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ABSTRACT. Hawkins [6] defined an outlier as an observation that is significantly different from
the remaining observations in a dataset so as to arouse suspicion that it was generated by
different mechanism. Barnett and Lewis [2] defined an outlier as an observation that deviates
significantly in the sample in which it occurs. Spatial outliers are different from outliers and
many authors like Singh and Lalitha [9]. Outlier detection procedures for two parameter gamma
distribution have been discussed by many authors. But one major disadvantage of the gamma
distribution is that the distribution (or survival) function cannot be expressed in a closed form if
the shape parameter is not an integer. Since it is in terms of an incomplete gamma function, one
needs to obtain the distribution/survival function or the failure rate by numerical integration.
This is a limitation in the usage of gamma distribution. It is observed that the generalized
exponential distribution can be used as an alternative to the gamma distribution in many
situations. Different properties like monotonicity of the hazard functions and tail behaviours of
the gamma distribution and that of the generalized exponential distribution are quite similar in
nature. But the latter one has a nice compact distribution (or survival) function. It is observed
that for a given gamma distribution there exists a generalized exponential distribution so that
the two distribution functions are almost identical. Since the gamma distribution function does
not have a compact form, efficiently generating gamma random numbers is known to be

problematic. It was observed that for all practical purposes it is possible to generate
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approximate gamma random numbers using generalized exponential distribution and the random
samples thus obtained cannot be differentiated using any statistical tests. Many authors
proposed a location and scale invariant test based on the test statistic Zx for testing the upper
outliers in two-parameter exponential sample. Kumar et. al. [7] and Singh and Lalitha [10] have
proposed test statistics for testing multiple upper outlier detection in gamma sample. Various
test statistics have been proposed to detect outliers in an exponential sample. Likes [8] also
proposed a new test statistics to detect outlier in the exponential case. In this paper, the test
statistic proposed by Likes has been used to detect outliers in a generalized exponential sample
and the critical value of the test statistics has been obtained. A simulation study is carried out

to compare the theoretical developments.

1. Introduction

Hawkins [6] defined an outlier as an observation that is significantly different from
the remaining observations in a dataset so as to arouse suspicion that it was generated
by different mechanism. Barnett and
Lewis [2] defined an outlier as an observation that deviates significantly in the sample
in which it occurs. Spatial outliers are different from outliers and many authors like
Singh and Lalitha [9] and Singh [12]. Outlier detection procedures for two parameter
gamma distribution have been discussed by many authors. But one major disadvantage
of the gamma distribution is that the distribution (or survival) function cannot be
expressed in a closed form if the shape parameter is not an integer. Since it is in terms
of an incomplete gamma function, one needs to obtain the distribution/survival function
or the failure rate by numerical integration. This is a limitation in the usage of gamma
distribution.

It is observed that the generalized exponential distribution can be used as an
alternative to the gamma distribution in many situations. Different properties like
monotonicity of the hazard functions and tail behaviours of the gamma distribution and
that of the generalized exponential distribution are quite similar in nature. But the
latter one has a nice compact distribution (or survival) function. It is observed that for a

given gamma distribution there exists a generalized exponential distribution so that the
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two distribution functions are almost identical. Since the gamma distribution function
does not have a compact form, efficiently generating gamma random numbers is known
to be problematic. It was observed that for all practical purposes it is possible to
generate approximate gamma random numbers using generalized exponential
distribution and the random samples thus obtained cannot be differentiated using any
statistical tests. Moreover, if there is a skewed data set where gamma distribution is the
best fitting distribution, then in such situations, the generalized exponential distribution
also can be used. Gupta and Kundu [5] fitted distributions to two real data sets and
observed that the fitted distribution functions were almost identical in many respects in
both the cases. It was observed by Gupta and Kundu [4] that the two-parameter
generalized exponential distribution with parameters ¢ and o which was denoted by
GE(¢,0) can be used quite effectively in analysing many lifetime data, particularly in
place of two-parameter gamma distribution.

The two parameters of an exponentiated exponential distribution (Generalized
exponential) represent the shape and the scale parameter like a gamma distribution. It
also has the increasing or decreasing failure rate depending on the shape parameter.
The density function varies significantly depending on the shape parameter. It was
observed that it has lots of properties which are quite similar to those of a gamma
distribution but it has an explicit expression of the distribution function or the survival
function. It has also likelihood ratio ordering with respect to the shape parameter, when
the scale parameter was kept constant. It was also observed that for a fixed scale and

shape parameters there is a stochastic ordering between both the distributions.

2. Materials and Methods
2.1 The Test Statistic

Let X1, X5 ..., X;, be the n observations of a sample from a Generalized exponential
distribution with parameters ¢ and o and let X(;),X(3)...,Xn) be the corresponding

order statistics. Then to test the null hypothesis Hy,, the following test statistic Dy is

used, where Dy is defined by
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Xm)—X
D, = =200 < D< 1. 1
T XX k 1)

The test statistic (1) is based on score function for testing Hy against Hy. The
statistic (1) will have small values if upper outliers are present in the data and declares

them as discordant if they exceed by a specified value.

In this article, the test statistic in equation (1) for detection k upper outliers in a
generalized exponential sample whose pdf is given by
g(x; §,0) =&(1—e 9%)57 ™% x,&0>0
and cdf by
G(x) = (1 — e %)%, & 0,x>0.

Here ¢ is the shape parameter and o is the scale parameter.

2.2  Test Statistic and its Null distribution

Let X1,X5 ..., X, be the given sample of size n from a generalized exponential
distribution with parameters § and o and X1y < X(5) < -+ < X(p,) be its corresponding
order statistics.

For a discordancy test of k observations, the test statistic Dy, where

Xy~ X -k
Dy = ——1=, 0<D;< 1.
m~4 @

is used. As pointed earlier, a small value of D;would indicate the presence of outliers in
the sample.

The null hypothesis Hy to be tested is that all the observations are from a
GE(¢,0) with unknown ¢ against the alternative Hj that n — k observations are from
this model but the largest k observations are from a GE(&, bo), where b > 1.
Clearly, Hiis a scale slippage alternative.

The test statistic D, is based on score function for testing Hy against H,. The
statistic would have small value if upper outliers are present in the data. Hence, the test
procedure declares k observations as discordant if the calculated value of Dyturns out to

be smaller than the critical value.
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2.3  Ciritical Values

To obtain the critical values of Dy, its distribution should be known. The critical
values were obtained using simulation technique. For this a sample of size n with
certain values of the parameters {and o was generated using R software and the
statistic D, was calculated for certain number k of suspected outliers. This was then
repeated 10,000 times and the percentile points were obtained. Thus, the critical values

d, for level of significance a are the 100 a percentile points.The critical values are

tabulated in table 1for n = 10(10)20(10)100 and k = 1(1)4.

Table 1. Critical values of D, for k=1,2,3,4 and for 5% and 1% significance levels

respectively.

n a k=1 k=2 k=3 k=4
0.006042 | 0.067464 | 0.185511 | 0.293034
0.029176 | 0.151137 | 0.300307 | 0.429253
0.056591 | 0.214216 | 0.372921 | 0.500508
0.004805 | 0.062619 | 0.163167 | 0.278066
0.026322 | 0.14387 | 0.282663 | 0.397856
0.052705 | 0.20415 | 0.350842 | 0.472195
0.004497 | 0.059241 | 0.161822 | 0.262801
0.024257 0.137 0.272635 | 0.38014
0.049472 | 0.192076 | 0.337611 | 0.450177
0.005223 | 0.056194 | 0.150323 | 0.255565
0.02472 | 0.134153 | 0.25282 | 0.358246
0.049321 | 0.190579 | 0.318158 | 0.427167
0.004581 | 0.058862 | 0.14096 | 0.241623
0.022506 | 0.132777 | 0.248728 | 0.352901
0.044536 | 0.182692 | 0.310938 | 0.41849
0.005203 | 0.053461 | 0.135822 | 0.230424
0.021298 | 0.122147 | 0.233576 | 0.342719
0.043453 | 0.173112 | 0.292832 | 0.405803
0.00466 | 0.055098 | 0.137079 | 0.218975
0.021243 | 0.118557 | 0.233099 | 0.327414
0.042047 | 0.167129 | 0.292668 | 0.386553
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The test procedure is to reject Hy, when D, < d, otherwise it may be accepted. Here k
denotes the number of largest observations that are to be declared as discordant at «

level of significance.

2.4 Performance study

For performance study, the outlying observations were planted in the original sample by
generating another sample from a GE (¢, ba) distribution. To compute the performance
criteria for single and multiple outliers in a sample, the following probabilities were
defined for different value of k-

pl; = P(AcceptH;|H;),i,j = 1,2, ..., k.

Then the probabilities p2, and p3, of correct decisions and p%,, p5, of masking and
swamping effects respectively were computed for the level of significance « = 0.05 and
for different choices of n and b were obtained.

It can be seen that the probabilities p%;, p5,, p%, and pZ;are equivalent to
pi1 = P(D; < dy, D, 2 dy|H,y)

3, = P(D, < dy|Hy)

pi, = P(D; < dy,D; = dy|Hy)

P31 = P(D; < dy|Hy),

where d;, are the critical values obtained in table 1 for k=i, i =1,2,3.

3. Results

A simulation study was carried out to compute the performance of the test
statistic Dy using the method given by Lin et al [10]. The powers were evaluated and
also the probabilities of masking and swamping for the case when k = 2 and 3were
determined. For given n, k and, b the samples of size n under the hypothesis Hy, are first
generated by choosing a sample of size n —k from GE(1,1) and a sample of size k
from GE(1,b),b = 1. After that, these samples were arranged in ascending order to
obtain the ordered samples. For k = 2,N = 10000, replications of size n =10, the
samples were generated from GE(1,1) distribution and (n-1)" and n™ observations were

generated from GE(1, b) distribution, where b > 1. The test D, was applied and results
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were noted. The probabilities of the outlying observations were contaminants were
obtained by dividing the number of incidents where the statistic fell in the critical
region by the total number of repetition, i.e. 10,000. The different type of powers and
swamping and masking effect were obtained for b = 0(1)10(10)50. Graphs of these
probabilities were plotted which are shown in figure 1 to 12 and performance values

depicted in the table 2.

Table.2. Performance values of test procedure

Performance probabilities
pt pi1 P,
b a=0.05 o=0.01 0=0.05 o=0.01 a=0.05 a=0.01
10 0.0074 0.004 0.0094 0.0036 0.0083 0.0036
20 0.1073 0.0654 0.1148 0.0649 0.1075 0.063
30 0.333 0.2205 0.3302 0.2263 0.3285 0.2181
40 0.5759 0.4269 0.5887 0.4311 0.5819 0.4279
50 0.8015 0.6463 0.8 0.6406 0.7974 0.6423
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Figure.1 Power probability p3, of for n=10 when k=2, a=0.05 and for different b.
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Figure.2 Masking effect of test procedure for n=10 when k=2 and a=0.05.

0.6

04 05

P1173
0.3

0.2

0.1

10 20 30 40 50

Figure.3 Power of test procedure for n=15 when k=3 and a=0.05.



Eur. J. Math. Anal. 1 (2021)

&

P21"2
0005 0004
|

0002
|

0001
|

0000
|

Figure.4. Swamping effect of test procedure for n=10 when k=2 and a=0.05.
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Figure.5 Performance criterion p3, of test procedure for n=15 when k=3 and a=0.05.
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Figure.6 Performance criterion p3; of test procedure for n=15 when k=3 and a=0.05.
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Figure.7 Swamping effect of test procedure for n=15 when k=3 and 0=0.05.
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Figure.9 Masking effect of test procedure for n=10 when k=2 and a=0.01.
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Figure.11 Swamping effect of test procedure for n=10 when k=2 and «=0.01.
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Figure.12 Performance criterion p3, of test procedure for n=15 when k=3 and

o=0.01.

4. Discussion
From fig.1 and fig 12 it can be seen that D, has low power at initial value of b

but as b increases, the power of the test increases very rapidly and become steady for
both the cases. The probability p3, , shown in figure 5, also increases as b increases.
The probability of swamping and masking effects p?, and p3, , respectively, shown in
figure 2 and 4, are very low for any value of b.

From fig. 1, it can be seen that the probability p% increases very rapidly and
become constant.

From fig.2, it can be seen that the probability p?, is same at all value for b and
very low. From fig. 4, it can be seen that the probability p5, high at initial value of b
and moderately drop at b=5 beyond that it decreases very rapidly.
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From these graphs, it can be seen that all powers and masking, swamping effects
have similar pattern for different values of n and k. Similar pattern can be seen for other
value of level of significance, ie. for o = 0.01.

From fig. 6, it can be seen that probability p3; increases very rapidly till
b=0.45and beyond this point, there is no variation. From fig. 7, it can be seen that the
swamping effects for k = 3 are also very low.

From fig.9, it can be seen that the masking effect increases for a value of b=0.26 and
beyond which it drastically drops. This implies that larger the deviation in scale

parameter the lower the effect on the power of testing procedure as b increases.

5. Conclusions and suggestions

The performance of the test statistic Dy is reasonably good as it correctly
identifies the contaminant observations as discordant. All the powers, masking and
swamping effects have similar pattern for different value of nand k. Also, D has very
low probability of masking effect ie. of wrongly not identifying the contaminant
observations as outliers. As the shape parameter increases, the swamping effect also

becomes smaller. So test statistic D, can be used for generalized exponential sample.
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