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Abstract. This article introduces the MTI inverted exponential distribution (MTIIE), a two-parametergeneralization of the inverted exponential distribution, developed using the MTI technique. TheMTI technique is named after (Murtiza, Tariq, Ishfaq) who pioneered this approach to enhance theflexibility and applicability of statistical models. The paper explores key properties of the distri-bution, including moments, the quantile function, the hazard rate, the reliability function, and themoment-generating function. The distribution parameters are estimated using the method of maxi-mum likelihood estimation (MLE). It is applied to two real data sets to demonstrate the practicalutility of the new distribution, showcasing its effectiveness in modeling real-world data.

1. Introduction
In applied statistics and life sciences, probability distributions play a critical role in reliabilityand survival analysis. However, many existing models for survival data fail to provide an opti-mal fit in certain scenarios. To overcome these limitations, researchers often introduce additionalshape parameters, enhancing the models’ flexibility and accuracy. One such model is the invertedexponential (IE) distribution, introduced by [6] and later explored by [8]. The IE distribution is acontinuous probability model characterized by its inverted bathtub-shaped hazard function, mak-ing it an improvement over the classical exponential distribution. Specifically, the IE distributionaddresses the exponential distribution’s limitations, such as its constant failure rate and mem-oryless property. The IE distribution has demonstrated its utility in modeling Poisson processesbetween events, where the exponential distribution proves inadequate The probability density func-tion (PDF) and cumulative density function (CDF) of IE distribution are given in Eqs.(1) and (2)respectively.

f (x) =
λ

x2
e
−λ
x ; x > 0, λ > 0 (1)

F (x) = e
−λ
x ; x > 0, λ > 0 (2)

Received: 7 Dec 2024.
Key words and phrases. MTI transformation; inverted exponential distribution; moments; Renyi entropy; maximumlikelihood estimation. 1

https://adac.ee
https://doi.org/10.28924/ada/stat.5.5
https://orcid.org/0009-0008-4412-6963
https://orcid.org/0000-0003-1809-1396


Eur. J. Stat. 10.28924/ada/stat.5.5 2In recent years, the inverted exponential distribution has been used in medicine, engineering, bi-ology, business, electronic systems and insurance. In the research, some statisticians have madeefforts to enhance the modeling capabilities of the IE distribution. The generalized inverted ex-ponential distribution was introduced by [1].The Bayes estimators of the parameter and reliabil-ity function of inverted exponential distribution were obtained by [13].Exponentiated generalizedinverted exponential distribution was proposed by [11]. [4] proposed the exponentiated invertedexponential distribution.The alpha power inverted exponential distribution was introduced by [16].Topp Leone exponentiated inverse exponential distribution was obtained by [14]. [2] introduced thelogistic inverse exponential distribution with properties and applications. The alpha power expo-nentiated inverse exponential distribution and its application on Italy’s Covid-19 mortality rate datawas derived by [5]. Modified inverse generalized exponential distribution was introduced by [15].In this manuscript, our aim is to generalize the inverted exponential distribution by using the MTItransformation technique to develop a new probability distribution known as MTI inverted expo-nential distribution (MTIIE). Here are the key reasons for using the MTI transformation method inpractice.
• The proposed model is highly efficient and adaptable for incorporating a new parameter togeneralize the existing distributions.
• To provide a better fit as compared to other competing models.
• The additional parameter can give various desirable properties and is more flexible in theform of hazard and density functions.The rest of the manuscript is organized as follows: Section 2 introduces the new family of probabilitydistributions known as MTI. In Section 3, the MTI-inverted exponential (MTIIE) distribution ispresented. Section 4 discusses the reliability measures of the model, while Section 5 derives itsmathematical properties. Section 6 explores entropy measures, and Section 7 investigates orderstatistics. In Section 8, we determine parameter estimation using maximum likelihood estimation.A simulation study is conducted in Section 9, followed by real dataset applications in Section 10.Finally, Section 11 provides concluding remarks.

2. MTI transformation technique
The MTI transformation was recently proposed by [10] whose CDF and PDF are given by thefollowing equations respectively.

GMTI(x) =
αF (x)

α− logαF̄ (x)
; α ∈ R+ (3)

gMTI(x) =
α(α− logα)f (x)

(α− logαF̄ (x))2
; α ∈ R+ (4)

Where the PDF and CDF of the base line distribution are denoted by f (x) and F (x) in the Eqs.(1) and (2) respectively, where F̄ (x) = 1− F (x)
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Eur. J. Stat. 10.28924/ada/stat.5.5 33. MTI inverted exponential distribution (MTIIE)
A random variable X is said to follow a two-parameter MTIIE distribution, denoted by (α, λ) ifits CDF and PDF for x > 0, are, respectively, given as follows:

GMTIIE(x) =
αe

−λ
x

α− logα(1− e
−λ
x )

; x > 0, λ > 0, α ∈ R+ (5)
and

gMTIIE(x) =
α(α− logα) λ

x2
e
−λ
x(

α− logα(1− e
−λ
x )
)2 ; x > 0, λ > 0, α ∈ R+ (6)

Remark: When α = 1, the MTIIE distribution reduces to Inverted exponential distribution.The graphical illustration of the probability density function (PDF) of the MTI-IE distribution isshown in Fig 1. From the figure, it is evident that the distribution can exhibit increasing, decreasing,or unimodal behaviour, and it can be positively skewed, depending on the values of the parameters.
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Figure 1. PDF plot for MTIIE distribution
4. Reliability Analysis Of MTIIE

In this section, we derive the reliability function, hazard rate, reverse hazard function, and millsratio expressions for MTI Inverted exponential distribution
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Eur. J. Stat. 10.28924/ada/stat.5.5 44.1. Reliability function. The reliability function represents the probability that an item does notfail before a specified time, x. For the MTIIE distribution, it is given as
R(x ;α, λ) = 1− GMTIIE(x ;α, λ) =

(α− logα)(1− e
−λ
x )

α− logα(1− e
−λ
x )

(7)
4.2. Hazard rate.

h(x ;α, λ) =
gMTIIE(x ;α, λ)

R(x ;α, λ)
=

α λ
x2
e
−λ
x

(1− e
−λ
x )
(
α− logα(1− e

−λ
x )
) (8)

Fig. 2 depicts the graphs of the hazard rate of the MTIIE distribution for various parametercombinations. It demonstrates that the hazard function can exhibit unimodal, increasing, decreasing,and constant shapes, depending on the specific values of the parameters.
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Figure 2. Hazard plot for MTIIE distribution
4.3. Reverse hazard rate.

hr (x ;α, λ) =
gMTIIE(x ;α, λ)

GMTIIE(x ;α, λ)
=

λ(α− logα)

x2
(
α− logα(1− e

−λ
x )
) (9)
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Eur. J. Stat. 10.28924/ada/stat.5.5 54.4. Mills ratio. The mills ratio is given as
M.R =

GMTIIE (x ;α, λ)

RMTIIE (x ;α, λ)
=

αe
−λ
x

(α− logα)(1− e
−λ
x )

(10)
4.5. Quantile function.

Theorem 4.1. If X ∼ MTIIE(α, λ) distribution, then the quantile function of X is given as

x =
−λ

log
{
u(α−logα)
α−u logα

} (11)
Proof. Let GMTIIE(x) = u. Then the quantile function of MTIIE distribution is

αe
−λ
x

α− logα(1− e
−λ
x )

= u

⇒ e
−λ
x (α− u logα) = u (α− logα)

⇒ x =
−λ

log
{
u(α−logα)
α−u logα

} (12)
Where u is considered as the uniform random variable on the unit interval (0,1). �

4.6. Median. Median of MTIIE is obtained by substituting u= 0.5 in Equation (12),we get
Median =

−λ

log
{
0.5(α−logα)
α−0.5 logα

}
5. Statistical properties of MTIIE

In this section, the structural properties of the proposed MTI Inverted exponential distribution areobtained. This includes the moments, Harmonic mean, mode, moment-generating and characteristicfunctions.
5.1. Moments. The r th moment for MTIIE distribution can be obtained as;

µ′r = E(x r ) =

∫ ∞
0

x rgMTIIE(x ;α, λ) dx

=
λ (α− logα)

α

∫ ∞
0

x r−2e
−λ
x

(
1−

logα

α

(
1− e

−λ
x

))−2
dx (13)

using series representation (1− x)−2 =
∑∞
j=0 (j + 1) x j , |x | < 1,in equation (13), we get

µ′r =
λ (α− logα)

α

∞∑
j=0

(j + 1)

(
logα

α

)j ∫ ∞
0

x r−2e
−λ
x

(
1− e

−λ
x

)j
dx

=
λr (α− logα)

α

∞∑
j=0

j∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ (1− r) (k + 1)r−1 (14)
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Eur. J. Stat. 10.28924/ada/stat.5.5 65.2. Harmonic-Mean. The harmonic mean (H) of the MTIIE distribution is given as
1

H
= E

(
1

x

)
=

∫ ∞
0

1

x
gMTIIE (x ;α, λ) dx (15)

=
λ (α− logα)

α

∞∑
j=0

j∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)∫ ∞
0

1

x2+1
(e−

λ
x )k+1 dx

1

H
=

(α− logα)

λα

∞∑
j=0

j∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
1

(k + 1)2

5.3. Mode. The Mode is denoted by xm and is defined as the maximal value of the MTIIE distri-bution and is given as:
log f (x) = logα+ log(α− logα) + logλ− 2 log x −

λ

x
− 2 log

(
α− logα

(
1− e

−λ
x

)) (16)
differentiating equation(16) with respect to x and equate to zero we get,

∂ log f (x)

∂x
= 0

=
λ

x2
−

2

x
−

2 logα · λ
x2
e
−λ
x

α− logα
(

1− e
−λ
x

) = 0

This equation is implicit and solving it analytically might be complex due to the presence of x inboth the linear and exponential terms. We will employ the Newton-Raphson method to find anapproximate solution for x.
5.4. Moment generating function of MTIIE.

Theorem 5.1. LetX ∼ MTIIE(α, λ), then the moment-generating function ,MX(t) of MTIIE is
given by:

Mx(t) =
λr (α− logα)

α

∞∑
r=0

∞∑
j=0

j∑
k=0

tr

r !
(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ(1− r)(k + 1)r−1

Proof. The moment-generating function of MTIIE distribution is defined as
Mx(t) =

∫ ∞
0

etxgMTIIE(x ;α, λ) dx

Mx(t) =

∫ ∞
0

(
1 + tx +

(tx)2

2!
+ . . .

)
gMTIIE(x ;α, λ) dx

Mx(t) =

∞∑
r=0

tr

r !

∫ ∞
0

x rgMTIIE(x ;α, λ) dx

Mx(t) =
λr (α− logα)

α

∞∑
r=0

∞∑
j=0

j∑
k=0

tr

r !
(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ(1− r)(k + 1)r−1

�

https://doi.org/10.28924/ada/stat.5.5


Eur. J. Stat. 10.28924/ada/stat.5.5 75.5. Characteristic function of MTIIE distribution.

Theorem 5.2. LetX ∼ MTIIE(α, λ), then the characteristic function, φX(t) of MTIIE is given by:

φx(t) =
λr (α− logα)

α

∞∑
r=0

∞∑
j=0

j∑
k=0

(i t)r

r !
(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ(1− r)(k + 1)r−1

Proof. The characteristic function of MTIIE distribution is defined as
φx(t) =

∫ ∞
0

e itxgMTIIE(x ;α, λ) dx

φx(t) =

∫ ∞
0

(
1 + i tx +

(i tx)2

2!
+ . . .

)
gMTIIE(x ;α, λ) dx

φx(t) =

∞∑
r=0

(i t)r

r !

∫ ∞
0

x rgMTIIE(x ;α, λ) dx

φx(t) =
λr (α− logα)

α

∞∑
r=0

∞∑
j=0

j∑
k=0

(i t)r

r !
(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ(1− r)(k + 1)r−1

�

Lemma 1. Let us suppose that a random variable X follows MTI-IE (α, λ) with PDF given inequation (6) and let Ir (t) =
∫ t
0 x

rgMTIIE(x ;α, λ)dx denote the rth incomplete moment, then wehave
Ir (t) =

λr (α− logα)

α

∞∑
j=0

j∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ

(
1− r,

λ

t

) (17)
where γ(a, b) =

∫∞
b za−1e−zdz denotes the upper incomplete gamma function.

Proof.

Ir (t) =
(α− logα)

α

∞∑
j=0

∞∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)∫ t

0

x r
(
e
−λ
x

)k+1 λ
x2
dx

Put λ
x = z in above equation, we get

Ir (t) =
λr (α− logα)

α

∞∑
j=0

j∑
k=0

(j + 1)

(
logα

α

)j
(−1)k

(
j

k

)
Γ

(
1− r,

λ

t

) (18)
�

6. Renyi entropy
The entropy of a random variable X is a measure of variation of the uncertainty. Among thevarious entropy measures explored in literature, the Renyi entropy stands out as one of the mostwidely recognized. The Renyi entropy of X with PDF in equation (6) is given as

Iv =
1

1− v log

(∫ ∞
0

gv (x) dx

)
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Iv = log

(
(α− logα)

α

)v
λv
∫ ∞
0

(
e−

λ
x

)v 1

x2v

[(
1−

logα

α

(
1− e−

λ
x

))−2]v
dx

Substitute λ
x = u and simplify the integral
Iv = log

(
(α− logα)

α

)v
λ1−v

∫ ∞
0

e−uv
(

1−
logα

α

(
1− e−u

))−2v
u2v−2 du

Using the binomial expansion (1− x)b and simplifying further
Iv = log

(
(α− logα)

α

)v
λ1−v

∞∑
k=0

(
−2v

k

)
(−1)k

(
logα

α

)k ∫ ∞
0

e−uvu2v−2
(

1− e−u
)k
du

Iv = log

(
(α− logα)

α

)v
λ1−vΓ(2v−1)

∞∑
k=0

k∑
m=0

(
−2v

k

)
(−1)k

(
logα

α

)k (k
m

)
(−1)m(v+m)−(2v−1)

7. Order Stataistics
Let X(1),X(2),X(3), ... ,X(n) be the random sample of size n and let Xi :n denote the i th orderstatistics, then the PDF of Xi :n is given by

fi :n(x) =
n!

(i − 1)!(n − i)!
F (x)i−1(1− F (x))n−i f (x) (19)

Using Eq. (5) and Eq. (6) in Eq. (19), we get
fi :n(x) =

n!

(i − 1)!(n − i)!

 αe−
λ
x

α− logα
(

1− e−
λ
x

)
i−1(α− logα)(1− e−

λ
x )

α− logα
(

1− e−
λ
x

) 
n−i

 α(α− logα) λ
x2
e−

λ
x(

α− logα
(

1− e−
λ
x

))2


fi :n(x) =
λ
(
αe−

λ
x

)i
(α− logα)n−i+1

(
1− e−

λ
x

)n−i
B (i , n − i + 1) x2

(
α− logα

(
1− e−

λ
x

))n+1 (20)
From Eq. 20, for i=1 and i= n, we obtain the pdf of the smallest (minimum) order statistics andthe largest(maximum) order statistics respectively.

f1:n(x) =
λαe

−λ
x (α− logα)n

(
1− e

−λ
x

)n−1
B (1, n) x2

(
α− logα(1− e

−λ
x )
)n+1

fn:n(x) =
λ
(
αe−

λ
x

)n
(α− logα)

B (n, 1) x2
(
α− logα

(
1− e−

λ
x

))n+1
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Eur. J. Stat. 10.28924/ada/stat.5.5 98. Estimation of Parameters
In this section, we consider the method of maximum likelihood estimation to estimate the unknownparameters of the MTI Inverted exponential distribution.

8.1. Maximum likelihood estimation. Let x1, x2, x3, ...,xn be a random sample of size n from MTIInverted exponential distribution then the likelihood function is given as follows
L =

n∏
i=1

 α(α− logα) λ
x2
e−

λ
x(

α− logα
(

1− e−
λ
x

))2


and the log-likelihood function is given as follows
logL(x ;α, λ) = n logα+ n log(α− logα) + n logλ− 2

n∑
i=1

log (xi)− λ
n∑
i=1

1

xi

−2

n∑
i=1

log

(
α− logα

(
1− e−

λ
xi

))
The MLEs of (α, λ) are obtained by partially differentiating above equation with respect to modelparameters and equating to zero, we have

∂`

∂α
=
n

α
+

n (α− 1)

α (α− logα)
− 2

n∑
i=1

1− 1
α

(
1− e−

λ
xi

)
α− logα

(
1− e−

λ
xi

) = 0

∂`

∂λ
=
n

λ
−

n∑
i=1

1

xi
+ 2

n∑
i=1

logαe
− λ
xi

xi

(
α− logα

(
1− e−

λ
xi

)) = 0

Since the above equations are not in a closed form, we will employ the Newton-Raphson methodand hence using R software to solve these equations and estimate the parameters.
9. Simulation study

In this section, the performance of the maximum likelihood estimators for the unknown parametersis scrutinized through simulation studies using 1000 samples generated. The accuracy of theestimates is evaluated based on several criteria, including maximum likelihood estimation (MLE)values, bias and mean square error (MSE). The simulation study is conducted with different samplesizes, namely n=25, 75, and 500. The true parameter values selected for the study are (α, λ).The simulation outcomes for various parameter combinations are presented in Table 1. The resultsindicate that as the sample size increases, the MSE decreases and the average parameter estimatesbecome closer to the true parameter values.
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Table 1. MLE, Bias, and MSE for the parameters α and λSample size Parameters MLE Bias MSE
n α λ α̂ λ̂ α̂ λ̂ α̂ λ̂

25 0.50 0.20 0.77884 0.25728 0.38331 0.10137 0.43907 0.0191675 0.56220 0.22093 0.14738 0.05503 0.04987 0.00511500 0.50738 0.20248 0.04995 0.01972 0.00405 0.00061
25 0.60 0.25 0.97979 0.31046 0.50527 0.11063 0.67459 0.0211175 0.71383 0.27566 0.20737 0.06192 0.12568 0.0067500 0.60841 0.25213 0.00695 0.02208 0.00598 0.00078
25 0.30 1.20 0.47391 1.85061 0.23912 0.95308 0.20944 2.1231775 0.34113 1.4096 0.10157 0.46928 0.01931 0.39886500 0.30438 1.22295 0.0342 0.1614 0.0018 0.04149
25 0.30 2.0 0.47609 3.0774 0.2483 1.60685 0.22534 6.2012175 0.33736 2.32017 0.09641 0.76494 0.01695 1.08675500 0.30474 2.03539 0.03492 0.27869 0.00195 0.11899
25 0.20 2.5 0.36016 4.98979 0.20039 3.11375 0.14176 4.4255775 0.24234 3.27594 0.0816 1.35538 0.01361 3.92376500 0.20576 2.60227 0.02765 0.42825 0.00123 0.30548
25 1.0 2.5 1.51063 2.69559 0.75443 0.67057 1.00593 0.7267975 1.29219 2.57583 0.48353 0.44491 0.53096 0.30488500 0.80445 1.20036 0.08000 0.03817 0.01101 0.00236
25 1.0 3.0 1.56967 3.22749 0.80343 0.78032 1.10447 0.9772875 1.34224 3.12664 0.52327 0.50715 0.60696 0.40897500 1.04081 3.02382 0.13942 0.21759 0.03882 0.07632
25 1.15 3.0 1.6710 3.08491 0.83885 0.71251 1.07216 0.8226775 1.52383 3.07568 0.59673 0.4486 0.67929 0.30272500 1.13253 3.02507 0.20903 0.20547 0.09992 0.06594
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This section evaluates the flexibility of the MTI Inverted Exponential (MTIIE) distribution bycomparing it with several existing distributions using two real-world datasets. The comparativeanalysis includes well-known distributions, such as the Exponentiated Inverted Exponential (EIE)distribution given by [4], the Inverse Exponential Power (IEP) distribution given by [3] and theInverted Exponential (IE) distribution given by [6]. To assess the compatibility of these distributionswith the datasets, we employ several goodness-of-fit criteria, including -2ll, the Akaike InformationCriterion (AIC), the Bayesian Information Criterion (BIC), the Corrected Akaike Information Criterion(AICC), the Kolmogorov–Smirnov (KS) test and corresponding p-values. In general, a model isconsidered the best for which these goodness-of-fit statistics have the least and the p value isgreater.

Data set 1 : The first data set given by [7] represents the remission times, in weeks, for a group of30 patients with leukemia who received similar treatment. The data is as follows:1, 1, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31, 42, 45, 50, 57, 60, 71, 85, 91.
Data set 2 : The second data set is given by [9] which represents the failure times of the airconditioning system of an airplane. The data are as follows:23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16,90, 1, 16, 52, 95.

Table 2. MLE and goodness of fit measures for Data-set 1.Model α̂ λ̂ −2l l AIC BIC AICC K-S P-value
MTIIE 0.2904 2.4181 258.4379 262.4379 265.2403 262.8824 0.1240 0.7454EIE 2.7507 2.3136 265.4971 269.4971 272.2995 269.9415 0.1795 0.2882IEP 0.5174 3.0679 268.2681 272.2681 275.0705 265.9415 0.19129 0.2223IE - 9.6221 280.0412 282.0412 283.4424 282.4857 0.2684 0.0265

Table 3. MLE and goodness of fit measures for Data-set 2.Model α̂ λ̂ −2l l AIC BIC AICC K-S P-value
MTIIE 0.1786 2.5629 305.9145 309.9145 265.2403 312.7169 0.13044 0.6871
EIE 3.6204 3.0880 318.1239 322.1239 324.9263 322.5684 0.23296 0.0770
IEP 0.4459 5.3024 318.1673 322.1673 324.9697 322.6118 0.2134 0.1298
IE - 17.1273 339.4545 341.4545 342.8557 341.8989 0.33147 0.0002

The results presented in Tables 2 and 3 indicate that the AIC, BIC, AICC, and -2LL values forthe SMPP distribution are lower than those of the other fitted distributions. Therefore, the SMPP
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Eur. J. Stat. 10.28924/ada/stat.5.5 12distribution outperforms both the competing models and the base model.The promising performanceof the proposed distribution is further illustrated in Figures 3 and 4.
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Figure 3. Fitted density plot for data set 1
Model fitting for data set 2
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Figure 4. Fitted density plot for data set 2
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Figure 5. TTT plot for data set 1
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Figure 6. TTT plot for data set 2
11. Conclusion

This manuscript introduces and examines a new distribution called the MTI Inverted ExponentialDistribution (MTIIE). We derived explicit expressions for several of its statistical properties, includ-ing moments, hazard rate, reliability, moment generating function, quantile function, mode, Renyientropy, and order statistics. Parameter estimation was performed using the maximum likelihoodestimation (MLE) method. An extensive simulation study was conducted to assess the accuracy of
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Eur. J. Stat. 10.28924/ada/stat.5.5 14MLE in estimating the parameters of the MTIIE distribution. The results showed that the tech-nique effectively recovers the true parameter values, with improved precision and reduced bias asthe sample size increases. To evaluate the versatility of the MTIIE distribution, its performancewas compared to that of its sub-models using two real-life datasets. The findings from these ap-plications demonstrated that the MTIIE distribution outperformed both its sub-models and otherwell-known distributions in the study.
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