9122237.

https://doi.org/10.1109/TDC.2016.7519992
https://doi.org/10.1029/2003GL019320
https://doi.org/10.1007/s10260-013-0230-y
https://doi.org/10.1080/02331888.2013.821474
https://doi.org/10.18637/jss.v069.i10
https://doi.org/10.18187/pjsor.v12i4.1485
https://doi.org/10.18187/pjsor.v12i4.1485
https://doi.org/10.1007/s00362-011-0372-7
https://doi.org/10.1016/j.physa.2020.125354
https://doi.org/10.1002/esp.1290
https://doi.org/10.1287/mnsc.39.8.1029
https://doi.org/10.3390/math10193515
https://doi.org/10.19139/soic-2310-5070-1247
https://doi.org/10.19139/soic-2310-5070-1247
https://doi.org/10.1071/AR05272
https://doi.org/10.1016/j.amc.2006.01.091
https://doi.org/10.1080/00949650903071088
https://doi.org/10.3390/su9122237


Eur. J. Stat. 10.28924/ada/stat.4.12 13

[41] N. Wichitaksorn, J.J.J. Wang, S.T.B. Choy, R. Gerlach, Analyzing return asymmetry and quantiles through stochastic
volatility models using asymmetric Laplace error via uniform scale mixtures, Appl. Stoch. Models Bus. Ind. 31 (2015),
584–608. https://doi.org/10.1002/asmb.2062.

[42] A. Yilmaz, The flexible skew Laplace distribution, Commun. Stat. - Theory Meth. 45 (2016), 7053–7059. https:
//doi.org/10.1080/03610926.2014.974821.

[43] K. Yu, J. Zhang, A three-parameter asymmetric Laplace distribution and its extension, Commun. Stat. - Theory Meth.
34 (2005), 1867–1879. https://doi.org/10.1080/03610920500199018.

[44] D. Zwillinger, A. Jeffrey (Eds.), Table of integrals, series, and products, Elsevier, (2007).

https://doi.org/10.28924/ada/stat.4.12
https://doi.org/10.1002/asmb.2062
https://doi.org/10.1080/03610926.2014.974821
https://doi.org/10.1080/03610926.2014.974821
https://doi.org/10.1080/03610920500199018

	1. Introduction
	2. Properties
	2.1. Quantiles and Modes
	2.2. Moments
	2.3. Entropy

	3. Applications
	4. Conclusions
	References

