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Abstract. To improve the effectiveness of population estimators, researchers have recently imple-mented dual supplementary information. They employed traditional rankings, the empirical cumulativedistribution function, and indicator functions as supplementary sources of information in their anal-ysis. An improved family of population mean estimators is introduced in this article, which utilizesthe relative ranks of the auxiliary information’s configurations to incorporate the relevant informa-tion. A first-order approximation is employed to derive the mathematical expressions for the biasand the mean-squared error (MSE) of the proposed family of estimators. The empirical analysisis investigated to demonstrate the practicality of the proposed estimators in real-world scenarios.Additionally, the theoretical conclusions are effectively validated by the Monte Carlo simulation in-tegration. Our results unequivocally indicate that the proposed family of estimators surpasses theircurrent counterparts.

1. Introduction
The primary goal of sample survey theory is to determine the values of population parametersthat are presently unknown, such as the mean, proportion, and variance of the study variable. Inorder to generate a dependable estimation of the parameter of interest by analyzing a scrupulouslyselected sample of individuals, a precise and efficient methodology is necessary. The efficacy of theestimators is enhanced by incorporating the information of auxiliary variables that are associatedwith the study variable. The integration of supplementary data to enhance various techniques thatwere previously used to estimate the attributes of a population under study has a long and diverse
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Eur. J. Stat. 10.28924/ada/stat.4.13 2history in a variety of academic fields. For additional information regarding this subject, pleaseconsult to [1–8].It is evident from a comprehensive examination of the literature that Pierre-Simon Laplace,a prominent figure in the 18th century, played a substantial role in advocating for the use ofsupplementary information to assist in the estimation of the parameters of study variables. Forinstance, in order to improve the precision of the fundamental arithmetic of France’s total populationduring the 18th century, he proposed the utilization of vital birth records, which guarantee thewell-being of individuals, as a method for determining the heads count of a vast empire withoutcounting the individuals within it. As illustrated in [9], it is crucial to have an understandingof the population-to-annual-births ratio in order to determine this. The fundamental conceptsthat establish the mathematical validity of employing supplementary information to estimate theproperties of the variable(s) under investigation were disclosed by Cochran’s seminal work. Theconcept of estimating the mean of a small group by utilizing the inherent relationship between themain study variable and an additional variable was first introduced by Cochran [10].In recent years, there have been significant improvements in the development of rank-basedestimators, which provide a novel method for incorporating supplementary information. In situationswhere the dual use of the auxiliary variable provides valuable information about the researchvariable, Haq et al.[11] developed estimators that are superior to the aforementioned methods.These estimators are based on the rank of a significant auxiliary variable. They have found thatthese estimators exhibit resilient characteristics when assessed against both theoretical modelsand real-world scenarios as a result of their research.This article introduces a novel class of estimators that are designed to estimate the mean ofa finite target population within the design of simple random sampling. In order to enhance theperformance of the proposed family of estimators, we implemented the relative ranks as an auxiliaryvariable in conjunction with auxiliary information. This relative rank approach, which considers thedistance between data points, was recently proposed by Hussain et al.[12]. In accordance withestimation theory, the performance of the proposed estimators is improved by a strong correlationbetween the subject and auxiliary variables. By employing the auxiliary variable and its relativeranking, we have achieved a better estimation of the population mean. The theoretical calculationof the bias and MSE of the suggested estimators is performed using a first-order approximation.The MSE of the proposed estimators is compared to those of their recently proposed competitors.The comparative studies indicated that the proposed estimators consistently outperformed all otherestimators, as assessed in both theoretical and numerical evaluations.The current article is summarized as follows. The conventional and contemporary methods fordetermining the mean of a finite population are the primary focus of Section 2. Section 3 presents amore precise class of estimators for estimating the mean of a finite population. Section 4 analyzes
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Eur. J. Stat. 10.28924/ada/stat.4.13 3theoretical comparisons between the proposed and existing estimators. The numerical investigationis presented in Section 5 to analyze and evaluate the performance of the estimators under ourconsideration. Section 6 contains a concise summary of our findings.
2. Existing estimators

This section examines numerous estimators of the finite population mean that are frequentlyemployed in the current literature of survey sampling. We focused on the variances and MSEs ofthe estimators that were obtained from the first degree of approximation in order to offer a succinctexplanation. The conventional method employs ȳ (where y is our study variable) with a varianceas follows to estimate the unbiased mean per unit
V ar(ȳ) = λȲ 2C2

y . (1)
The conventional difference estimator ˆ̄YD is

ˆ̄YD = ȳ + k(X̄ − x̄),

where k is unknown constant and x is our auxiliary variable. Demonstrating the unbiasedness of
ˆ̄YD is a straightforward task. The minimum variance of the estimator ˆ̄YD at the optimal value of k ,denoted as kopt, which is equal to ρyx(Sy/Sx), is expressed as

V armin( ˆ̄YD) = λȲ 2C2
y (1− ρ2

yx). (2)
The difference estimator ˆ̄YD was found to be more efficient than the ratio and product estimatorswhen comparing the efficacy of estimators for estimating Ȳ , see for instance, [13]. Additionally, theauthor recommended the upgraded difference type estimator as follows

ˆ̄YR,D = t1ȳ + t2(X̄ − x̄),

where t1 and t2 are constants. The minimum MSE of ˆ̄YR,D at the optimum values
t1(opt) =

1

1 + λC2
y (1− ρ2

yx)
,

and
t2(opt) =

Ȳ Cyρyx

X̄Cx
(

1 + λC2
y (1− ρ2

yx)
) ,

is given by
MSEmin( ˆ̄YR,D) =

λȲ 2C2
y (1− ρ2

yx)

1 + λC2
y (1− ρ2

yx)
.

The better efficiency of ˆ̄YR,D over ˆ̄YD can easily be shown as
MSEmin( ˆ̄YR,D) = V armin( ˆ̄YD)−

λ2Ȳ 2C4
y (1− ρ2

yx)2

1 + λC2
y (1− ρ2

yx)
. (3)
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Eur. J. Stat. 10.28924/ada/stat.4.13 4Grover and Kaur[7] has proposed an additional well-known study on a family of exponential es-timators that employ auxiliary data in a difference-based formulation in terms of an exponentialfunctional. Their estimators are generally structured as they are
ˆ̄YGK =

(
ω1ȳ + ω2(X̄ − x̄)

)
exp

(
a(X̄ − x̄)

a(X̄ − x̄) + 2b

)
,

where ω1 and ω2 are constants and θ = aX̄
aX̄+b

. The minimum MSE of ˆ̄YGK as
MSEmin( ˆ̄YGK) =

λȲ 2
(

64C2
y (1− ρ2

yx)− λθ4C4
x − 16λθ2C2

xC
2
y (1− ρ2

yx)
)

64
(

1 + λC2
y (1− ρ2

yx)
) ,

with the optimum values of ω1 and ω2 are given
ω1(opt) =

8− λθ2C2
x

8
(

1 + λC2
y (1− ρ2

yx)
) ,

and
ω2(opt) =

Ȳ

(
λθ3C3

x + 8Cyρyx − λθ2C2
xCyρyx − 4θCx

(
1− λC2

y (1− ρ2
yx)
))

8X̄Cx{1 + λC2
y (1− ρ2

yx)}
.

The authors showed that the estimate ˆ̄YGK consistently outperforms the difference estimator ˆ̄YD ,i.e.
MSEmin( ˆ̄YGK) = V armin( ˆ̄YD)−

λ2Ȳ 2
(
θ2C2

x + 8C2
y (1− ρ2

yx)
)2

64
(

1 + λC2
y (1− ρ2

yx)
) . (4)

In a recent work, Haq et al.[11] proposed a difference-ratio-type family of exponential estimators,which is expressed as
ˆ̄YAH = δȳ + δ2(X̄ − x̄) + δ3(R̄x − r̄x) exp

(
a(X̄ − x̄)

a(X̄ + x̄) + 2b

)
,

where δ1, δ2, and δ3 are constants. The MSE of their family of estimators
MSEmin( ˆ̄YAH)

∼
=
λȲ 2

(
64C2

y (1−Q2
y.xrx )− λθ4C4

x − 16λθ2C2
xC

2
y (1−Q2

y.xrx )
)

64
(

1 + λC2
y (1−Q2

y.xrx )
) , (5)

with the following optimal values of the constants
δ1(opt) =

8− λθ2C2
x

8
(

1 + λC2
y (1−Q2

y.xrx )
) ,

δ2(opt) =

Ȳ

(λθ3C3
x (−1 + ρ2

xrx ) + (−8Cy + λθ2C2
xCy )(ρyx − ρxrxρyrx )+

4θCx(−1 + ρ2
xrx )
(
− 1 + λC2

y (1−Q2
y.xrx )

) )
8X̄Cx(−1 + ρ2

xrx )
(

1 + λC2
y (1−Q2

y.xrx )
) ,

and
δ3(opt) =

Ȳ (8− λθ2C2
x )Cy (ρxrxρyx − ρyrx )

8R̄xCr (−1 + ρxrx2)
(

1 + λC2
y (1−Q2

y.xrx )
) .

The coefficient of multiple determination is denoted by Q2
y ·xrx =

ρ2
yx+ρ2

yrx−2ρyxρyrx ρxrx
1−ρ2

xrx
.

https://doi.org/10.28924/ada/stat.4.13


Eur. J. Stat. 10.28924/ada/stat.4.13 53. Proposed family of estimators
Motivation. The subsequent factors must be taken into account in order to enhance the precisionof an estimator. It is imperative to effectively employ supplementary information during both thedesign and estimation phases. It is important to mention that supplementary data that is requiredfor the survey conducted within the specified context is typically accessible in the case of othergroups of researchers. In other words, the values of the study variable can be represented in theestimated relative rank of the auxiliary variable when there is a strong correlation between theresearch variable and the auxiliary variable. In light of this information, we suggest an enhancedfamily of estimators for the mean of a finite population. This proposed class of estimators includesthe auxiliary variable’s relative ranks and supplementary information.
Notations. Let U = {x1, x2, . . . , xN} be the set of N individual values of the X variable in a finitepopulation. Refer to the following formula to calculate the relative rankings, denoted as Rr , of theauxiliary variable X .

• Define (Rr )1 = 1.
• Define

xr = i − 1 +
(N − 1)(x(i) − x(i−1))

x(N) − x(1)
, i = 2, 3, . . . , N.

• For i = 2, 3, . . . , N , define (Rr )i to be the (i − 1)th smallest value of
{(xr )2, (xr )3, . . . , (xr )N}, so that

(Rr )1 < (Rr )2 < · · · < (Rr )N .

Let (r̄r )x , (R̄r )x , and S2
(r̄r )x

represents the corresponding sample mean, population mean,and population variance for relative ranks. We compute (r̄r )x = 1
n

∑n
i=1(rr )x,i/n, (R̄r )x =

1
N

∑N
i=1(rr )x,i/N = (N + 1)/2, and S2

(rr )x
= 1

N−1

∑N
i=1

(
(rr )x,i − (R̄r )x

)2, where (rr )x,i denotesthe ith value of (Rr )x in the population U . Let ρy.(rr )x =
Sy.(rr )x

SyS(rr )x
be the correlation coefficientbetween Z and (Rr )x , where Sy.(rr )x = 1

N−1

∑N
i=1(Yi − Ȳ )

(
(rr )x,i − (R̄r )x

)
/(N − 1) is the pop-ulation covariance between Y and (R̄r ). Let C(rr ) =

S(rr )x

(R̄r )x
be the coefficient of variation of (R̄r ).We take into consideration the following relative error terms as we try to determine the biasand MSE of the suggested estimators: ε0 = ȳ−Ȳ

Ȳ
, ε1 = x̄−X̄

X̄
, and ε2 =

¯(rr )x−(R̄r )x
(R̄r )x

, such that
E(εi) = 0 for i = 0, 1, 2. It is easy to show that E(ε2

0) = λC2
y , E(ε2

1) = λC2
x , E(ε2

2) = λC2
(rr )

,
E(ε0ε1) = λρyxCyCx , E(ε0ε2) = λρy.(rr )CyC(rr ), and E(ε1ε2) = λρx.(rr )CxC(rr ).
Layout. According to [13], an approach to estimating the mean of a finite population that takesinto consideration the auxiliary information with (R̄r )x is offered by a difference-type estimator as

ˆ̄YPr = η1ȳ + η2(X̄ − x̄) + η3

(
(R̄r )x − (r̄r )x

)
.
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Eur. J. Stat. 10.28924/ada/stat.4.13 6where η1, η2, and η3 are constants that will be chosen appropriate. We propose a difference-ratio-type class of exponential estimators, ˆ̄Y ∗P r , based on the studies of [7, 11, 14, 15] as in the followingform
ˆ̄Y ∗Pr = η1ȳ + η2(X̄ − x̄) + η3

(
¯(Rr )x − ¯(rr )x

)
exp

(
a(X̄ − x̄)

a(X̄ + x̄) + 2b

)
,

where a and b are as explained earlier. Upon reformulating ˆ̄Y ∗Pr in terms of relative error terms, weget
ˆ̄Y ∗P r =

(
η1Ȳ (1 + ε0)− η2X̄ε1 − η3(R̄r )xε2

)(
1−

θε1

2
+

3θ2ε2
1

8
+ · · ·

)
.

We can write the following by expanding the above equation and restricting terms to only twodigits in εi ’s
( ˆ̄Y ∗P r − Ȳ )

∼
=− Ȳ + Ȳ η1 + Ȳ ε0η1 −

1

2
Ȳ θε1η1 − X̄ε1η2 − (R̄r )xε2η3

−
1

2
Ȳ θε0ε1η1 +

3

8
Ȳ θ2ε2

1η1 +
1

2
X̄θε2

1η2 +
1

2
(R̄r )xθε1ε2η3.

The bias and MSE of the estimated value ˆ̄Y ∗P r , using the first-order approximation, can be expressedas Bias( ˆ̄Y ∗P r

)
∼
=

1

8

(
− 8Ȳ + 4λθCx

(
X̄Cxη2 + (R̄r )xC(rr )η3ρx.(rr )x

)
+ Ȳ η1

(
8 + λθCx (3θCx − 4Cyρy.x)

))
,and MSE( ˆ̄Y ∗P r )

∼
= Ȳ 2 + λX̄C2

xη2(−Ȳ θ + X̄η2) + λ(R̄r )
2
xC

2
(rr )
η2

3 + λ(R̄r )xCxC(rr )

(−Ȳ θ + 2X̄η2)η3ρx.(rr )x + Ȳ 2η2
1

(
1 + λ

(
C2
y + θCx(θCx − 2Cyρy.x)

))
+

1

4
Ȳ η1

(
− 8Ȳ + λCx

(
θCx(−3Ȳ θ + 8X̄η2) + 8(R̄r )xθCrrη3ρx.(rr )x

+ 4Cy (Ȳ θ − 2X̄η2)ρy.x
)
− 8(R̄r )xλCyC(rr )η3ρy.(rr )x

)
.

(6)

The optimal values of η1, η2, and η3 obtained by minimizing equation (6) are
η1(opt) =

8− λθ2C2
x

8
(

1 + λC2
y (1−K2

y.x.(rr )x
)
) ,

η2(opt) =

Ȳ

(λθ3C3
x (−1 + ρ2

x.(rr )x
) + (−8Cy + λθ2C2

xCy )(ρyx − ρx.(rr )xρy.(rr )x )

+ 4θCx(−1 + ρ2
x.(rr )x

)
(
− 1 + λC2

y (1−K2
y.x.(rr )x

)
) )

8X̄Cx(−1 + ρ2
x.(rr )x

)
(

1 + λC2
y (1−K2

y.x.(rr )x
)
) ,

and
η3(opt) =

Ȳ (8− λθ2C2
x )Cy (ρx.(rr )xρy.x − ρy.(rr )x )

8(R̄r )xC(rr )(−1 + ρ2
x.(rr )x

)
(

1 + λC2
y (1−K2

y.x.(rr )x
)
) .

The coefficient of multiple determination, K2
y.x.(rr )x

=
ρ2
y.x+ρ2

y.(rr )x
−2ρy.xρy.(rr )x ρx.(rr )x

1−ρ2
x.(rr )x

, represents theextent to which the variable Y can be explained by both X and (Rr )x . By substituting the optimal
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values of η1, η2, and η3 into equation (6) and simplifying, we obtain the minimum MSE of ˆ̄Y ∗P r as
MSEmin( ˆ̄Y ∗Pr )

∼
=
λȲ 2

(
64C2

y (1−K2
y.x.(rr )x

)− λθ4C4
x − 16λθ2C2

xC
2
y (1−K2

y.x.(rr )x
)
)

64
(

1 + λC2
y (1−K2

y.x.(rr )x
)
) . (7)

4. Efficiency comparisons
This section presents a comparison between the suggested estimator and the existing estimatorsthat are being considered in this study.
λȲ 2

(
λθ4C4

x + 16C2
y

(
4K2

y.x.(rr )x
+ λθ2C2

x (1−K2
y.x.(rr )x

)
)

+ 64λC4
y (1−K2

y.x.(rr )x
)
)

64
(

1 + λC2
y (1−K2

y.x.(rr )x
)
) > 0.

MSEmin( ˆ̄Y ∗Pr) < Varmin( ˆ̄YD) if
λ2Ȳ 2

(
θ2C2

x + 8C2
y (1− ρ2

yx)2
)

64
(

1 + λC2
y (1− ρ2

yx)
)

+
λȲ 2C2

y (ρy.(rr )x − ρyxρx.(rr )x )2(−8 + λθ2C2
x )2

64(1− ρ2
x.(rr )x

)
(

1 + λC2
y (1− ρ2

yx)
)(

1 + λC2
y (1−K2

y.x.(rr )x
)
) > 0.

λ2θ2Ȳ 2Cx
(
θ2C2

x + 16C2
y (1− ρ2

yx)
)

64
(

1 + λC2
y (1− ρ2

yx)
)

+
λȲ 2C2

y (ρy.(rr )x − ρyxρx.(rr )x )2(−8 + λθ2C2
x )2

64(1− ρ2
x.(rr )x

)
(

1 + λC2
y (1− ρ2

yx)
)(

1 + λC2
y (1−K2

y.x.(rr )x
)
) > 0.

λȲ 2C2
y (ρy.(rr )x − ρyxρx.(rr )x )2(−8 + λθ2C2

x )2

64(1− ρ2
x.(rr )x

)
(

1 + λC2
y (1− ρ2

yx)
)(

1 + λC2
y (1−K2

y.x.(rr )x
)
) > 0.

λC2
y

((
Ȳ (1− λ− λC2

y ) + θ2C2
x

(
(1 + 2λC2

y ) + λC2
x

))(
Q2 −K2

))
+ λ2C4

y (4Ȳ 2 − θ2C2
x )(Q4 −K4)

4(1 + λC2
y − λC2

yQ
2)(1 + λC2

y − λC2
yK

2)
> 0.

It is imperative to underscore that the aforementioned conditions are perpetually legitimate. Con-sequently, the estimators that are recommended outperform all of the other estimators that wereevaluated in this scenario.
5. Performance evaluations

This section provides a comprehensive account of the empirical and simulation-based investi-gations that were employed to assess the relative efficacy of the aforementioned procedures. Toguarantee inclusivity, we have selected three authentic datasets that are widely acknowledgedin the field of survey methodologies and encompass a diverse array of disciplines. Additionally,we have employed three distinct bivariate distributions to generate three datasets. Additionally,the objectives of conducting a fair comparison are accomplished by considering the frequently em-ployed datasets and the methodologies employed by contemporary researchers, such as the highlyregarded [11] family.
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Eur. J. Stat. 10.28924/ada/stat.4.13 85.1. Empirical evaluation. In this section, we employ numerical calculations to investigate therelationship between the MSE and PRE of the proposed family of estimators. We have chosenthree authentic datasets that are well-known in the survey methodology sector and encompassmultiple disciplines.
Dataset 1.

(
Source : Singh[16]

)
Y: estimated length of sleep (in minutes) for individuals over the age of 50 years.X: age of individuals in years.
N = 36, n = 5, Ȳ = 0.1709, X̄ = 0.1856, R̄X = 18.5, ρY X = 0.8788, ρY R = 0.8448, ρXR =

0.9582, Cy = 0.3709, Cx = 0.4050, Cr = 0.5694, β2(x) = 3.3450.
Dataset 2.

(
Source : Gujarati [17]

)
Y: The millions of eggs that were produced in 1990.X: The cost (cents) per dozen in 1990.
N = 50, n = 5, Ȳ = 1357.622, X̄ = 78.29, R̄X = 25.5, ρY X = −0.2888, ρY R = −0.2469, ρXR =

0.9468, Cy = 1.2236, Cx = 0.2723, Cr = 0.5716, β2(x) = 4.0255.
Dataset 3.

(
Source : Murthy [18]

)
Y: Output production of factories in a region.X: No. of workers in factories in a region.
N = 80, n = 10, Ȳ = 5182.637, X̄ = 285.125, R̄X = 40.5, ρY X = 0.9150, ρY R = 0.9836, ρXR =

0.8902, Cy = 0.3542, Cx = 0.0.9485, Cr = 0.5736, β2(x) = 3.5808.
Table 1-3 presents the results of the PREs evaluation of the proposed and existing estima-tors with respect to ȳ . The superiority of the proposed estimators over all other estimators studiedin this study on real populations 1-3 is evident from Table 1-3 respectively.
5.2. Simulation study. This section employs a simulation study to investigate the relationshipbetween the MSE and PRE of the proposed estimators. By generating three finite populationsfrom three distinct and well-known bivariate probability models, each with 1000 realizations. Thedetails are provided below.
Bivariate normal distribution. Our first simulated-investigation is follow to a bivariate normaldistribution with unique means for the study and auxiliary variables as(

Y

X

)
∼ N

((
µy = 11

µx = 52

)
,

(
σ2
y = 72 ρσyσx = 142

ρσxσy = 142 σ2
x = 337

))
.

We employed a uniform sample size of n = 100 and thereafter utilized the following equation tofacilitate a comparison of efficiency. We compute the PREs for the proposed and contemporary
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Eur. J. Stat. 10.28924/ada/stat.4.13 9estimators in relation to the variance of the study variable. The findings are presented in Table 4,demonstrating that the proposed technique outperformed in all instances.
Bivariate uniform distribution. The population is assumed to be governed by a bivariate uniformdistribution with standardized means and variances along ρ = 0.9. For the aim of comparingefficiency, we utilized a sample size of n = 100 and employed the subsequent expression. Wecompute the PREs of both the proposed and contemporary estimators in relation to the varianceof the research variable. The findings are presented in Table 5, demonstrating that the proposedtechnique outperformed in all cases.
Bivariate t-distribution. The population is assumed to be regulated by a bivariate student’s tdistribution with distinct means for both study and auxiliary variables as(

Y

X

)
∼ t

((
µy = 11

µx = 52

)
,

(
σ2
y = 72 ρσyσx = 142

ρσxσy = 142 σ2
x = 337

))
.

For the purpose of comparing efficiency, we utilized a sample size of 100, denoted as n = 100, andemployed the subsequent expression. We compute the PREs for both the proposed and contempo-rary estimators in relation to the variance of the research variable. The results are presented inTable 6, and they consistently demonstrate that the recommended estimators outperformed in allscenarios.
6. Summary

The present study’s findings contribute to the existing literature on survey sampling methodologyby addressing the challenges associated with estimating the mean within a finite population. Byintroducing a novel class of estimators that employ auxiliary variables and their respective rankingsto offer additional information, the goals are successfully accomplished. This newly suggestedfamily of estimators is evaluated by an analysis of three real-world datasets and a thoroughsimulation study utilizing three well recognized bivariate probability models. As predicted, thevery high degree of coupling of the relative ranks led to the introduction of dual information ina more object-oriented architecture. As said before, the results of the study validated a rationalapproach to leverage relative ranks in order to enhance the efficiency of the estimation procedure.Moreover, this improvement is readily apparent in connection to all the examined datasets andthrough simulation experiments.
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Table 1. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingDataset 1.
FamiliesEstimator a b ˆ̄YGK

ˆ̄YAH
ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 439.09 - - - - -

ˆ̄Y R,D 441.46 - - - - -1 - 1 CX 441.77 441.95 444.422 - 1 β2(x) 441.46 441.64 444.113 - β2(x) CX 442.74 442.91 445.394 - CX β2(x) 441.46 441.63 444.105 - 1 ρY X 441.55 441.73 444.196 - CX ρY X 441.47 441.65 444.127 - ρY X CX 441.72 441.90 444.368 - β2(x) ρY X 442.02 442.20 444.679 - ρY X β2(x) 441.46 441.64 444.1010 - 1 NX̄ 441.46 441.63 444.10
Table 2. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingDataset 2.

FamiliesEstimator a b ˆ̄YGK
ˆ̄YAH

ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 109.10 - - - - -

ˆ̄Y R,D 136.05 - - - - -1 - 1 CX 136.51 137.32 138.222 - 1 β2(x) 136.47 137.28 138.183 - β2(x) CX 136.51 137.33 138.224 - CX β2(x) 136.38 137.19 138.085 - 1 ρY X 136.51 137.33 138.226 - CX ρY X 136.52 137.34 138.237 - ρY X CX 136.52 137.34 138.238 - β2(x) ρY X 136.51 137.33 138.229 - ρY X β2(x) 136.73 137.55 138.4410 - 1 NX̄ 136.05 136.87 137.76
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Table 3. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingDataset 3.
FamiliesEstimator a b ˆ̄YGK

ˆ̄YAH
ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 614.21 - - - - -

ˆ̄Y R,D 615.31 - - - - -1 - 1 CX 663.77 6307.63 6351.572 - 1 β2(x) 662.14 6182.12 6224.333 - β2(x) CX 664.20 6342.04 6386.454 - CX β2(x) 662.02 6173.26 6215.355 - 1 ρY X 663.79 6309.30 6353.266 - CX ρY X 663.76 6306.83 6350.757 - ρY X CX 663.71 6303.25 6347.138 - β2(x) ρY X 664.21 6342.51 6386.939 - ρY X β2(x) 661.94 6167.00 6209.0110 - 1 NX̄ 615.31 3993.05 4010.96
Table 4. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingbivariate normal distribution.

FamiliesEstimator a b ˆ̄YGK
ˆ̄YAH

ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 593.2314 - - - - -

ˆ̄Y R,D 593.7678 - - - - -1 - 1 CX 593.9451 594.5442 594.54452 - 1 β2(x) 593.9274 594.5265 594.52683 - β2(x) CX 593.9468 594.5460 594.54624 - CX β2(x) 593.8983 594.4974 594.49775 - 1 ρY X 593.9411 594.5402 594.54056 - CX ρY X 593.9300 594.5291 594.52947 - ρY X CX 593.9448 594.5440 594.54438 - β2(x) ρY X 593.9454 594.5446 594.54499 - ρY X β2(x) 593.9256 594.5247 594.525010 - 1 NX̄ 593.7678 594.3668 594.3671
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Table 5. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingbivariate uniform distribution.
FamiliesEstimator a b ˆ̄YGK

ˆ̄YAH
ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 537.7205 - - - - -

ˆ̄Y R,D 538.0210 - - - - -1 - 1 CX 538.1143 538.6669 538.66812 - 1 β2(x) 538.0403 538.5929 538.59413 - β2(x) CX 538.1899 538.7427 538.74384 - CX β2(x) 538.0287 538.5813 538.58255 - 1 ρY X 538.0746 538.6272 538.62836 - CX ρY X 538.0452 538.5978 538.59907 - ρY X CX 538.1037 538.6564 538.65758 - β2(x) ρY X 538.1304 538.6830 538.68429 - ρY X β2(x) 538.0374 538.5900 538.591110 - 1 NX̄ 538.0210 538.5735 538.5747
Table 6. PREs of the estimators where ˆ̄Y is used as base-line evaluator by usingbivariate Student’s t-distribution.

FamiliesEstimator a b ˆ̄YGK
ˆ̄YAH

ˆ̄YP r

ȳ 100 - - - - -
ˆ̄Y D 593.5117 - - - - -

ˆ̄Y R,D 594.0485 - - - - -1 - 1 CX 594.2259 594.8235 594.82402 - 1 β2(x) 594.2081 594.8057 594.80623 - β2(x) CX 594.2276 594.8252 594.82574 - CX β2(x) 594.1790 594.7766 594.77705 - 1 ρY X 594.2219 594.8195 594.82006 - CX ρY X 594.2107 594.8084 594.80897 - ρY X CX 594.2256 594.8233 594.82378 - β2(x) ρY X 594.2262 594.8239 594.82439 - ρY X β2(x) 594.2063 594.8040 594.804410 - 1 NX̄ 594.0485 594.6459 594.6464
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