
©2025 Ada Academica https://adac.eeEur. J. Stat. 5 (2025) 4doi: 10.28924/ada/stat.5.4
On Poisson Sampling for Estimation in Sub-Fractional Levy Stochastic Volatility Models
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Abstract. The paper studies quasi-maximum likelihood and generalized method of moments esti-mators of the parameter in the sub-fractional Levy inverse-Gaussian Ornstein-Uhlenbeck stochasticvolatility model based on Poissonly sampled data.
1. Introduction and PreliminariesNon-Gaussian Ornstein-Uhlenbeck stochastic volatility model has been paid recent attention infinance, see Barndorff-Neilsen and Shephard [1]. On the other hand, processes with long-memoryhas also been recent attention due to volatility clustering. The parameters of the volatility processesare unknown. In view of this, it becomes necessary to estimate the parameters in the unobservedvolatility process in the model from irregular discretely sampled data. We consider data fromrandom sampling intervals, specifically the when inter arrival times are exponentially distributed.Random sampling also removes the alishing problem. We consider quasi-likelihood method andgeneralized method of moments (GMM) for estimating the unknown parameters.Levy driven processes of Ornstein-Uhlenbeck type have been extensively studied over the last fewyears and widely used in finance, see Barndorff-Neilsen and Shephard [1]. Parameter estimationin Itô diffusions models with constant volatility from both continuous and discrete observationswas studied in Bishwal [7]. Fukasawa [22, 23] and Fukasawa and Rosenbaum [24] studied randomsampling for volatility estimation in continuous-time models. Bishwal [11] studied sufficiency andoptimal discretization problem in Vasicek model. FLOU process generalizes FOU process to includejumps. Maximum quasi-likelihood estimation in fractional Levy stochastic volatility model wasstudied in Bishwal [12]. Berry-Esseen inequalities for the discretely observed Ornstein-Uhlenbeck-Gamma process was studied in Bishwal [13]. Minimum contrast estimation in fractional Ornstein-Uhlenbeck process based on both continuous and discrete observations was studied in Bishwal [14].Berry-Esseen inequalities for the fractional Black-Karasinski model of term structure of interestrates was studied in Bishwal [16]. Parameter estimation in stochastic volatility models from both

Received: 29 Nov 2024.
Key words and phrases. Itô stochastic differential equation; sub-fractional Levy process; Ornstein-Uhlenbeck process;jumps; long memory; weak correlation; discrete observations; random sampling; quasi likelihood estimator; method ofmoments estimator. 1

https://adac.ee
https://doi.org/10.28924/ada/stat.5.4


Eur. J. Stat. 10.28924/ada/stat.5.4 2continuous and discrete observations was studied in Bishwal [17]. Quasi-likelihood Estimation infractional Levy SPDEs from Poisson sampling was studied in Bishwal [18]. Paramater estimationfor SPDEs driven by cylindrical stable processes was studied in Bishwal [19].Recently, long memory processes have received attention in finance. A normalized fractionalBrownian motion {WH
t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a centered Gaussian processwith continuous sample paths whose covariance kernel is given by
E(WH

t W
H
s ) =

1

2
(s2H + t2H − |t − s|2H), s, t ≥ 0. (1.1)

The process is self similar (scale invariant) and it can be represented as a stochastic integralwith respect to standard Brownian motion. For H = 1
2 , the process is a standard Brownian motion.For H 6= 1

2 , the fBm is not a semimartingale and not a Markov process, but a Dirichlet process. Theincrements of the fBm are negatively correlated for H < 1
2 and positively correlated for H > 1

2 andin this case they display long-range dependence. The parameter H which is also called the selfsimilarity parameter, measures the intensity of the long range dependence. The ARIMA(p, d, q)process with autoregressive part of order p, moving average part of order q and fractional differenceparameter d ∈ (0, 0.5) converge in Donsker sense to fBm, see Mishura [27].As a generalization of fBm we have the weighted fBm. A weighted fBm (wfBm) ξt has thecovariance function
q(s, t) =

∫ s∧t

0

ua[(t − u)b + (s − u)b]du, s, t ≥ 0 (1.2)

where a > −1, −1 < b ≤ 1, |b| ≤ 1 + a. When a = 0, it is the usual fBm with Hurst parameter
(b + 1)/2 up to a multiplicative constant. For b = 0 it is a time-inhomogeneous Bm.The function ua is called the weight function of wfBm. For a = 0, this process is usual fBm withHurst parameter (b + 1)/2. For the case b = 1, this process has the covariance of the process∫ t

0 Wradr where W is standard Brownian motion. For b = 0, this process is time-inhomogeneousBrownian motion. The finite dimensional distributions of the process (T−a/2(ξt+T − ξT )), t ≥ 0converge as T →∞ to those of fBm with Hurst parameter (1 +b)/2 multiplied by (2/(1 +b)))1/2.The process has asymptotically stationary increments for long time intervals, but not for short timeintervals. For b 6= 0, the process is neither a semimartingale nor a Markov process.This process occurs as the limit of occupation time fluctuations of a particle system of indepen-dent particles moving in Rd with symmetric α-stable Levy process, 0 < α ≤ 2, started from aninhomogeneous Poisson configuration with intensity measure dx/(1 + |x |γ), 0 < γ ≤ d = 1 <

α, a = −γ/α, b = 1− 1/α,−1 < a < 0, 0 < b ≤ 1 + a. The homogeneous case γ = 0 gives fBm.As another generalization, we have the bi-fractional Brownian motion. A bi-fractional Brownianmotion (bfBm) has covariance
1

2
(s2H + t2H)k − |t − s|2Hk), s, t ≥ 0, 0 < k ≤ 1. (1.3)

For k = 1, it reduces to fBm. For H = 1/2, bfBm can be extended for 1 < k < 2.
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Eur. J. Stat. 10.28924/ada/stat.5.4 3As a further generalization of fractional Brownian motion, we get the Hermite process of order
k with Hurst parameter H ∈ ( 1

2 , 1) which is defined as a multiple Wiener-Itô integral of order kwith respect to standard Brownian motion (B(t))t∈R

ZH,kt := c(H, k)

∫
R

∫ t

0

Πkj=1(s − yi)
−( 1

2
+H−1

2
)

+ ds dB(y1)dB(y2) · · · dB(yk) (1.4)

where x+ = max(x, 0) and the constant c(H, k) is a normalizing constant that ensures E(ZH,kt )2 =

1. For k = 1 the process is fractional Brownian motion WH
t with Hurst parameter H ∈ (0, 1).For k = 2 the process is Rosenblatt process which is non-Gaussian. For k ≥ 2, the process isnon-Gaussian.The Rosenblatt process is not a semimartingale and for H > 1/2, the quadratic variation is0. The distribution of the process is infinitely divisible. It is unknown yet whether the process isMarkov or not.The covariance kernel R(t, s) is given by

R(t, s) := E[ZH,kt ZH,ks ] = c(H, k)2

∫ t

0

∫ s

0

[
(u − s)

−( 1
2

+H−1
2

)
+ ds(v − y)

−( 1
2

+H−1
2

)
+ dy

]k
dudv.

(1.5)Let
β(p, q) :=

∫ 1

0

zp−1(1− z)q−1dz, p, q > 0 (1.6)be the beta function. Using the identity∫ 1

0

∫
R

(u − s)a−1
+ ds(v − y)a−1

+ dy = β(a, 2a − 1)|u − v |2a−1, (1.7)

we have
R(t, s) = c(H, k)2β

(
1

2
−

1−H
k

,
2H − 2

k

)k ∫ t

0

∫ s

0

(
|u − v |

2H−2
k

)k
dvdu

= c(H, k)2β( 1
2 −

1−H
k , 2H−2

k )k

H(2H − 1)

1

2
(t2H + s2H − |t − s|2H). (1.8)

In order to obtain E(Z
(H,k)
t )2 = 1, choose

c(H, k)2 =

(
β( 1

2 −
1−H
k , 2H−2

k )k

H(2H − 1)

)−1

(1.9)

and we have
R(t, s) =

1

2
(t2H + s2H − |t − s|2H). (1.10)Thus the covariance structure of the Hermite process and the fractional Brownian motion are thesame. The process Z(H,k)

t is H-self similar with stationary increments and all moments are finite.For any p ≥ 1,
E|Z(H,k)

t − Z(H,k)
s |p ≤ c(p,H, k)|t − s|pH. (1.11)Thus the Hermite process has Hölder continuous paths of order δ < H.
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Eur. J. Stat. 10.28924/ada/stat.5.4 4Consider the Gaussian process with the covariance function
KH(s, t) = (2− 2H)

(
s2H + t2H −

1

2

[
(s + t)2H + |s − t|2H

])
, s, t > 0 (1.12)

for 1 < 2H ≤ 2. The case H = 1/2 corresponds to standard Brownian motion.This process occurs as the limit of occupation time fluctuations of a particle system undergoinga critical branching, i.e., each particle independently, at an exponentially distributed lifetime,disappears with probability 1/2 or is replaced with two particles at the same site with probability
1/2. More generally, it is a branching particle system with Poisson initial condition, where theparticle motion is symmetric α stable Levy process, α ∈ (0, 2]. For α = 2, which corresponds toBrownian motion, one reaches super-processes.Recently, sub-fractional Brownian (sub-FBM) motion ζt which is a centered Gaussian processwith covariance function

cov(ζt , ζs) = CH(s, t) = s2H + t2H −
1

2

[
(s + t)2H + |s − t|2H

]
, s, t > 0 (1.13)

for 0 < H < 1 introduced by Bojdecki et al. [20] has received some attention recently in finitedimensional models. For s ≤ t ,
E(ζt − ζs)2 = −22H−1(t2H + s2H) + (t + s)2H + (t − s)2H.

For H = 1/2, sfBm is standard Brownian motion. For H > 1/2, this covariance is less thanthat of fBm and for H < 1/2, this covariance is more than that of fBm. The interesting featureof this process is that this process has some of the main properties of FBM, but the incrementsof the process are nonstationary, more weakly correlated on non-overlapping time intervals thanthat of FBM, and its covariance decays polynomially at a higher rate as the distance between theintervals tends to infinity. We generalize sub-fBM to sub-fractional Levy process (SFLP) as thedriving terms in our model.The nonstationarity of increments of SFLP distinguishes this process from fractional Brown-ian motion. The sub-fractional Levy Ornstein-Uhlenbeck (sfOU) process, is an extension of sub-fractional Ornstein-Uhlenbeck process with sub-fractional Levy motion (SFLM) driving term. Infinance, it could be useful as a generalization of fractional Vasicek model, as an one-factor short-term interest rate model or a stochastic volatility model or a stochastic intensity based credit-riskmodel which could take into account the long memory effect and jump of the interest rate or thestochastic volatility. The model parameters are usually unknown and must be estimated from data.
2. Quasi Likelihood MethodMaximum quasi-likelihood estimation in fractional Levy stochastic volatility model was studied inBishwal [15] where the driving term was fBm. Recall that the increments of the fBM are stationary.On the other hand, the increments of sfBM are nonstationary, more weakly correlated on non-overlapping time intervals than that of fBM, and its covariance decays polynomially at a higher
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Eur. J. Stat. 10.28924/ada/stat.5.4 5rate as the distance between the intervals tends to infinity. Weaker correlation seems to fit thefinancial data well.The sub-fractional Levy Process (SFLP) is defined as
MH,t =

1

Γ(H + 1
2 )

∫
R

[s2H + t2H + (t − s)
H−1/2
+ − (−s)

H−1/2
+ ]dMs , t ∈ R (2.1)

where {Ms , s ∈ R} is a Levy process on R with E(M1) = 0, E(M2
1 ) < ∞ and without Browniancomponent.Here are some properties of the sub-fractional Levy process: 1) the covariance of the process isgiven by

cov(MH,t ,MH,s) = s2H + t2H +
E(M2

1 )

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t − s|2H]. (2.2)

2) MH is not a martingale. For a large class of Levy processes, MH is neither a semimartingale.3)MH is Hölder continuous of any order β less than H− 1
2 . 4) MH has nonstationary increments. 5)

MH is symmetric. 6) M is self-similar, but MH is not self-similar. 7) MH has infinite total variationon compacts.Thus SFLP is a generalization and a natural counterpart of SFBM. Sub-fractional stable motionis a special case of SFLP. First we discuss estimation in partially observed models and then wediscuss estimation in directly observed model in finite dimensional set up. In finance, the log-volatility process can be modeled as a sub-fractionally integrated moving average (SFIMA) processwhich is defined as
YH(t) =

∫ t

−∞
gH(t−u)dMu, t ∈ R where gH(t) =

1

Γ(H − 1
2 )

∫ t

0

g(t− s)sH−
3
2 ds, t ∈ R (2.3)

which is the Riemann-Liouville sub-fractional integral of order H and the kernel g is the kernel ofa short memory moving average process. The log-volatility process will have slow (hyperbolic rate)decay of the auto-correlation function (acf).The process YH(t) can be written as
YH(t) =

∫ t

−∞
g(t − u)dMH,u, t ∈ R. (2.4)

We assume the following conditions on the kernel g : R → R, namely: g(t) = 0 for all t < 0(causality) and |g(t)| ≤ Ce−ct for some constants C > 0 and c > 0 (short memory).The SFIMA process is stationary and is infinite divisible. It has long memory and jumps whichagree empirically with stochastic volatility models. The asset return can be modeled as a SCOG-ARCH process
dX(t) =

√
eYH(t)dLt (2.5)where (Lt , t ∈ R) is another Levy process and the initial value YH(0) is independent of the process

L. Consider the kernel
g(t − s) = σe−θ(t−s)I(0,∞)(t − s), θ > 0 (2.6)
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Eur. J. Stat. 10.28924/ada/stat.5.4 6then
gH(t) =

σ

Γ(H − 1
2 )

∫ ∞
0

eθ(t−s)I(0,∞)(t − s)sH−
3
2 ds, t ∈ R. (2.7)

Note that
UH,θ,σt =

∫
R
gH(t − u)dMu, t ∈ R (2.8)is the sub-fractional Levy Ornstein-Uhlenbeck (SFLOU) process satisfying the sub-fractional Langevinequation

dUt = −θUtdt + σdMH,t , t ∈ R. (2.9)The process has long memory. Consider the asset return driven by sub-fractional Levy process
dSH,t = σt−dLH,t , t > 0, S0 = 0, (2.10)

with log-volatility
logσ2

t = µ+Xt , t ≥ 0 (2.11)where the Levy driven OU process X satisfies
dXt = −θXtdt + dMt , t > 0 (2.12)

with θ ∈ R+ and the driving compound Poisson process M is a Levy process with Levy symbol
ψM(u) = −

u2

2
+

∫
R

(e iux − 1)λΦ0,1/λ(dx), (2.13)

where Φ0,1/λ being a normal distribution with mean 0 and variance 1/λ. This means that M is thesum of a standard Brownian motion W and a compound Poisson process Jt =
∑Nt
k=1 Zk , J−t =∑−N−t

k=1 Z−k , t ≥ 0 where (Nt , t ∈ R) is an independent Poisson process with intensity λ > 0 andjump times (tk)k∈Z, i.e., Mt = Wt + Jt . The Poisson process N is also independent from the i.i.d.sequence of jump sizes (Zk)k∈Z with Z1 ∼ N (0, 1/λ). The Levy process M in this case is givenby
Mt =

Nt∑
k=1

(αZk + γ|Zk |)−$t, t > 0 and $ := γ

∫
R
|x |λΦ0,1/λ(dx) =

√
2λ

π
γ. (2.14)

The process {M−t , t ≥ 0} is defined analogously. The stationary log-volatility is given by
logσ2

t = µ+

∫ t

−∞
e−θ(t−s)dMs = µ+

Nt∑
k=−∞,k 6=0

e−θ(t−tk)[αZk + γ|Zk |]−
$

θ
, t ≥ 0. (2.15)

We observe S at n consecutive jump times 0 = t0 < t1 < . . . < tn < T < tn+1, n ∈ Z over the timeinterval [0, T ]. The state process X has then the following autoregressive representation
Xti = e−θ∆tiXti−1

+

Nti∑
k=Nti−1

+1

e−θ(ti−tk)[αZk + γ|Zk |]−
∫ ti

ti−1

e−θ(ti−s)$ds

= e−θ∆tiXti−1
+ αZi +

(
|Zi | −

$

θ
(1− e−θ∆ti )

)
(2.15)

where ∆ti := ti − ti−1, i = 1, 2, . . . , n and Nti−1
+ 1 = Nti = i .
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Eur. J. Stat. 10.28924/ada/stat.5.4 7We do the parameter estimation in two steps. The rate λ of the Poisson process N can beestimated given the jump times ti , therefore it is done at a first step. Since we observe totalnumber of jumps n of the Poisson process N over the T intervals of length one, the MLE of λ isgiven by λ̂n := n
T .To estimate the remaining parameters (α, θ, µ), we use the quasi maximum likelihood estima-tion procedure in conditionally heteroscedastic time series models developed by Straumann [29]and Straumann and Mikosch [30]. Gaussian quasi-maximum likelihood estimation is a method ofestimation under the hypothesis of Gaussian innovation.Assuming that S∆ti

H,ti
given S∆ti−1

H,ti−1
, . . . , S∆t1

H,t1
, X0 is conditionally normally distributed with meanzero and variance σ2

ti−/λ, the conditional log-likelihood given the initial value X0 has the repre-sentation
L(ϑ|S∆

H, λ) := −
n

2
log(2π)−

1

2

(
n∑
i=1

log(σ2
ti−/λ)−

n∑
i=1

(S∆ti
H,ti

)2

σ2
ti−/λ

)
. (2.17)

where S∆ti
H,ti

:= SH,ti −SH,ti−1
is the return at time ti . Since the volatility is unobservable, this log-likelihood can not be evaluated numerically. The quasi log-likelihood function for ϑ = (θ, α, γ, µ)given the data S∆

H := (S∆t1
H,t1

, S∆t2
H,t2

, . . . , S∆tn
H,tn

) and the MLE λ̂n is defined as
L(ϑ|S∆

H, λ̂n) := −
1

2

n∑
i=1

log(σ̂2
H,ti

(ϑ, λ̂n))−
1

2

n∑
i=1

(S∆ti
H,ti

)2

σ̂2
H,ti

(ϑ, λ̂n)/λ̂n
(2.18)

where the estimates of the volatility σ2
H,ti
, i = 1, 2, . . . , n are given by

σ̂2
H,ti

(ϑ, λn) := exp(µ+ e−α∆ti X̂H,ti−1
(ϑ, λ)− $̂∆ti), i = 1, 2, . . . , n (2.19)

and given the parameters ϑ and λ, the estimates of the state process X are given by the recursion
X̂H,ti = e−θ∆ti X̂H,ti−1

+ α
SH,ti

σ̂ti (ϑ, λ)
+

(
|SH,ti |
σ̂ti (ϑ, λ)

− $̂∆ti

)
, i = 1, 2, . . . , n (2.20)

Note that E(|W |) =
√

2
πλ , W ∼ N (0, 1/λ). Hence $̂ = γλ

√
2
πλ .Here the approximation (1− e−z) ≈ z for small z is used which is similar to approximate exactscheme by Euler scheme in linear SDE simulation and SH,ti/σ̂ti (ϑ, λ) approximates the innovationprocess Zi producing X̂H,ti = e−θ∆ti X̂H,ti−1

+αZi + (|Zi | − $̂∆ti). The recursion needs a startingvalue X̂H,0 which will be set equal to the mean value of the stationary distribution of X which iszero, the mean value zero of the stationary distribution of X .The quasi-maximum likelihood estimator (QMLE) of ϑ is defined as
ϑ̂n := arg max

ϑ∈Θ
L(ϑ|S∆

H, λ̂n). (2.21)

As a byproduct, we get a parametric estimator of the volatility. If we determine the QMLE ϑ̂n, wecan plug-in into volatility estimate and get estimates
σ̂2
H,ti

(ϑ̂n, λ̂n) := exp(µ̂n + e−α̂n∆ti X̂H,ti−1
(ϑ̂n, λ̂n)− $̂∆ti) (2.22)
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of the volatility at jump times t1, t2, . . . , tn based on ϑ̂n = (θ̂n, α̂n, γ̂n, µ̂n) and λ̂n.
3. Generalized Method of MomentsLet (Ω,F , {Ft}t≥0, P ) be the stochastic basis on which is defined the Ornstein-Uhlenbeck process
Xt satisfying the Itô stochastic differential equation

dXt = −θXtdt + dMH,t , t ≥ 0, (3.1)

where {MH,t}t≥0 is a sub-fractional Levy motion with H > 1/2 with the filtration {Ft}t≥0 and
θ ∈ R+ is the unknown parameter to be estimated on the basis of completely directly observedcontinuous observation of the process {Xt}t≥0 on the time interval [0, T ]. Observe that

Xt =

∫ t

−∞
e−θ(t−s)dMH,s , t ≥ 0. (3.2)

This process is stationary and is a process with long memory. It can be shown that Xti is astationary discrete time AR(1) process with autoregression coefficient φ ∈ (0, 1) with the followingrepresentation
Xti = φXti−1

+ εti−1
where φ = e−θ∆ and εti−1

=

∫ ti

ti−1

e−θ(ti−u)dMH,u, i = 1, 2, . . . , n. (3.3)

Then the problem is an AR(1) estimation with non-Gaussian non-martingale error. For equidistantsampling, one can study the least squares estimator which boils down to the study of error distribu-tion for non-semimartingales. One can specialize to the case when M is a either a gamma processor an inverse Gaussian process in order to have infinite number of jumps in a finite time intervalunlike the compound Poissoan case which have finite number of jumps in a finite time interval.These sub-fractional Gamma and sub-fractional inverse Gaussian Ornstein-Uhlenbeck (SFLOU)processes are LOU processes which include long memory.Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the stochastic volatility model
d Yt =

√
XtdWt , dXt = θXt dt + dZt , t ≥ 0 (3.4)

where {Wt} is a standard Brownian motion, {Zt} is a homogeneous Levy process, θ < 0. Let theintegrated volatility be defined as
VT :=

∫ T

0

Xtdt. (3.5)In IGOU model, calculation of conditional cumulants of the integrated volatility conditioned on theinitial value is enough to be able to compute European style options very rapidly.The kumulant functions of IG-OU process are given by
k(θ) = logE[e−θZ(1)] = −θδγ−1(1 + 2θγ−2)−1/2, (3.6)

k ′(θ) = logE(e−θVt ) = δγ − δγ(1 + 2θγ−2)1/2. (3.7)The Conditional Mean is given by
E(Vt |V0) = ε(t, θ)(V0 − κ1) + κ1t (3.8)

https://doi.org/10.28924/ada/stat.5.4


Eur. J. Stat. 10.28924/ada/stat.5.4 9where
ε(t, θ) =

∫ t

0

e−θ(t−u)dZu.The Conditional Second Moment is given by
Var(Vt |V0) = θ−2(θt − 2 + 2e−θt +

1

2
−

1

2
e−2θt). (3.9)

Now we introduce the Generalized Method of Moments (GMM).
Let

ft(ξ) =



E[Vt+1,t+2|Gt ]− Vt+1,t+2

E[V 2
t+1,t+2|Gt ]− V 2

t+1,t+2

E[Vt+1,t+2Vt−1,t |Gt ]− Vt+1,t+2Vt−1,t

E[V 2
t+1,t+2Vt−1,t |Gt ]− V 2

t+1,t+2Vt−1,t

E[Vt+1,t+2V
2
t−1,t |Gt ]− Vt+1,t+2V

2
t−1,t

E[V 2
t+1,t+2V

2
t−1,t |Gt ]− V 2

t+1,t+2V
2
t−1,t


(3.10)

where Gt is the filtration generated by {Xs , 0 ≤ s ≤ t}. By construction E[ft(ξ0)|Gt ] = 0. TheGMM estimator is defined as
ξ̂T = arg min gT (ξ)′GgT (ξ) (3.11)where gT (ξ) = 1

T

∑T−2
t=1 ft(ξ), and G denotes the asymptotic covariance matrix of gT (ξ0).The GMM estimator can be seen as a minimum Mahalanobis D2 estimator. The minimized valueof the objective function multiplied by the sample size distributed as a chi-square distribution withthree degrees of freedom, which allows for an omnibus test of the over identifying restrictions.The invariant (marginal) distribution of Xt is Inverse Gaussian with parameters (δ, γ) with densityfunction given by

f (x) =
δeδγ√

2π
x−3/2 exp

(
−

1

2
(δ2x−1 + γ2x)

)
, γ ≥ 0, δ > 0, x > 0 (3.12)

and, mean and variance respectively
E(X) =

δ

γ
, Var(X) =

δ

γ3
. (3.13)The normal inverse Gaussian (NIG) process with parameters α, β, µ, δ can be described as thedistribution of

Y = µ+ βX1 +
√
X1Z, Z ∼ N (0, 1) (3.14)with Z is independent of X1, α =

√
β2 + γ2.

E(Y ) = µ+
δβ

α
√

1− (β/α)2
, Var(Y ) =

δ

α(1− (β/α)2)3/2
, (3.15)

Skewness(Y ) =
3β

α2(δ(1− (β/α)2))1/2
, Kurtosis(Y ) =

3(1 + 4(β/α)2)

αδ(1− (β/α)2)
. (3.16)Let yi := Yi∆ − Yi−1∆, i = 1, 2, . . . , n. The cummulants satisfy

k
(1)
y1

= θρ∆k
(1)
IG , (3.17)
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k
(2)
y1

= ∆k
(1)
IG + 2θρ2∆k

(2)
IG . (3.18)We know that

k
(1)
IG =

α

β
, (3.19)

k
(2)
IG =

α(α+ 1)

β2
, (3.20)

L(X0) = L(Xt) = GIG(λ, δ,
√
α2 − β2). (3.21)The distribution of Yt is Normal Inverse Gaussian (NIG). Inverting (3.17) and (3.18) and replacingthe cummulants by their sample cummulants, we obtain the explicit method of moments estimators.The moment estimators of ρ and λ are given by

ρ̂n :=
γ(γs2

y − ∆δ)

2ȳ
, θ̂n :=

γȳ

∆δρ̂n
(3.22)where

s2
y :=

1

n

n∑
j=1

(yj − ȳ)2 =
1

n

n∑
j=1

y2
j − (ȳ)2, ȳ :=

1

n

n∑
j=1

yj , yj := Yj∆ − Y(j−1)∆. (3.23)

Proposition 3.1
a) θ̂n → θ0 a.s. as n →∞.
b)
√
n(θ̂n − θ0)→D N (0, J−1(θ0)) as n →∞.

c) ρ̂n → ρ0 a.s. as n →∞.
d)
√
n(ρ̂n − ρ0)→D N (0, I−1(ρ0)) as n →∞where J(θ0) and I(ρ0) are corresponding Fisher-information.

Next we observe the process {Yt , t ≥ 0} at random times {t0, t1, t2, ....}. We assume that thesampling instants {ti , i = 0, 1, 2...} are generated by a Poisson process on [0,∞), i.e., t0 = 0, ti =

ti−1 + αi , i = 1, 2, ... where αi are i.i.d. positive random variables with a common exponentialdistribution F (x) = 1 − exp(−λx). Note that intensity parameter λ > 0 is the average samplingrate which is assumed to be known. It is also assumed that the sampling process ti , i = 0, 1, 2, ... isindependent of the observation process {Xt , t ≥ 0}. We note that the probability density functionof tk+i − tk is independent of k and is given by the gamma density
fi(t) = λ(λt)i−1 exp(−λt)It/(i − 1)!, i = 0, 1, 2, .... (3.24)

where It = 1 if t ≥ 0 and It = 0 if t < 0.We do the parameter estimation in two steps: The rate λ of the Poisson process can be estimatedgiven the arrival times ti , therefore it is done at a first step. Since we observe total number ofarrivals n of the Poisson process over the T intervals of length one, the MLE of λ is given by
λ̂n :=

n

T
. (3.25)

Theorem 3.1 We have
(a) λ̂n → λ a.s. as n →∞.
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(b)
√
n(λ̂n − λ)→D N (0, eλ(1− e−λ)) as n →∞.

Proof. Let Vi be the number of arrivals in the interval (i − 1, i ]. Then Vi , i = 1, 2, . . . , n are i.i.d.Poisson distributed with parameter λ. Since Φ is continuous, we have I{0}(Vi) = I{0}(Y (ti)) a.s. i =

1, 2, . . . , n. Note that
1

n

n∑
i=1

I{0}(Yti )→
a.s. E(I{0}V1) = P (V1 = 0) = e−λ as n →∞. (3.26)

LLN and CLT and delta method applied to the sequence I{0}(Yti ), i = 1, 2, . . . , n give the results.
The CLT result above allows us to construct confidence interval for the jump rate λ.

Corollary 3.1 A 100(1− α)% confidence interval for λ is given by[
n

T
− Z1−α

2

√
1

n
−

1

T
,
n

T
+ Z1−α

2

√
1

n
−

1

T

]
where Z1−α

2
is the (1− α

2 )-quantile of the standard normal distribution.
For random sampling,

ρ̂n :=
γ(γs2

y − λ̂nδ)

2ȳ
, θ̂n :=

γȳ

λ̂nδρ̂n
(3.27)

where
s2
y :=

1

n

n∑
j=1

(yj − ȳ)2 =
1

n

n∑
j=1

y2
j − (ȳ)2, ȳ :=

1

n

n∑
j=1

yj , yj := Y
j λ̂n
− Y

(j−1)λ̂n
. (3.28)

Theorem 3.2
a) θ̂n → θ0 a.s. as n →∞,
b)
√
n(θ̂n − θ0)→D N (0, J−1(θ0)) as n →∞,

c) ρ̂n → ρ0 a.s. as n →∞,
d)
√
n(ρ̂n − ρ0)→D N (0, I−1(ρ0)) as n →∞where J(θ0) and I(ρ0) are corresponding Fisher-information.

The robust estimators of ρ and λ are given by
ρ̃n :=

γ(γã2
y − ∆δ)

2ỹ
, θ̃n :=

γỹ

∆δρ̃n
(3.29)

where
ay :=

1

n

n∑
j=1

|yj − ỹ | (3.30)

is the sample mean absolute deviation (MAD) from median,
ỹ := median of {yj , 1 ≤ j ≤ n}
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ỹ =

{
yk+yk+1

2 : n = 2k

yk+1 : n = 2k + 1and median absolute deviation (MDAD) from median is defined as
ãy := median of {yj − ỹ , 1 ≤ j ≤ n}

Let ϑ := (ρ, λ) and ϑ̃n := (ρ̃n, λ̃n). By using the standard theory of order statistics, see Theorem5.9 and 5.21 in Van der Vaart [31] and mixing property of the process, along with Glivenko-Cantelliargument and Delta method, we obtain, for deterministic sampling the following properties of theestimators:
Theorem 3.3 For fixed ∆ > 0 as n →∞,

(a) ϑ̃n → ϑ0 a.s. as n →∞.
(b)

√
n(ϑ̃n − ϑ0)→D N2(0,

π

2
(2θρ2∆2δ2γ−4)−2D(ϑ0)) as n →∞where D(ϑ0) is the limiting covariance matrix.

For Poisson random sampling, we have
˜̃ρn :=

γ(γãy − λ̂nδ)

2ỹ
,
˜̃
λn :=

γỹ

λ̂nδ˜̃ρn (3.31)

Theorem 3.4 Let ˜̃ϑn := (˜̃ρn, ˜̃λn). As n →∞,
(a)

˜̃
ϑn → ϑ0 a.s. as n →∞.

(b)
√
n(
˜̃
ϑn − ϑ0)→D N2(0,

π

2
(2θρ2∆2δ2γ−4)−2D(ϑ0)) as n →∞where D(ϑ0) is the limiting covariance matrix.

For sub-fractional Gamma process with deterministic sampling, we have
θ̄n =

2α3(α+ 1)

β4∆

( 1
n

∑n
i=1(Yi∆ − Y(i−1)∆))2

1
n

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆ 1

n

∑n
i=1(Yi∆ − Y(i−1)∆)2

. (3.32)

Direct application of Birkoff Ergodic Theorem and Mixing CLT (see Durrett [21]) give the fol-lowing results:
Theorem 3.5

(a) θ̄n → θ0 a.s. as n →∞.

(b)
√
n(θ̄n − θ0)→D N (0, I−1(θ0)) as n →∞.
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θn =

2α3(α+ 1)

β4λ̂n

( 1
n

∑n
i=1(Y

i λ̂n
− Y

i−1λ̂n
))2

1
n

∑n
i=1(Y

i λ̂n
− Y

(i−1)λ̂n
)2 − λ̂n 1

n

∑n
i=1(Y

i λ̂n
− Y

(i−1)λ̂n
)2
. (3.33)

Theorem 3.5 along with Theorem 3.1 gives the following results:
Theorem 3.6

(a) θn → θ0 a.s. as n →∞.

(b)
√
n(θn − θ0)→D N (0, I−1(θ0)) as n →∞.

ConclusionAnother possible generalization of the paper is the following: Hawkes processes (see Hawkes [26])are an efficient generalization of the Poisson processes to model a sequence of arrivals over time ofsome types of events, that present self-exciting feature, in the sense that each arrival increases therate of future arrivals for some period of time. This class of counting processes allows one to captureself-exciting phenomena in a more accurate way compared to inhomogeneous Poisson processesor Cox processes. This is the case with aftershocks of earthquakes; an earthquake increases thegeophysical tension in the region and can cause a second earthquake. In finance, they are accurateto model for example credit risk contagion, order book or microstructure noises’s feature of financialmarkets.A Hawkes process is a counting process At with stochastic intensity λt given by λt = µ +∫ t
0 Φ(t − s)dAs where µ > 0 and Φ : R→ R+ are two parameters. The parameter µ > 0 is calledthe background intensity and the function Φ is called the excitation function. When Φ = 0, this ahomogeneous Poisson process.A sub-fractional Hawkes process {AH(t), t > 0} with Hurst parameter H ∈ (1/2, 1) is definedas

AH(t) =
1

Γ(H − 1
2 )

∫ t

0

u
1
2
−H
(∫ t

u

τH−
1
2 (τ − u)H−

3
2 dτ

)
dR(u)

where R(u) := A(u)/
√
λt −

√
λtu and A(u) is a Hawkes process with stochastic intensity λt .It would be interesting to investigate QML and GMM estimation in stochastic volatility modeldriven by sub-fractional Hawkes process which would incorporate self-excitation, jumps and longmemory of financial models.
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