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ABSTRACT. A new asymmetric counterpart of the Laplace distribution is introduced, the Arctan-Laplace
distribution. Its mathematical properties are studied. Flexibility of the proposed distribution family

is demonstrated using a real data set.

1. INTRODUCTION

The Laplace distribution dates back to the 18th century, it was introduced by Pierre-Simon
de Laplace in [21]. There exist many modifications of the Laplace distribution nowadays. One
such well-known generalization of the Laplace distribution is the asymmetric Laplace distribution
of Hinkley and Revankar (see [14]), its properties are described in detail in [18]. The pdf of this

distribution is

V2 K 2 . _
( ) o 1+/§2eXp —grlx—ulr,  dx<uw "
px;u, 0, K)=

V2 &k V2K .

01+K26XP —YEIx =, Ux>u

(the pdf is given in a slightly reparametrized form).

Other families based on the Laplace distribution include the alpha-skew-Laplace distribution
(see [13]), the Balakrishnan-alpha-beta-skew-Laplace Distribution (see [36]), the beta-Laplace dis-
tribution (see [4]), the flexible skew Laplace distribution of Yilmaz (see [42]), the Kumaraswamy
Laplace distribution (see [27]), the Marshall-Olkin Esscher transformed Laplace distribution (see
[10]), a modification based on taking a difference of exponentiated exponentially distributed ran-
dom variables (see [38]), the skew-symmetric-Laplace distribution (see [29]), the three-parameter
asymmetric Laplace distribution of Yu and Zhang (see [43]), to name but a few. Kozubowski and
Nadarajah gave in [19] a good (but rather limited) review of Laplace distribution variations.

The Laplace distribution along with its numerous modifications was applied, in particular, in

such areas as finance and economics (see [3], [12], [31], [33] [39], [41]) engineering and technology

Received: 19 Sep 2024.

Key words and phrases. Laplace distribution; maximum likelihood estimation; goodness of fit.
1


https://adac.ee
https://doi.org/10.28924/ada/stat.4.12

(see [15], [16], [22] [23], [28]), the natural sciences ( [11], [17], [32], [34], [37], [40]). A wide range of
Laplace distribution applications is also discussed in [18].

We propose a new generalization of the Laplace distribution by transforming its cdf. Our ap-
proach is based on a modification of a method of generating new distributions described in [2]. The

Arctan-X family is defined in [2] as a distribution family with the cdf
4
Fa(x) = p arctan(F(x)),

where F(x) is the cdf of the parent distribution.
We derive a new distribution from a parent distribution as follows: the cdf of the generalized

Arctan-X distribution is defined as

Fea(x;v) = arctan(yF(x)),

arctan(vy)

where F(x) is the cdf of the original distribution (7 = 1 yields the Arctan-X family of Alkhairy et
al.). The case when X is the Laplace distribution corresponds to the generalized Arctan-Laplace
(GATL) distribution family.

The generalized Arctan-Laplace distribution is a skewed one, the skewness is regulated by the
parameter «y. Therefore it is suitable for modeling asymmetric data such as returns of a financial
time series. The paper is organized as follows. We investigate theoretical properties of the new
distribution in Section 2: expressions for the cdf, the pdf and the quantile functions are provided,
unimodality is proved and the formula for the mode is obtained; we also derive the moments,
investigate behavior of the skewness and the kurtosis and obtain the Rényi entropy. The GATL
distribution is applied to a real data set in Section 3 in order to illustrate its usefulness. Lastly,

concluding remarks are given in Section 4.

2. PROPERTIES

Denote by Lapl(0, ¢) the Laplace distribution with the parameters 6 and ¢, its cdf is

(1/2) exp{(x — 6)/¢}, x <6,
1 (1/2) exp{—(x — 8)/¢}, x> 6.

FL(x) =

Definition. The generalized Arctan-Laplace distribution with the parameters -y, 8 and ¢ (where
v € (0;+0), 0 € R, ¢ € (0; +00)) is defined as a distribution with the cdf
1

arctan(y) arctan(yF(x)).

F(x;7v.6.¢) =

We will use notation GATL(7,#6, ¢) for the generalized Arctan-Laplace distribution with the
parameters -y, 8 and ¢.



The generalized Arctan-Laplace distribution cdf can be rewritten as

m.arctan((wﬁ) exp{(x—e)/d;}), x < 6:

F(x;7v,0,¢) =

m . arctan(’Y — (v/2) exp{—(x — 9)/4;}) x>0

The pdf of GATL(7, 6, ¢) distribution is

v exp{(x — 6)/¢} Y <0
b, 6,¢) — 4 20actany 1+ (v2/4) exwf20x — 6)/9} =0
o exp{—(x — 6)/¢} e

2¢arctany 1 +72(1 — (1/2) exp{—(x — 0)/p})?"

Remark. We will use notation p(x) and F(x) instead of p(x;,0,¢) and F(x;7,0, ¢) corre-

spondingly when this is unambiguous.

Plots of the pdfs for GATL(vy, 0, 1) distributions for v = 1.6, v = 2.5 and vy = 5 are shown in

Fig. 1, Fig. 2 and Fig. 3 correspondingly.

Let us mention some special and limiting cases of the GATL distribution.

e The GATL(1,6, ¢) distribution is the Arctan-Laplace distribution in the sense of Alkhairy

et al.

e It is easy to see that GATL(v, 8, ¢) distribution converges to the Laplace distribution with

the parameters 6 and ¢ as v — O+. It can also be proved that

W[}rg+ p(x;7,0,¢) = pL(x;0,9),

where p;(x; 0, ¢) is the pdf of Lapl(8, ¢).
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FiGURE 1. The pdf of GATLfor y =1.6,6=0,¢ =1
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Ficure 3. The pdf of GATL for vy =5,0=0,¢=1

2.1. Quantiles and Modes. It is easy to verify that the quantile function of GATL(, 0, ¢) distri-

bution is

where

9+¢In((2/’y)tan(uarctan’y)), u € (0; up);

Qu) = (3)

60— ¢In(2 —(2/7) tan(uarctan’y)), u € (up; 1),

o arctan(vy/2)
~ arctany

Theorem 2.1.1. GATL(v, 6, ¢) distribution is unimodal. Its mode is
1) xo =6+ (1/2)In(4/7?), it v € (2; +00);

2) xo =0, ifye€(0;2].

Proof. It is enough to prove this fact for 8 = 0 and ¢ = 1.

Obviously

Pe(x;7.0,1) = ¢

PO 1+ 92(FL0)?) = 292 (pL ()2 FL ()

(1+2(F00R)

(4)

for any x # 0, where ¢, = «y/arctanvy, p.(x) and F.(x) are correspondingly the pdf and the cdf

of the Laplace distribution with the parameters 8 = 0 and ¢ = 1. It follows from (4) that

sgn (pL(x;7,0,1)) =sgn (1 — (v*/4)e*), x <0,



and
sgn (pl(x;7,0,1)) = —sgn (1 + % — (v*/4)e"?*), x > 0.
But
1492 —(?/4)e > >1+ 272 >0, x> 0.
Therefore p(x) decreases on (0; c0).

It is evident now that the point of the global maximum for p(x) is xo = 0 when v € (0; 2] and
xo = (1/2)log(4/~?) when v € (2; +00). O

2.2. Moments. Denote by uj., and w,. correspondingly the n-th moment and the n-th central
moment of GATL(7,0, 1).

Let us find the n-th moment p,’,,;,y of GATL(v,0,1).

Theorem 2.2.1. The n-th moment of GATL(~,0,1) is

nl

/
By = 5; arctan-y

(( )" (Lipt1(iv/2) = Lipra(—iv/2))+Lins1 (2(_,,Y+,Y)) —Lint (2(,17)) )

()
where Li,(z) is the polylogarithm.

Proof. Let us represent u;,., as

0 00
_ _ : __ " (n) v (n)
A n 1 n 1 = /
Honey /_OOX pxi . 0. )dX+/O X'p(x:7, 0, 1)dx arctany © + arctarw '
where . .
tanqy (1/2)x"e*
0= [ iy 0 0 |
t S oo 1/2)x"e—X
i = arw/ x"p(x;7,0, 1)dx:/ . 7)
Y J o 1+72(1-(1/2)e)
Let us transform the integral l(”). We have:
('7) n > yney _ 1 nyl
—(—1 ————F-dy = =(—1)"/ 8
( ) /O (72/4)4-625/ y 2( ) L ( )

where

o0 ny o0 n o n

y'e 1 y 1/ )%
=] +—iv—sdy=>] —F—=d 4
. /o (/8 + e 2/0 o — i o) T2

- E(Linﬂ(m/z) ~ Lini1(=i7/2)) )

The formula

Lis(2) = F(s)/ ey —z dy
was used (see [30], p. 611).

Let us rewrite the integral /,g,n). Since

e 1( 75 7
14+92(1—(1/2)e=*)? iy



where

2(—i+7y)’ 2(i +7)’
we have
m__ 1 o xtax /°° XTax ) _ g, Y
/R = 2/’)/ (22/0 ox _ Z Z1 5 ox _ 7 2/’)/ (Lln+1(22) |_In+1(21)) . (10)
Now (5) follows from (8), (9) and (10). O

Remark. The n-th moment of GATL(7, 6, ¢) (denote it by “;7;(7,9,¢)) can be expressed as

n

Y kan—k
'U'/"!(7,9v¢) - Z (k)¢ 6" “’2:7'

k=0

where g, = 1.
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FIGURE 4. The skewness of GATL(y,0,1) as a function of 7y

Skewness
Figure 4 shows the skewness of GATL(7, 0, 1),
w3,
N3y = 37/’;
2y
Kurtosis

Figure 5 displays the excess kurtosis of GATL(+y, 0, 1) distribution,

g,
Nay = T’Y -
“’2;7
Theorem 2.2.2.
li ~ =0, li ~ = 3.
'y—|>r8+ M3y ’y—|>r8+ My

Proof. Suppose that {~y,} is such a sequence that lim,y, = 0 (we can assume that sup, v, < 2)
and £, ~ GATL(7,,0,1). And let { ~ Lapl(0, 1).
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FIGURE 5. The excess kurtosis of GATL(7,0, 1) as a function of vy

Let us prove that the sequence {|€,]9} is uniformly integrable for ¢ = 1,2,3,4. In order to do

this it is enough to show that
Sl;l7p F€29 < 00, q=1,2,3,4.
First of all, let us verify that
Lis(z) =z+o0(z), z—0,

for s > 1. Indeed (let |z| < 1),

oo
Lis(z —Z+ZQZ et

where
n 2

o
> | s

n=2

Izl 1 :
< +Z = 55 + Lis(l2])

is bounded in {z : |z] < 1} since Lis(z) is an analytic function in this ball.

Let us continue the proof of (11). We obtain using Theorem 2.2.1 and (12):

q! : .
E&z /J,,Yn 2 < 2|arctar1fyn\( Lig+1(i7n/2) — Ligy1(—ivn/2)|
. Yn . Yn q
lges (o) i (o)) = ol a, ,
o (5755 "’“(2(/+m)‘) arctansy A1+ 010)

where sup,, |Ap| < oo, and now it is evident that {E€29} is bounded.

Now &, 4 ¢ and uniform integrability of {|£,|7} imply that

B¢ - ECY, g=1,2,3,4

(11)

(13)



(see [35], p. 14, Theorem A). It follows from (14) that
773;’Y — 773;0 = 01 ry — O+v
and
Mary = Mao =3, v — 0+,
where 73.0 and mMa4.0 are the skewness and the excess kurtosis of Lapl(0; 1) distribution correspond-
ingly.

2.3. Entropy. Let us obtain the Rényi entropy of the GATL distribution.
Theorem 2.3.1. The Rényi entropy Hy of GATL(7, 8, ¢) distribution is

v AA+1 A+1 A+2 42
A+ AN =—— 4in | 3R (A2 : X
nATt n2arctan'y+n(32( 22 T2 T2 g

L F1(>\;>\,>\;>\+1; 7 i ))) (15)

1
H)\—|n¢+ﬁ

+(’)’24-1))‘ 2942 2y —2|
where 3F, is the generalized hypergeometric function and F; is the Appell function.
Proof. It suffices to prove (15) for 8 = 0 and ¢ = 1. We have:

1 N 1
Hx—l_xln(/Rlp (x,fy,O,l)dx) —1_>\Inlx,

where
Ix = / pM(x;7,0,1)dx = /;1) + /;2),
- 0
)1 —[ pM(x;7,0,1)dx, (16)
12 = /Oo pM(x; 7,0, 1)dx. (17)
The integral in (16) can be rewritten as ?ollows:
° 5 : — oA 1 g 7(1)
/oop(x,'y,O,l)dX—2 (fyarctan’y) N (18)
where

i _ /0 exp{Axpdx /1 y*ldy
A oo (4/7 Fexp{2x})  Jo (7 +(2/7)2)

1 AA+1 A+1 A+2 42
— /a5 2 - -

(formula 3.254 from [44] was used).

' 2 2 2 4 (19)

The integral in (17) can be transformed this way:

00 A
Ay 2l 7(2)
Ddx=|—"-——1] | 2
/0 pM(x;v,0,1)dx (2arctam) @, (20)



where

S exp{—x} A
2 ‘/0 (1+fyz(1—(1/2>exp{—x}>2) o

_ /1 yk—ldy _ 1 /1 y>\—ldy
14+42(1—y/2)2)*  (+1)* A &
o R y2R) O (1= ) (15
1 v v
— Fr{nna+1; 21
A2 + 1)» 1(X'A’A'A+ ’2’y+2/"2fy—2/’) (21)
(formula 16.15.1 from [30] was applied).

Now (15) follows from (18)—(21). O

3. APPLICATIONS

We will demonstrate now the usefulness of the GATL distribution family. We will fit the GATL
distribution to a financial dataset and compare the quality of fit with that of competing models.

Our dataset consists of the daily returns &, = 1,41 —nk (where 7y is the stock price on day k) for
FCX stock from July 26, 2016 to November 2, 2016 (see [9]). The alternative distribution families
are the following modifications of the Laplace distribution: the asymmetric Laplace distribution
(ASL) (see [18], this parametrization is denoted by AL in the book); the truncated-exponential
skew-symmetric Laplace distribution (TESSL), see [25]; the exponentiated generalized Laplace
distribution (EGL), see [5], and the geometric exponential Poisson Laplace distribution (GEPL),
see [24], [26].

The pdfs of these distributions are as follows:

%1_{_{&2 xp{—qﬁgx—ﬂ}, if x <0,
% K exp{—\/gK’|X—9|}, if x>6.

[¢]

pASL(X; 0, ¢, K) =

14 K2
K> 0;
presa(i6. 6.3) = 1oL P{-ARLK))
A €eR;
PeaL(x:0, ¢, a, b) = abpy (x)(1 — FL(x))* 1 (1 — (1= FL(x))"",
a>0,b>0;

pL(x) exp{—v + vF (x)}
(1 —exp{—v} — p+ pexp{—v + vFL(x)})*’
v >0,p € (0;1), for the ASL, the TESSL, the EGL and the GEPL distributions correspondingly,
where p;(x) and F(x) are respectively the pdf and the cdf of the Lapl(8, ¢) distribution.

PeerL (X;0, ¢, v, p) = v(1 — p)(1 — exp{—r})

All calculations were performed using the R software (including packages AdequacyModel [1],
dfoptim [/] and fitdistrplus [8]). The values of the maximum likelihood estimates for these

distributions are given in Table 1.



The following goodness-of-fit criteria were used for comparison of the models: the log-
likelthood /, the AIC, the BIC and the HQIC. Table 2 contains the values of these criteria. The
fitted GATL distribution corresponded to the best results according to all goodness-of-fit statistics.

The histogram and the density of the fitted GATL distribution for FCX dataset are shown in

Figure 6.

TaBLE 1. MLEs

Model Estimates
GATL 6 = 0.0200, ¢ = 0.2402, 4 = 0.8559
ASL 6 = 0.0200, ¢ = 0.3265, & = 1.1128
TESSL 6 =0.1818, ¢ = 0.2454, X = 2.0939
EGL 6 =0.0961, ¢ = 1.4215, 4 = 6.7056, b = 43.2157
GEPL | 6= —0.0368, ¢ = 0.2330, 0 = 1.4324, p = 0.3857
TaBLE 2. Model comparison criteria
Model I AIC BIC | HQIC
GATL | —16.220 | 38.439 | 45.185 | 41.118
ASL | —16.318 | 38.635 | 45.380 | 41.314
TESSL | —16.876 | 39.752 | 46.498 | 42.432
EGL | —16.704 | 41.408 | 50.402 | 44.980
GEPL | —16.932 | 41.864 | 50.858 | 45.437
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FiGure 6. The histogram and the fitted GATL pdf for FCX dataset

4. CONCLUSIONS

A new generalization of the Laplace distribution is proposed, the Arctan-Laplace distribution.

Various properties of the new distribution are studied including modes, the moments, the behavior



of the skewness and the kurtosis, the Rényi entropy. A real data set is fitted to the Arctan-Laplace

model. The fit results show that the Arctan-Laplace distribution is superior to competing families.
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