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ABSTRACT. We study statistical inference for stochastic partial differential equations (SPDEs). Though
inference linear SPDEs have been studied well (with lot of problems still remain to be investigated)
in the last two decades, inference for nonlinear SPDEs is in its infancy. The inference methods use
both inference for finite-dimensional diffusions and inference for classical i.i.d. sequences. Solving
2D Navier-Stokes equation is one of the challenging problem of the last century. However, with
additive white noise, the equation has a strong solution. We estimate the viscosity coefficient of the
2D stochastic Navier-Stokes (SNS) equation by minimum contrast method. We show n consistency
in contrast to y/n consistency in the classical i.i.d. case where n is the number of observations. We
consider both continuous and discrete observations in time. We also obtain the Berry-Esseen bounds.
Then we estimate and control the Type | and Type Il error of a simple hypothesis testing problem
of the viscosity coefficient of the SNS equation. We study a class of rejection regions and provide
thresholds that guarantee that the statistical errors are smaller than the given upper bound. The
tests are of likelihood ratio type. The proofs are based on the large deviation bounds. Finally we

give Monte Carlo test procedure for simulated data.

1. Introduction and Preliminaries

Recently infinite dimensional stochastic differential equations (SDEs), such as the stochastic par-
tial differential equations (SPDEs) are being paid a lot of attention in view of their modeling
applications in cell biology, neurophysiology, turbulence and oceonography and finance: see Ito
(1984), Walsh (1986), Kallianpur and Xiong (1995), Holden et al. (1996), Adler et al. (1996),

Carmona and Rozovskii (1999) and Bishwal (2017).

mation in infinite dimensional stochastic differential equations. When the length of the observation

time becomes large, he obtained consistency and asymptotic normality of the maximum likelihood

Parameter estimation is an inverse problem. Loges (1984) initiated the study of parameter esti-
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estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski and Loges
(1986) extended the work of Loges (1984) to minimum contrast estimators. Koski and Loges (1985)
applied the work to a stochastic heat flow problem. Mohapl (1992) studied the asymptotics of MLE
in a in a nuclear space valued SDE. Kim (1996) also studied the properties of MLE in a similar set
up. See the monograph Bishwal (2008) for recent results on likelihood asymptotics and Bayesian
asymptotics for drift estimation of finite and infinite dimensional stochastic differential equations.

Huebner and Rozovskii (1995). introduced spectral method to study consistency, asymptotic
normality and asymptotic efficiency of MLE of a parameter in the drift coefficient of an SPDE. This
approach allows one to obtain asymptotics of estimators under conditions which guarantee the
singularity of the measures generated by the corresponding diffusion field for different parameters.
Unlike in the finite dimensional cases, where the total observation time was assumed to be long
(T — o0) or intensity of the noise was assumed to be small (¢ — 0), here both are kept fixed.
Here the asymptotics are obtained when the number of Fourier coefficients (n) of the solution of
SPDE becomes large.

Huebner, Khasminskii and Rozovskii (1992) started statistical investigation in SPDEs. They
gave two contrast examples of parabolic SPDEs in one of which they obtained consistency, asymp-
totic normality and asymptotic efficiency of the MLE as noise intensity decreases to zero under the
condition of absolute continuity of measures generated by the process for different parameters (the
situation is similar to the classical finite dimensional case) and in the other they obtained these
properties as the finite dimensional projection becomes large under the condition of sinqularity of
the measures generated by the process for different parameters. The second example was extended
by Huebner and Rozovskii (1995) and the first example was extended by Huebner (1999) to MLE
for general parabolic SPDEs where the partial differential operators commute and satisfy different
order conditions in the two cases.

For partially observed SPDE systems of both parabolic and hyperbolic type, parameter estima-
tion is studied by Aihara (1992, 1994, 1995), Aihara and Bagchi (1988, 1989, 1991), Bagchi and
Borkar (1984). The asymptotics when the finite dimensional approximations to solutions of SPDEs
becomes large was studied by Huebner and Rozovskii (1995).

Under some conditions they showed that the MLE of the drift parameter in parabolic SPDE is
consistent, asymptotically normal and asymptotically efficient as n — oo. The spectral asymptotics
for MLE was exteded by Huebner and Rozovskii (1995) (here after HR) to more general SPDEs
where the partial differential operators commute and satisfy some order conditions. Piterberg and
Rozovskii (1995) studied the properties MLE of a parameter in SPDE which are used to model
the upper oceon variability in physical oceonogoaphy. Piterbarg and Rozovskii (1996) studied the

properties of MLE based on discrete observations of the corresponding diffusion field.
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Huebner (1997) extended the problem to the ML estimation of multidimensional parameter.
Lototsky and Rozovskii (1999) studied the same problem without the commutativity condition. Small
noise asymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov
and Khasminskii (1998).

While moving from linear to nonlinear equation, stochastic Navier-Stokes equation in both 2
and 3 dimensions have been extensively studied. See for instance, Lions and Magenes (1972),
Bensoussan and Temam (1973), Breckner (2000), Mikelevicius and Rozovskii (2004). However
parameter estimation for nonlinear equation is fairly new.

Consider the 2D stochastic Navier-Stokes equation

dUi=0AU—-(U-V)U—-VP)dt+ dW;
V-U=0 (1.1)
Uo=¢
which describe the flow of a viscous incompressible fluid. Here U = (U;, U>) is the velocity and P
is the pressure.

The coefficient 8 > 0 corresponds to the kinematic viscosity of the fluid which is the unknown
parameter to be estimated. Let ux = (U, ¢x) be the k-th generalized Fourier mode of the solution
U. Each Fourier mode vy represents a one-dimensional stable Ornstein-Uhlenbeck process.

We estimate the parameter and test hypothesis based on a sample path U(w) observed over a
finite time interval [0, T]. We assume that the governing equation evolve over a domain D. We will
consider two possible boundary conditions. In the first case we suppose that the flow occurs over
all of R? with D = [~L/2, L/2]? for some L > 0 and prescribe the periodic boundary condition:

U(x+ Lej, t) = U(x, t),x €R?, t>0; /DU(X)dx:O (1.2)

We will also consider the case when D is a bounded subset of R? with a smooth boundary 8D

and assume the Dirichlet (no slip) boundary condition:
Ux,t)=0,x€dD,t>0. (1.3)

The stochastic forcing we consider is an additive space-time noise colored in space. Formally

we may write

odW =Y N drdW, (1.4)
k

where ¢ are eigenfunctions of the Stokes operator, Ax represents the associated eigenvalues and
Wk, k > 1 are one-dimensional independent Brownian motions. We assume 7y is a real parameter
greater than 1 which guarantees some spatial smoothness in the forcing. We may also derive the

space-time correlation structure of the noise term

E(cdW(x, t)odW(y,s)) = K(x,¥)d¢—s (1.5)
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where

K y) =Y N ETk(x) k(). (1.6)

k>1
The stochastic Stokes equation associated with the SNE is
d0 = —0AUdt + Y N\ dkdWi, U(0) = Up. (1.7)
K
This is a 2D stochastic heat equation driven by additive cylindrical Brownian motion.
Let us denote ik, k > 1, the Fourier coefficient of the solution U with respect to the system {¢},
in H, e, Ox = (U, ¢x), k > 1. By (1.8), each Fourier mode represents a one dimensional stable

OU process with dynamics
di + Oeldt = XY dWy, Tc(0) = ok, k > 1. (1.8)
The solution of this equation is
Ok (t) = Tk (0)e Mt X7 /Ot e = gW,(s), k> 1, t>0. (1.9)

Here bk = (U, ¢x) represents the k-th generalized Fourier mode of the solution U.

This approximation may be rigourously justified by Galerkin approximation. We project U down
to a finite dimensional space and for each n, U" = P,U, n > 1 where P, is the projection operator
on the finite dimensional space generated by the first n Fourier eigenvalues of the Stokes operator.
The U" satisfies

dU™ = —(AU" + P,(B(U))dt + aP,dW, U"(0) = U}. (1.10)

Though the main results in this work are similar to the previous works in the linear case, the
difficulties arise here due to the complex nature of the nonlinear term which couples all the modes
of ux = (U, ¢x). In contrast to the linear case, we lose the explicit spectral information about
the elements uy because of coupling, ux are not independent. To overcome this difficulty, we
decompose, U = U + R. Here U is a linear system where the Fourier modes are independent.

Recast (1.1) as a stochastic evolution equation

dU = —(0AU + B(U))dt + odW

U(0) = Up. (1.11)

We now introduce the basic function spaces designed to capture both the boundary conditions
and the divergence free nature of the flow.

We first consider the space associated with the Dirichlet (no slip) boundary condition (1.3). Let
H:={U € L?(D)?>:V-U=0, U-n= 0} where n is the outer pointing unit normal to 8D.
The space H is endowed as a Hilbert space with the L2 inner product (U?, U°) = /o UPUCdx and
the associated norm |U| = (U.U)Y2. The Leray-Hopf projector Py is defined as the orthogonal
projection of L2(D)9 onto H. Let V := {U € H}(D)? : V- U = 0} and endow this with the inner
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product (UP, U°) = iy VUP-VU¢dx. Due to the Dirichlet boundary conditions (1.3), the Poincare
inequality |U| < c||U]| holds for U € V justifying the definition.

Suppose the periodic boundary condition (1.2) holds. We take D = [~L/2,L/2]? and define
the spaces Lge,(D)z, H;er(D)2 to be the family of vector fields U = U(x) which are L periodic in
each direction and which belongs to L2(G)? and H(G)? respectively for every open bounded set
G C R?. We define

H= {UeLger(D)Q:v-U:o,/DU(x)dx:o} (1.12)

and
V= {Ue ngr(D)2:V.U:o,/DU(x)dx:o} (1.13)
The spaces H and V' are endowed with the norms |-| and || - || respectively as above. We impose

the mean zero condition for defining H and V' so that the Poincare inequality holds (cf. Temam
(1995)).

The linear portion of the SNS equation (1.1) is captured by the Stokes operator A = —PyA
which is an unbounded operator from H to H with domain D(A) = H?>(M) N V. Since A is self
adjoint with compact inverse A~ : H — D(A), we may apply the standard theory of compact,
symmetric operators to guarantee the existence of an orthonormal basis {¢x, k > 1} for H of
eigen functions of A with the associated eigenvalues {\x, kK > 1} forming an unbounded increasing
sequence. Moreover,

Ak

k—xlﬁlaskﬁoo.

For more details on the asymptotic behavior of the sequence {\x, kK > 1}, see Babenko (1982) and
Metivier (1978) for the no slip case (1.3) and Constantin and Foias (1988) for the periodic case
(1.2).

Define H, = Span{¢1, ..., ¢n} and let P, be the projection from H on to this space. We let
QR,:=1-P,.

Given o > 0, let D(A%) ={U € H : Y, A\3%|uk|> < 0o}, where ux = (U, ¢«). For U € D(A%),
define

AX(U) =Y M uxdx (1.14)
k
for U=}, uxpx. Note that
|Aa2PnU| S >\%270u|Aa1 PnU| (115)
and
A1 QU] < A2 |A*2Q, U] (1.16)

for any a1 < ao.
Now we consider the stochastic terms in (1.1). Let S = (2, F, P, {F}t>0, {Wk}k>1) be a

stochastic basis which is a complete filtered probability space with {Wj, k > 1}, a sequence of
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independent standard Brownian motions relative to the filtration {F¢}+>0. We assume F; to be
complete and continuous. Writing formally W =3 -, ¢xWik, W may be viewed as a cylindrical
Brownian motion on H.

We consider the family of Hilbert-Schmidt operators mapping H into D(AP), 3 > 0. We denote
the family by Lo(H, D(AP)). We assume that o, understood as an operator, has the form

ok =X o«
and we write
odW(t) =Y X dkdWi(t), t>0. (1.17)
k=1

Given the assumption that y > 1, we have o € Lo(H, D(AY?)).

We may also formally derive the space-time corelation function structure of the noise term
E(cdW(x, t)odW(y,s)) = K(x,y)0¢—s

where K(x,y) = Zk21 >\;2ry¢k(x)¢k(Y)-
Stochastic Stokes Equation

We do not have a precise spectral information about the Fourier coefficients ux = (U, ¢x), k > 1
in contrast to the linear case. To overcome this, we proceed to decompose the solution into a
linear and nonlinear part U = U+ R. The linear system associated with SNS equation (1.1) is the
stochastic Stokes equation. The linear term U satisfies

dU + 0AUdt = Y N "¢rdWi, 0(0) = Do. (1.18)
K
This system can be analyzed as a 2D stochastic heat equation driven by an additive cylindrical

Brownian motion.

Nonlinear Terms

The residual R satisfies
0tR+ 0AR = —-B(U), R(0) = Rq. (1.19)

The reqularity properties of the residual R shows that R is slightly smoother than U. This extra
reqgularity properties of R is used to show that the nonlinear part in the MLE, namely
JJ (AU G2 P, (B(U))dt
JJ (AUPYG2(AUM)dt

(1.20)

converges to zero as n — oo.
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Existence and Uniqueness of a strong pathwise solution of SNS Equation

We recall now some well established existence, uniqueness and reqularity results for these equa-
tions. The solutions we consider corresponds to 'strong solutions’ in the deterministic setting, see
Temam (2001). In our case since the stochastic basis § is fixed in advance, the considered solution

is 'strong’ (or pathwise) in the probabilistic sense.

Lemma 1.1 (Cialenko and Glatt-Holtz (2011))

i) Suppose we impose the periodic boundary conditions (1.2) or the Dirichlet boundary conditions
(1.3) and assume that Uy € V, o € Lo(H, V). Then there exists a unique, H-valued, F;-adapted
process U with

Ue L3 ([0, 00); D(A) NC([0,20); V) as.

and so that for each t > 0,
t
Ut+/ (6AU + B(U))du = U0+Zad)ka(t) (1.21)
0 K

with the equality understood in H.
ii) In the case of periodic boundary conditions (1.2), if 3 > 1/2 so that o € Lo(H, D(AP)), Uy €
D(AP), then
U € Li,c([0, 00); D(APTY/2)) N C([0, 00); D(A?)).

We need the following preliminary results on LLN and CLT to prove our main theorems.

Lemma 1.2 (Law of Large Numbers)
Let £&,,n > 1 be a sequence of random variables and b,,n > 1 be an increasing sequence of

positive numbers such that limp_~ by = 00 and

= Var(¢,)
Z b% < 00

n=1

i) If the random variables &, are independent then,

lim ZZ:1(§/< - Egk) _

n— oo b,

0as

ii) If the random variables &, are uncorrelated then,

lim ZZ:l(fk - Egk)

n—00 bn

=0 in probability.

Part (i) is from Shiryayev (1996). Part (ii) can be proved by using Markov inequality.
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Lemma 1.3 (CLT for Stochastic Integrals)
Let S = (Q, F, P, {F}t>0, {Wk}k>1) be a stochastic basis. Suppose that o € L2(Q2; L2([0,T]))

be a sequence of real valued predictable processes such that

Y it Jo owdWi(t)
n T o 1/
(Zk:l Efo det)

5 = 1 in probability as n — oc.

Then -
> k1 Jo okdWs

—P N(0,1) as n — .
1/2

n T o /

(Zk:l Efo det)

2. Parameter Estimation from Continuous Observation
2.1 First Order Asymptotic Theory

We study the consistency and asymptotic normality of the minimum contrast estimator in this sub-
section. The n Fourier modes ux(t), k =1,2,..., n, 0 <t <T are the observations. Let U"
be the projection of the solution of the solution U onto H, = P,H = R". The finite dimensional

system is given by
dU" = —(6AU" + Py(B(U))dt + o P,dW, U"(0) = Ug

Let PQ”’T be the probability measure on C([0, T]; R") generated by U". Let 6y be the true value

dey’ o
PZ&JT (U™) is given by

of the parameter 6. Then the Radon-Nikodym derivative or likelihood ratio "

T
dP]

T
dBy:

1 T
5(92 —62) / (AU"Y'G2AU"dt
0

;
(UM = exp (—(9—90)/0 (AU"Y' G?dU" —

;
—(6— 90)10 (AU”)’GZ(AU”)d},,dt)

where G := (P,0)7 %, ¥, := P,(B(U)). By maximizing the likelihood ratio with respect to the
parameter of interest 6, one obtains the maximum likelthood estimator (MLE) of 6 which is given
by
5o JOT(AU”)’GQC;U" + fOT(AU”)’G2Pn(B(U))dt.
' f, (AU G2(AUM)dt

Action of G2 on H, is equivalent to A%7.
A modified MLE is given by
9_ fOT<A1+2aUn, dun> + f0T<A1+2aUny Pn(B(U))>C/t
T=-
n foT |Al+a(n|2dt
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where a is a free parameter with a range specified later on. The action G2 on H, s equivalent to
A?Y. Also observe that 8, 7 is a special case of §, 7 with a = . Although 8, 7 has the desirable
theoretical properties, it also assumes that P,(B(U) is computable which could be a difficult task.
Another estimator is obtained by approximation: By replacing P,(B(U) with P,(B(U"))
_ Jo (ATR2eun quny 4 [T(ATR2un, py(B(UM)))dt
en,T = - T
fo |A1+°‘U”|2dt

AR U AR B s
- IOT|A1+aUn|2dt fOT|A1+aun|2dt = UnT T RnT

which depends on the first n Fourier modes.

The term
JJ(ATF2yn po(B(UM)))dt

foT |Al+ayn2dt
is lower order and tends to zero as n — oo, see Corollary 2.2.

KnT ‘= —

The linearized MLE is given by
_fOT<A1+2aUn, dUﬂ> _ 22:1 }\i+2a fOT Uk dug
JJ A eun2ge YR A (T 24t
_ T NPT — up(0) - T
23 ko A foT ugdt
Following Bishwal (2006), we propose the minimum contrast estimator (MCE) of 8 which is given
by

D>

nT =

n
-T Z )\Il(+2a72'y
é k=1

nT — n T -
2) APt [ updt
k=1 0

Remark 2.1 It is known that MCE is asymptotically efficient but OLSE is not efficient for the finite

dimensional OU process, see Tanaka (2013).

The following two propositions are from Cialenko and Glatt-Holtz (2011).
Proposition 2.1
a) For every 01 < min{2 + 2a — 2, 1} we have
& IOT<A1+2aJyUn, Zk ¢dek>
foT |AL+an|2dt
b) Whenever 6, < min{2 + 2o — 2,3/2} in the case of periodic boundary conditions (1.2) or

—4% 0 as n— oo.

whenever 05 < min{2 + 2o — 27,5/4 + 1 — v} in the case of Dirichlet boundary conditions (1.3),

we have -
n62 fO <A1+2O‘_'YR”, Zk d)dek>

—P0asn— .
foT |Al+a(n]2dt
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Corollary 2.1 Putting 61 = 6> = 0 and noting that U" = U" + R", we have

[0T<A1+2affyun’ Zk ¢dek>
foT |Alten24t

—P0asn— .

The following proposition is about the nonlinear term.
Proposition 2.2
For every 6 € [0, min{1/2,a — v+ 1} in the case (1.2) or § € [0, min{5/4 —~y, o —~y + 1} in the

case of Dirichlet boundary condition (1.3), we have

5 Jo (A22un B B(U))dt

—0as. asn— oo.
[07' |Al+ayn|2dt

n

Corollary 2.2 Putting § =0,

JJ (ATF22un, P B(U))dt

— 0 a.s. as n— oo.
foT |Alt+en24t

Thus k7 —+ 0 as. as n— oo.

The following is the main result of this sub-section.

Theorem 2.1
a) lfa>vy—1, then limp_ GA,LT = 0 in probability as n — oc.
b) If o>~ —1/2, then n(6,7 —0) =P masn— oo

. . . . 20(a—y+1)>?
where m is a normal random variable with mean zero and variance NT(a—y+1/2)"

Classical Proof:
a) Consistency
We have for the linearized MLE

JJ (A2, P dW)
foT |Al+ayn|2dt)

én,T =0-

f0T<A1+2a_’YUn, Zk d)dek>
fOT |Al+an|2dt

Similarly for the MLE

On1 =60 — foT<A1+2a_WU": >y drdW*)
nT —
JJ |At+eun2qt
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JJ (A2 PLB(U) — P,B(UM))dt
foT |AL+an|2d¢

+

Since 8,7 =0, T — Kkn 1, Where

JJ (A2 yn, PLB(U)) dt

Fon = foT |Al+ayn|2dt
we have .
0 = 0 — iy — S AU B 0T
fOT |Al+an|2dt
We have for the MCE .
G0 fo (AlT2a=Yyn p,odW)

foT |AL+a(yn|2dt)
fOT<A1+2a_’YUn, Zk d)kd\/\/k>
foT |AL+a(n|2dt

Using Corollary 2.1, we obtain lim, ;o 8,7 = 6 in probability as n — co.

b) Asymptotic Normality
Let
-
o) = >\,1(+2a7'yuk, P ::/ ozdt, k>1.
0

Then we have
E(&x) N>\2+4a 2'Y>\ (1427) _ >\1+4a 4y

Var(ék) N >\4+8a 4’Y>\ (3+4y) >\1+8a 8’y

Define b, := ZZ:l E(&k). Under the given assumptions, 1 +4a — 47y < —1, on a, we have that

by ~ >\,2,+4°‘_4", we infer that b, is increasing and unbounded. Moreover,

ZVar(Ek < Zk3<oo

k=1

and therefore by LLN we conclude that

ZZ 1£k
ST E(e)

=1 as.
Consequently
fOT<A1+2a—’yUn' Zk ¢de/<>
(foT |AL+a(n|2dt)1/2
Noting that 1 + o >y and 1 +2a — v > v,
(E JJ |AM22=7(n2gt)1/2 20 a-—-vy+1 1

(EfOT|A1+°‘U”|2dt) )\17_1/0[_/74_1/2;

nfOT<A1+2a—'yUn’ Zk ¢dek>
(foT |Alt+e(n24t)

— N(0,1).

20(ac — v+ 1)?
AT (a—v+1/2)

—>N’(O
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Thus
20(a —y +1)?
"AMT(a—v+1/2) )

I’)(ényT — 9) —N (0

Thus the asymptotic normality of 6, follows.

With > = 1, in Proposition 2.1, we obtain

nfOT<A1+2af’an, Zk ¢dek> _),D 0
foT |Alt+eyn24t '

Thus
LT (A0 R, S dW)

— —Po.
%fo |A1+°‘U”|2dt

fOT |A1+aun|2dt
E(foT |Al+ayn|2dt)

Remark 2.2 The smallest asymptotic variance corresponds to a = 1.

a.s.

Remark 2.3 When v — oo, the system becomes smoother and when 7y = oo, the system becomes

deterministic.
Remark 2.4

T
E/ |A1+aljn|2dt ~ n2a72’y+2.
0

When a = 4, this order is O(n?). Thus
1 _ (" .
2E[ |ATFe(n12dt ~ C.
n 0

Hence
1 (7 _
/ <A1+2°‘_"YU”,Z¢dek> —PN(0,0)
0 K

n

Note the unusual rate in comparison to the classical iid case where the rate is /n.

Remark 2.5 On the domain a > v —1/2, as a function of &, the asymptotic variance %

reaches its minimum when a = -y. In this case the asymptotic variance is given by 2—7?%1 Hence in

[T A1~ D
n % ?(QnT—Q)—) N(O,l)

this case

Alternative Proof by the Malliavin-Stein’s Approach
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We give alternative proof from the tools of Malliavin calculus. We have

foT<Al+2a_’yUnvZk¢dek> . FA(n,T)

(fOT|A1+°‘U”|2dt) T R(0nT)

Fn1 = én,T_‘gz

o Jo (ATRTON Y ddWh)  A(n,T)
E(J) |Avte0nPdt) - G

Fn,T -
where C2 - = E(F2(n, T)). We note that Fn 7 can be written as a double stochastic integral and

it belongs to the second-order Wiener chaos.

Lemma 2.4 We have

1 .
\/Var (2||C,,,TDF,7'T||%4 —0 asn T — oo

where D is the Malliavin derivative.

2

We show that C,7F,7 —P N(0,0°%)) as n,T — oo where o2 comes from the fact that

E(C,%,T/:_,fyr) = 02. We split C,, 7F, T into
C”'TF”'T = C”’T(F”vT - /:_H,T) + Cn,T'ﬁn,T)-
Note that

Cr21,T Fi(n,T)
Fo(n,T) Cat

Cn,T(Fn,T - 'En,T) =

Fa(n, T
L1, 1D

—_— , —45 0 T =
Fo(n, T) cz; as >

Fi(n, T .
lén ) = C,7F7r =P N(0,0%) asn T — .
nT

Hence by Slutzky's theorem,
Cn,T(Fn,T — l:_n,T) —)D 0 as n, T — 0.

which implies
Cn,T(Fn,T — /:_n,T) —>P 0 asn T — oo.
dT\/(Cn,T/:_n,TvN(Ov 02)) — 0 asn, T — oc.

CorFor =" N(0,0%) asn T — oo.

CoTFnr =" N(0,0%)) asn T — oo.
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Cn,T - \/2’(3\/?/7

- 86 as n, T — oo.

02(86p)?)

VTnF,+ =" N(0,
2w

) as n, T — oo.

Hence
02(860)?)

VTn(6, 1 —8) =P N(0, -

) asn, T — 0.

2.2 Berry-Esseen Bounds

We obtain the rate of convergence to normality, i.e., the bound on the Kolmogorov distance between
the distribution of the estimator and the normal distribution.

We consider the case o = +y. In this case, the asymptotic variance is given by 2T—9%

Observe that
1/2
2 (2] Gy ) =y 2B
2 |26 T 2 L (Z),r

T n T
JI‘I,T = 9/,7’7' - 5 and /n,T = Z >\i+2a/ Uk(t)th.
k=1 0

where

Let ®(-) denote the standard normal distribution function. Throughout the paper, C denotes a
generic constant (which does not depend on 7 and x). We have also tried to estimate the constant
in the bound on normal approximation.

We start with some preliminary lemmas.

Lemma 2.2.1 For every 6 > 0,

1262
_— — > < —25-2
P{‘(n2T>\1)IH'T 1’_6}_Cn 0~ °.

{5 (3) T eof s

The constant C in Lemma 2.2 is the constant in the classical Berry-Esseen theorem which is

Lemma 2.2.2

sup <C T2,

x€R

equal to 0.6751. The following lemma gives the error rate on the difference of the characteristic

function of the denominator of the MCE and the normal characteristic function.
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Lemma 2.2.3 (a) Let ¢, 7(z1) := Eexp(ziln 1), z1 € C. Then ¢, 7(z1) exists for |z1| <9, for some
0 > 0 and is given by

vt =eo () =gt aer|

where v = (62 — 221)Y/2 and we choose the principal branch of the square root.
(b) Let

1/2 126 2
nTM) %T‘LﬁTh“f‘ﬁ*

Then for |x| < 2(log T)'/2 and for |u| < eT/2, where € is sufficiently small

2

2
. —u
Eexp(iuHp T x) — eXD(T)

_u _ _
< Cexp(——)(Jul +uP) T2 71,

Proof : To prove (b), observe that

Eexp(iuHn 1 x)

(20 2\'? [ 26 2
= Eexp[—/u(nzTM) Jn’T_IU(nzT)\l/”’T_l)X]

L[ 20 2 \? T [ 20 2
= Eexp|—iu W)\—l 9/'7’7—_5 —iu WAT/”'T_l x

= Eexp(zilyT + 23)

= exp(z3)¢7(21)

20 2\ 2

n’T >\1 T

Note that ¢ (z1) satisfies the conditions of (a) by choosing € sufficiently small. Let o1 7(u),

as 7(u),az7(u) and ag 7(u) be functions which are O(|u|T~1/2), O(|u|2T~/2), O(|u|3T~3/2)

and O(|u3T~1/2) respectively. Note that for the given range of values of x and v, the conditions

6T,x u25%x
6 T 257

, ; 1/2
where z; ;= —/uB0T x, and z3 = %57—% with 67, = ( 20 2 )

on z; for part (a) of Lemma are satisfied. Further, with Br(u) :=1+ ju
v = (6% —27)Y?

_%M—++&

5 U262 iu363
= 9[1+/u Tx | 2 Tx g TX 4.

0 262 203
= Ol +ay7(u)+oo7(u)+as7(u)
= 067(u) + oz 7(v)
= 01+ ay1(v)].
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Thus

’Y—QZOLLT, ’Y+9:29+OL1'7-.

Hence the above expectation equals

ex (z —i—QT) [ 2087 (u) + as 7(u) ]1/2
P\ T2 ) [aaren{=0TBr(u) + aur ()} + (26 + o 7(u)) exp{OT Br(u) + s 7(1)}

_ [ 1+a17(u) ]1/2
LT exp(xr(u) + (1 + oy 7(u)) exp(dr(1))

where

x7(u) = —0TB7(u) +as(u) —2z3— 6T

= 20T + o1 7(u)+ t2a1,T(u)
and

Yr(u) = 0TBr(u) +oag7(u) — 223 — 6T

U242
OT.x + L + Ol4'T(U) —uTOoT x — 6T

0 262

_ AT [y, ]
20 T T

= v’ + vPai1(u).

= 0T[1+iu

Hence, for the given range of values of u, x7(t) — ¥1(u) < —6T.

Hence the above expectation equals

2

u —1/2
exp(—;)(l +ay7)? [or, 7 exp{—20T + a1 1 + t2a1 7} + (1 + oy 7(t)) exp{t?o1 7()}] Y

2
u
= eXP(—i) [1+ a1 7)1+ o1 7(1+o17)exp{—0T + ai 7 + t2aq 7} exp(vPar 7(u)).

This completes the proof of the lemma. 0

To obtain the rate of normal approximation for the MCE, we need the following estimate on the
tail behavior of the MCE.

Lemma 2.2.4

2T A\ M2
P{(”Qezl) 0,7 — 6] >2(log T)Y?t < CT~¥2p7 1.
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Proof : Observe that

2T A\ V2
P { (”2921) 6,7 — 6] > 2(log n?T)*/?

{

20 2 12
(27 %)% I

(%)%)IHT

I
R

> 2(log n? )1/2]»

20 2 20 2 1
< 1/2 > 1/2 Rl < =
= P{ (ar,) | 2 (g T) }+P{ 2T a M= 2}
< P2 212,11 > (10g PT)V2 | — 26(~(10g ©2T)1)
- n?T X\ "

20 2 1
_ 1/2 = = _ > =
+2d(—(log T) )—i—P{ n27_>\1/,,,7 1‘_ 2}
20 2
< /2 >xt—2¢
< sup {( 2T>\) | Jn, 7 X} (—x)
20 2
< sup {( 2T )/|JnT|>X}_2(D( X)
+2d(—(log n°T)?) + P ( 2/ -1 >1
2T A =2
< CT 207t 4 C(nPT log nT) Y2 4+ CT 102
< CTV/2p 1,

The bounds for the first and the third terms come from Lemma 2.2 and Lemma 2.1 respectively and
that for the middle term comes from Feller (1957, p. 166). 0

Now we are ready to obtain the uniform rate of normal approximation of the distribution of the MCE.

Theorem 2.2.5

sup < CgT’l/zn*1

x€ER 20 2

1/2
P{( 2”1) By — ) SX} o)

Proof : We shall consider two possibilities (i) and (ii).

) |x| > 2(log n?T)'/2.
We shall give a proof for the case x > 2(log 2T )'/2. The proof for the case x < —2(log n?T)/2
runs similarly. Note that

P{(FI T>\1)1/2(9 —Q)SX}—CD(X)

20 2 20 2

< P{<” F 2 0 6) 2 x) + o)

But ®(—x) < &(—2(log n?T)Y/2) < CT~2n~*. See Feller (1957, p. 166).

Moreover by Lemma 2.4, we have

P {(”2; 21 )2(6, 1 —6) > 2(log n2T)1/2} < CTY2p~
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Hence

'P {(n T>\1)1/2(9n7— —0) < X} —o(x)| < CT-1/2,-1

26 2

(i) |x| < 2(log n?T)1/2,

I’IT>\1

Let An,T:: {( 50

ZY216, + — 6] < 2(log n2T)l/2]» and B, 7 = { In or > co}
where 0 < ¢ < 2—19. By Lemma 2.4, we have

P(AS ) < CTY2p71, (2.1)
By Lemma 2.1, we have

20 2
P(BE,T) - P {,727_>\1/n’7' - 1 < 29C0 - ].}

20 2,
{| 2T>\ —1] >1—29c0} < CT in2 (2.2)

Let by be some positive number. On the set A, N B, 1 forall T > Ty and n > ng with
4bo(log n3To) Y2 (2% 2)1/? < o, we have

nOTo >\1
—0) <
( 58 ) (O —6) < x
2T A
= o1+ b T (Bt —6) < Ip7 + (”29 ShY22b00x
nT>\1 1205 > ”T>\1 1/2

. 20 2

= (Bn7 = O)n7 + bon*T (607~ 6)* < (o 5 )2 X + 2bo6x
7l 213 2 20 2 1/2
= —Jn7+ On1 = OIn1 + bon*T(On7 = 0)* < —Jn1 + (7 " )21, rx 4 2be6x?
20 2

= 0<—Jor+ (7 o Y2, X + 2b0x>

since

/n,T + bonQT(én’T — 9)

> n?n’Tc + bonzT(én T —0)
20 2
2T>\
20 2
2T>\

26
> 4bp(log n*T)2(—5=3=)"2 — 2bo(log n*T) /2 ()12

= 2by(log P*T)H2(H=)H? >
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On the other hand, on the set A, 7 N B, forall T > Ty and n > ng with
4bg(log n3T0)1/2(%)1/2 < ¢p, we have

I72T >\1 1 ~
2 AlN1y2 _
( 20 2) (9,7,7' 9)>X
= °T X
= ln,T - bOT(en,T - 9) < ln,T (n29 21)1/22[309X
T X\ 2T
= (55 5) "0t =07 — boT (67 — 0)] > xllnT — (5 5)"/*2bo6x]

= (b1 —0)nT — boT (67 — 6)? Y21, x — 2bgfx?

>(27_

= —Jo7+ On7 —0)l7 — boT (67 —6)* > —Jp7 +( 27—)1/2 InTX — 2bofx

20
= 0> —Jy7+( T)1/2/n,TX_2b09X2
since
InT — bon®T (8,7 — 6)
> n°Tcy— bon2T(§ )
20
> 4bg(logn T)1/2( )1/2 2bo(log n2T)1/2(W)1/2
- 9 | 27— 1/2, <Y N\1/2 .
bo(log n“T) (n2T) >0
Hence
T A
1 2 1\1/2
0< —Jp1+( 2T)/ In7x — 2bofx% = (1o TR} 26,1 —6) < x.
Letting
20 2
Mir, = {—Jn,T (275 )21, 7x £ 2bohx> >0}
we obtain

nT>\1

Mn_YT'XmAn,TmBn,T - An,TmBn,Tm{( 20 2

)1/2(9 - 9) < X} C MIT'XmAn,TmBn,T- (2-3)
If it is shown that
|P{ME, } —o(x)| < T 207! (2.4)

for all T > Tg and n > ny and |x| < 2(log n?T)/2, then the theorem would follow from (2.1) -
(2.3).
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We shall prove (2.4) for I\/IIT’X. The proof for M, is analogous.
Observe that

Pimir.} - ok

20 2 4 2 20 2 20 2 1n
== (/’]27_)\)/ TTrl/nT 1)X<X+2( 2T>\)/b9X —(D(X)
20 2 20 2
< P V2 jr—| St — 1| x<yp -0
= ek {(nznl) T (n?TAI "7 )X—y} (y)‘
o (x+(nz”1) bofx? | — ()
=: D1+ D
(2.5)
Lemma 2.3 (b) and Esseen’s lemma immediately yield
Dy < CT Y2p71, (2.6)

On the other hand, for all T > Tg and n > ng,

26 2

AT )M 2pobx?(21) Y2 exp(—x2/2)

Dy < 2(-2

where

X — x| < 2(—= T )12 bobx?.

Since |x| < 2(log n?T)*/2, it follows that |X| > |x|/2 for all T > Ty and n > ng, and consequently

D, < 2( ﬁr)l/% ox2(2m)~ /2,2 exp(—x2/8) (2.7)
< CT Y2l
From (2.5) - (2.7), we obtain
|P{MI }—o(x)| < T2t
This completes the proof of the theorem. 0

The previous theorem does not give the precise estimate of the constant in the inequality. The

following theorem gives a precise estimate of the constant.

Theorem 2.2.6 We have for all T > T, there exists €(0) > 0 such that

1/2
P{( 2”1) By —0) gx} o)

sup

x€ER 20 2

< [0.6751 +0.4(log nT)~1/2) + a(e)T—1/2n—1] T2,
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where Ty € RT such that for all T > Ty, T tlogT < (b(6))? and

3233_1(33 -1)

b(6) = Td(@),
d(®) = min (6(9) 293133) :
a(0) = (1—ax)2a3(1—a3) 2e(6)20 — (1 — ap) 2,

a1, ap, as, are constants (not depending on 0) satisfying: a; > 1, 0 < ap <1, a3z > 1.

Proof : Denote

Fnro =

a
GnToe = {ng; <e (—eal + i) } :

20 2|2 1o
Qnro = (n27'>\1) Jn7 > (log n®T)H2 L,
Rote = Fa1eNGnTo.d@o)
ro= ay‘as(as—1)"*

where a1 > 1, 0< a»<1andaz> 1
We obtain for all e € (0, €(0)],

ForoNGnroe C{10n7 — 6] <e}.

We shall consider two possibilities (i) and (ii).

(1) |x| > r(log T)¥2.

We shall give a proof for the case x < —r(log n?T)/2. The proof for the case x > r(log n®T)'/?
runs similarly.

Observe that

{5226, -0) <]

n’T A
{( - 21 )Y2(8,7 — 0) < —r(log nQT)l/Q} N Fn 16N GnT0.d(0)

U FareYGpre.de)

C QnroUFrToYUGET6.40):

Hence

P2 2oy ~0) < x} < PQure) + PUFS )+ PG ra)
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By Lemma 2.2 above and Lemma 2 in Feller (1957, p.166), we have
P(@Qn7e) = IP(Qn76) — P(=(log n°T)Y?)| + &(—(log n°T)"/?)
< [0.6751 + 0.4(log n®T)~ Y2 T=1/2p71,
Further, for r > 1,

®(x) &(—r(log n*T)Y?)

IN

®(—(log n*T)*/?)
(2m)"Y2(log n?T)~Y/2T1/2p71,

IN

IN

Thus

20 2
< [0.6751 + 0.4(log n®T) Y2 T~1/2 1 P(F, Fore) + P(Ghro.400))

'P{(n T>\1)1/2( ) SX} — ®(x)

(it) |x| < r(log n®T)/2.
For all T € Rt with n=1T=12(log n?T)Y/2 < r=1(20)~1/2d(8), we have,

T A
{( 0 21 )26, —0) < X} N Fn16NGnT6.d0)

20 2
_ {J + (T SN2l x> O} N Fn16NGT6,d(0)

by arguments similar to that in the proof of Theorem 2.5. From Lemma 2.2, we have

|P{J,7 >0} —®(0)] <0.6751 T /2p7L,

Hence
_ < _
‘P{(QQ 2) (6,7 —6) < x d(x)
< 06751 T Y207+ P(FS70UGhrg.6) 1 [(0) — ().
This completes the proof of the theorem. 0

3. Parameter Estimation from Discrete Observations

The n Fourier modes uq, us, ..., u, are observed at m time points t;,/ =1,2,..., m. We denote
uk(ti) by Uik Thus uj,i=1,2,..., m, k=1,2,..., n are the observations.

Recall that the linearized MLE based on continuous time observations in [0, T] is given by

fOT<A1+2aU”, dUﬂ> _ 22:1 }\i+2a fOT Uk dug
JJ |Aaun2dr YR a2t [T 2qt

Qn,T = -
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Lk NP (R(T) — 1R(0) - TA;Z”)

2Zk 1>\2+2a IOT 2
By using I1t6 (Euler) type approximation of the stochastic Lntegral and rectangular approximation

of the ordinary integral the approximate maximum likelthood estimator (AMLE) is given by

A Y e NPT i ik — Uit k)

Qm,n,T -
QZZ>\2+2OL u? 1k ti—l)

i=1 k=1

By applying It6 formula to the stochastic integral and rectanqular approximation of the ordinary

integral the approximate maximum likelihood estimator (AMLE1) is given by

S h_ A2 (2(T) — uR(0 TZ N e
A k=1

9m,n,T,1 =
2ZZ>\2+20¢ u? 1k ti—l)

i=1 k=1

By applying rectangular approximation of the ordinary integral the approximate minimum contrast

estimator (AMCE) is given by

n
-T Z )\ll(+2oc—2’y

A k=1
Qm,n,T = m n

2ZZ>\2+20¢ u? 1k ti—l)

i=1 k=1

By applying trapezoidal approximation of the ordinary integral the approximate minimum contrast

estimator (AMCE1) is given by

n
_T Z )\i+2a—2'y

A k=1
em,n,T,l = n

— .
242ap, 2 2

Z v ui_g g+ Uit — tio1)

i=1 k=1

We study Berry-Esseen bounds for these estimators in this section. Bishwal and Bose (2001)
studied rates of convergence of approximate maximum likelihood estimators and Bishwal (2009)
studied rates of convergence of approximate minimum contrast estimator in the one dimensional

Ornstein-Uhlenbeck process.
3.1 Berry-Esseen Bounds for AMLEs

Let us introduce the notations

n

m n T
YT =) Y M P%u(tin) Wi(t) = Wi(ti-1)l, Yar =) >\i+2°‘/0 u () dWi(t),

i=1 k=1 k=1
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m n n T
ZnT = Z Z N2 (i) [ue (i) — uk(tiz1)], ZnT = Z Aiﬂa/ uk(t)duk(t),
k=1 0

i=1 k=1
m n n T
In T =Y _ Y ANPR(Go1) (G — tio1), InT =) A?ZO‘/ ug(t) dt,
i=1 k=1 k=1 0
1/2
33 [ ettt 7= ()
mnT e - -1 k\ti—1 ' (4,5/d+2)90

Lemma 3.1.1

a) E\Ymn1 = Ya1l? =0(T?0%/m),
b) E|Zmn1 — Zn1I> = O(T?n%/m),
) Ellmnt = In7? = O(T*n%/m?),
d) E|Vipn1l? = O(T*n%/m?).

(
(
(
(
Proof. Let gk i(t) = ux(ti—1) —uk(t) for ti <t <t, i=12..., m, k=12 ..., n. Since
Elu(ti-1) — ue(D)PF < CON (L — K k=1,2, ... (3.1)
Elug(tiog) + uk(H)P* < COTPT)k k=1,2,...
(by (3.11) of Chapter 4), hence
2
E|YmnT_ nT|

.
Z Azt Z uk (ti-) Wi (i) = Wi (ti-1)] = /O Uk (t)dWic(t)

=1

2

2

- ZA”Q"‘E'/ 9r,i(t) dWi(t)

k 1

- inm / E(gi,,-(t»dt

< CZA“”"‘Z |t, 1 — tldt
tll
2,3
_ 242 (t/ t/—l) _ T<n
= CZAk g =C—-.

This completes the proof of (a).
Using (2.1) and the fact that

ug(ti) — ux(ti—1) = /t i Qu(t)dt + Wi (ti) — Wi(ti-1)
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we obtain
2
E|Zm,n,T - ZT|
- 2
= E
0

> TN (i) Xy, — u(tion)] — in-&&a/ U (1) Wi ()
k=1 i=1 k=1

n

= ZA?MHZ/[ Oui(t)un(tim1)dt + Y upe(ti1) Wi(t)) — Wi(ti-1)]
=1 7ti-1 i=1

k=1

T T
—/ 9Xt2dt—/ U (£) dWie (1) 2
0 0

n m T
S DI A AT B R GETACTE
k=1 = . 0
202 Y N2 EY [ uOlue(ton) - (el
k=1 =1 7 ti-1

= Ni+ No.

Ny is O(Tff) by Lemma 3.3.2(a). To estimate N, let
Yi,i(t) = uk()[un(ti-1) — uk(t)]
forti_ 1 <t<t, i=12,..., n, k=1,2,..., m. Then
n m t;
S ey [ el
k=1 i=1 7 ti-1

n

n ti n m t,' ti
— ZA§+2°‘ZE|/ Y (D)dt? +2) A E[ Py i(t)dt wj(s)ds]
i=1 ti-1 k=1

k=1 j= i = ij=1,i<j i1 ti—1
= M+ M>.

By the boundedness of E(u}(t)) and (2.1) we have

E(yi i(1))
E{ui(8)?[un(ti1) — uk()]?}

(3.2)

< {Eug() L Euk(tiz1) — u(0)]*}/?
< C(t,',l — t).
Note that
My = ZAiHQZH/t' Pi(t)dt|>
k=1 i=1 ti-1

E(y(t))dt

IA
™
>
[
g
o
!
ot
AR
—

k=1 =1 ti1
T d
< CHZA?QO‘Z/ (t —ti_q)dt
kﬁl i:nl ti-1 -
T T>n
< ¢ Z A Z(f/ —ti1)*=C
k=1 i=1

m?2
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and

n m t [t
My = > Xt 3 E/t‘ ; [Yr,i(t) i j(s)ldtds

k=1 ij=1,i<j
n m ti tj

=y y [T e s)des.
k=1 ij=1,i<j ti-1 Jt-1

By Lemma 3.3.1, we have

Note that

Elti,i(t) i j(s)]

Eluc(t) (uic(tim1) — u(£)) uic(s) (u(tj-1) — uk(s))]
Elue(t)(uie(ti—1) — uk(£))] E[ur(s) (Ui (tji—1) — u(s))]
Eluk(t)u ()] E[(ur(ti-1) — u(t))(uk(tj-1) — uk(s))]
Elu () (uk(tj—1) — u(s))] Elui(s) (un(tim1) — ux(t))]
AL+ Ax + As.

+ o+

t
Ue(t) = Ai“aj M= gw,, t > 0.
0

Let a:= e 1. For s > t, we have

E(uk(t)u(s))

= ([ e am ([ N Daw, )

_ /teexl(t+s—2u)du
0
1
= 260, 12

stt _ g5t

a

Observe that

IN

<

E(uk(t) — ux(ti=1))(uk(s) — ux(tj—1))
E(ux(t)ux(s)) — E(ux(t)ux(ti—1)) — E(uk(ti—1)uk(s)) + E(uk(ti—1)ux(tj-1))
%(35 —ai)[(a* —a" )+ (@t —a )

1 * *ok gk
%(5 —ti)at [(t—ti1a” +(t—ti)a ]

(where tj_1 < t" <s, tji_1 <t " < t)
1 . _
%(5 —ti)at(t —tip)at 4 (s —ti1)at(t — ti1)a ]

C(s — tj—1)(t — ti—1).

Thus Ay < C(s —tj—1)(t — tj_1) since |E(ux(t)uk(s))| is bounded.
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Next

and

IN

IN

IN

<

Thus A; < C(s — t'j_l)(t —ti_1).

Next

and

IN O IA

IN

IN

IN

| ETur () (uk(tiz1) — ue(t))]]
2|19|[at+t,-_1 gttt 2t )
1

trtiog —tiq t —t
——a |ad —a —a a

I ) ti g —t

C(t—ti-1)
|Euk(s)(uk(s) — uk(tj—1)]|

—a%[a° —a S —abt +a U]

|Eu(t)(ux(s) — ux(ti—1)]|

2|19|[as+t _ asft _ at+tj,1 + atj,lft]
1 t S tiq
2|0|a (a° —a¥ 1)
1 t —2t t
20° (1-a)(s—ti-1)a
(1) — tj-1)
C(s—tj-1)

|E[u(s)(uk(t) — uk(ti-1)]|
1

[at+s P as—t,-,l]
2|6|

7as[at _ gt gt aft"*l]



Eur. J. Stat. 1 (2021)

Thus Az < C(S - T.'J'_l)(t — t,'_l).
Hence ETF(£)(5)] < C(s — 1)t — t;1).

Thus

M, = QZAMQ Z / / E[fi(t)f(s)]dtds

iJj=1,i<j

< C Z // (t—ti1)(s —tj_1)dtds

iJj=1,i<j

= CZAM"‘ Z (ti1 — t)(ti1 — 1)

iJj=1,i<jy

_ C2 >\2+2(XI4_C >\6T74
= ey eyl
k=1 k=1

Hence, Ny is O(Z—j) Combining N; and N, completes the proof of (b). We next prove (c).

Let Xk, i(t) := u2(tic1) — uk ()% timy <t < t;,i=1,2,..., m, k=12 ..., m. Then

E|/mnT_/nT|2

= E|ZA4+2°‘Zuk(t, 1)(t = ti 1)—/thi(t)dt|2
_ E|Z>\4+2"‘Z / (W3 (6 1) — i (D)]dt

_ ZAT““HZ [ oy

- waza / xk,<t)dt|2+2ZA8+“a > /

ti— iJj=1,i<j ti-1

tj
/ X ()x,(s)dtds
tji—1

= Bl + 82.

Elug(ti—1) — uk(2)?]?

= Efue(ti1) — uk ()P [ur(tiz1) + ue(t)]?

{Elur(tiz1) — u(O1 P2 E[une(tiz1) + u(0)]}?
C(t—ti-1)

Exz i(t)

IN A
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(by (3.1) and the boundedness of the second term)

n m tl
B = Y Y El [ (o’
k=1 i=1 Jtim

n m t;
< YNy (h-n) [ EGG0)de
k=1 =1 ti-1
T b
< o 24-2a _f.
< CnZAk Z/t (t—ti—1)dt
k=1 =1 i—1
<

n
Tﬁn4
8
CY N—sm.
k=1
Note that

Elxi(t)x;(s)]
= E(uk(ti-1)® = ue(0)*) (un(tj-1)® — uk(s)?)

= E(u(ti-1) — uk () (uk(tiz1) + u(£)) (un(tj-1) — uk())(uk(tj-1) + uk(s))

Now using Lemma 3.3.1 and proceeding similar to the estimation of M, it is easy to see that

n
T4 T4n°
8
Ba<C) Ny <.
k=1

Combining B; and By, (c) follows. 0

We need the following elementary lemmas to prove our main results.

Lemma 3.1.2 Let X, Y and Z be any three random variables on a probability space (2, F, P) with
P(Z > 0) = 1. Then, for any € > 0, we have

(a) suﬂg\P{X +Y <x}—d(x)| < suﬂg\P{X <x}—=dX)|+ P(Y] >¢€) +e,

(b) sup |P{§ < X} — D) < sup [PAX < x}— ()| + PLZ — 1] > €} + €.
xER xER

Lemma 1.1 (a) is from Michel and Pfanzagl (1971) and proof of (b) is elementary. Proof of the

following lemma is also elementary.

Lemma 3.1.3 Let Q,, Ry, @ and R be random variables on the same probability space (2, F, P)
with P(R, > 0) =1 and P(R > 0) = 1. Suppose |Q, — Q| = Op(d15) and |R, — R| = Op(d2,)
where 01p, 02, — 0 as n — oo. Then,

C/i: _ % = Op(max(d1n, 62n)).
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Lemma 3.1.4 (Wick's lemma) Let (£1, &2, €3, €4) be a Gaussian random vector with zero mean. Then,

E(€1626384) = E(£1£2) E(£384) + E(£1€3) E(£284) + E(£1€4) E(£263).

Let ®(-) denote the standard normal distribution function. Throughout the paper C denotes a

generic constant (perhaps depending on 6, but not on anything else).

We need the following lemmas in the sequel whose proofs are similar to those in Bishwal (2000a).

Lemma 3.1.5 For every § > 0,

P{ %E/T — 1' > 5} < CT 1672

T X\
Lemma 3.1.6
20 2 \1/? T
sup|P|-== 0l — — | <xt —d(x)| < CT 2
erElé {( T>\1) (T 2)_} b <
Lemma 3.1.7
T4
(@) Ellnr =172 =0 (13 ]
InT + Jnt > T
(b) E 5 —Ir| =0

Part (a) is similar to that in Bishwal and Bose (2001). The proof of part (b) is analogous to part
(a). We omit the details.

Theorem 3.1.1 Let a, 7 := max(T~2(log T)/2, T (log T) "1, I3 (log T) ). We have,

1/2
P { (55%] Gnar-0< x} — o)

(6) sup | P { 17— 6) < x} = ()] = Olatn 7).
xeR

(a) sup = O(a 7).

xeR

@560 P4 (2] @ —0) < x f — 00| = O(anm)
xER |29m,n,T| 2
Proof : (a) It is easy to see that
~ Y, Vv
em,n,T _0— m,n, T +0 m,n, T (33)

/m,n,T /m,n,T



Eur. J. Stat. 1 (2021)

Hence

sup
xeR

sup
xeR

IN

sup
x€R

+P

Note that by Lemma 1.2.1 (b)

K1

IN

vl

IN

IN

IN

202
T M\
202
T A

¥ P

P

IA

Cexp | —¢

16

T6 ,
EE

IN

Cexp(

(em,n,T - 9) <Xxrpr-— CD(X)

() e

< x]» — d(x)

>e}+e.

T XM
—26 2

Vm,n,T
lm,n,T

< x]» — d(x)

(3.4)

sup
x€R

(3.5)

(Ym,n,T - Yn,T + Yn,T) <X

} — d(x)

L (3.6)

Elym,n,T - Yn,T|
€2

+e€

T/n

2 + €. (by Corollary 1.2.3(a) and Lemma 3.3.2(a).)

(/m,n,T - /n,T + /n,T) - 1‘ > E}
€ 20 2
2 TF { T
1692 E|/m,n,T - /n,T|2

T2 €2

€

/n,T_]- > 5

|

) ‘/m,n,T - /n,T| >
(3.8)
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Here the bound for the first term in (3.8)

comes from Lemma 1.2.4(a) and that for the second term

from Lemma 3.3.2(c). From the proof of Lemma 3.3.2(b) we have

2 T
El\/rn,n,T| < C? (39)
Next
T M\ Vot
Ky = P — —
2 H(—zez) St | €
e 1/2
p (;29)%) evm,n,T
= < > €
4
(_QT%) /m,n,T
—26 2 \'/? 20 2 5
= Pyl =—+— 6V, Pil—-—=<—1! -
L(Tkl) m,n, T >5}+ {( )\1) mn,T<€]’
(where we choose § = € — Ce?) (3.10)
—20 2 \'/? 26 2
< () o] o[22 -]
(where 01 = €9 = Ce)
20 L E|\VimnTl? T6 T2/n?
<« _2Yp2ElVmn, LY
< T@ 52 + Cexp 1651 +C 52
T3/n? 76, T2/n?
< CT + Cexp (1661) + C? (by (3.9) and (3.8)).
Now combining bounds from Ji, J», K1 and K>, we have since T/n — 0
T A \Y2
ML) _0) < _
sup P{(_29 > ) (OmnT —0) <xp —d(x)
N T T/n T2/n? T3/n?
< 1/2 L (3.11)
< CT +Cexp(16e)+C€2 +C 2 +C 52
70 , T2/n?
+C exp(ﬁél) + C(?) +e.
Choosing € = CT~Y2(log T)'/2, C large, the terms of (3.11) are of the order
O(max(T~2(log T)/2, T2 (log T) 1, T3 (log T)~1)). This proves (a).
(b) Using the expression (3.3), we have
sup |P {l;/’ij(ém,nj —-0) < X} — CD(X)‘
x€eR
Y, Vv
= sup P«[ T/gT +0 T/QT < x} —dD(x)'
x€R /m,n,T /m,n,T (3_12)
YmnT anT
< sup|P 1/'2’ <xp—OXx)|+P{10 1/'2' >€er +e.
x€R /m,n,T m,n, T

H1+H2+€.
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Note that
Y, -Y, Y,
Hy = sup|p {20l 1/5'T+ 1T < x b —d(x)
x€R /m,n,T

Y, Y, -Y, 3.13

= sup P{ 1;’; <x]»—<l>( ) +P{| m’"'1T/2 o >e}+e. (3.13)

xER Im,n,T m,n, T
= Fi+F+e¢
Now
Fi = sup P{12 < }—(D(X)‘
xeR m/nT 12
—20 2

< P Yo < -0

< sup { - >\1 nT < X} (x)
—26 2 \/?

M2 1| > el +e (by Lemma 1.2.1(b)) (3.14)

T A mn,

< / {' (T) ImnT — 1‘ > 61 + € (byCorollary 1.2.3(a))

T2
< CT Y24 Cexp (—1662) +C 6/2" +¢€. (by (3.8))

On the other hand,

|Ym,n,T - Yn,T|
F2 = P {/1/2 > €

m,n, T

26 2\ /2 20 2 \'? |,
S P{(T)\l) |Ymn7—_YnT|>6}+P{'(T>\1) /m,n,T_

(where § =€ — Ce? and §; = (¢ — §)/e > 0)

1 >51}

—20 2 E‘Y . |
T m,n, T nT —26
< ( ) 52 +P{L(T)lm'n'7—l'>6l}
T/n 76 T2/n
< - g
< C 52 + Cex ( 6 51) +C 52 (from Lemma 3.3.2(a) and (3.8).)
(3.15)
Using (3.15) and (3.14) in (3.13), we obtain
Y,
Hy = sup P{J;gx}—cb(x)
x€R /
m To T/ T2/n? (3.16)
< 1/2 1o n n 3.16
< CT™ +Cexp(16e)+C52 +C 6%

Tz/n

+Cexp(—62) +C +e.
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Vm,n,T
Hy, = P{9/1/2 >€}
m,n, T P
—20
b '(7%>\21) vanT N
= €
'(—292)1/2/1/2
T X m,n, T
—20 2 \/? 20 2 \¥? |,
6 2 E\V, Ty2 26 2
< e 2 m,n, == _
< ( T>\1)6 52 + P T /m,n,T 1| > 6
(where 0 < 0 < e and 41 = (e —0)/e = Ce > 0)
T3 /172 T2/n?
< C 6/2 +Cexp(165%)+c 6/%”. (from (3.9) and (3.8))

g 5/6} (3.17)

Using (3.17) and (3.16) in (3.12) and choosing € = CT~1/2(log T)/2, C large, the terms of (3.12)

are of the order O(max(T~/2(log T)/2, TTz(Iog 4, Z;—;(Iog T)™1)). This proves (b).
(c) Let D7 = {|8mnr — 6| < dr} and dr = CT~/2(log T)*/2.

—1/2

On the set Dy, , 7, expanding (2]6 n.7|) , we obtain

[ 9-d 2
~ —-1/2 — -
(=20mnr) ° = (—20)12 1—’”’”’1

= (—20) Y2 |1+ =

Then

xeR 2|9m,n,T| 2

T >\1 1/2 R
LA —-6) <
(2|9m'n'T| > ) OmnT —0) <X, Dmnt — P(X)

T A\
sup | P (A 1) (9m,n,r—9)§X}—¢(X)

IN

sup |P
x€R

+P(D nT)

P(Drcn,n,T)
= P{1Bmnr — 61 > CT2(10g T)*/2}

T M \Y? 5 .
= P (_2921) |07 — 6] > C(log T)Y/?(—29) 1/2}

T2 T4
C(max(Tﬁl/Z(log 7—)1/2, T(Iog I ?(Iog ™
+2(1 — @ ((log T)1/2(—26)~%/2)  (by Theorem 5.3.3(a))

IN

IN

C(max(T~Y2(log T)/?, T:oog 7)1, :;(Iog 7)™H).
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On the set Dy 5.7,

1/2

6
(’”Q”T — 1| < CTY2(log T)'/2.

Hence upon choosing € = CT~/2(log T)'/2, C large we obtain

T o\
P (2@21) OmnT —6) <X, Dm,n,T} — d(x)
—<Um,n, T
T x\Y? s
S P ( ) 21) (em,n,T - 9) S X, Dm,n,T - CD(X)
5 1/2
—|—P<[ anT) -1 >e,DT]>+€ (320)

(by Lemma 1.2.1(b))
C(max(T~2(log T)/2, T2 (log T) 1, T3 (log T) 1))
(by Theorem 3.3.3(a)).

IN

(c) follows from (3.18) - (3.20). 0

Theorem 3.1.2

1/2
P ‘[Im,n,T (_27?) (ém,n,T - 9) S X} - ('D(X) -

sup
xeR

Proof : Let amnT ‘= Zm,n,T — Zn,Tv bm,n,T = /m,n,T — /n,T-

T2 T
By Lemma 532 Elamn7|>=0 (n) and E|bpn7]|> =0 (/72) . (3.21)

From (3.5), we have
n

Ion TOmont = D ui(ticy) [k () — uie(ti—1)]
-1

= /O u(t)due(t) + amn1

T T
= / uk(t)de(t)—l—@/ uZ(t)dt + amnt.
0 0

Hence Imn7Omnt —0) = —0bmnt + amnT-
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Thus
20 2 \ /2
sup P j /m,n,T (_7—>\) (em,n,T - 0) < X} - (D(X)
x€ER 1
26 2 \ /2
= sup|P 1 (‘) [Yn,T - Qbm,n,T + am,n,T] <Xxrp-— (D(X)
XER T >\1
26 2 \ /2
< sup|Pi|——=—— Yor <xt—®(x
= ek L( Txl) nT = } )
26 2 \ /2
+P{ (_T>\1) [—Gbm’n'T + am'n'T] > E} +€
_ 20 2 \ E|—0bmnt + antl?
< T2 <V 2 m.n, n,
< C + ( - )\1) 2 +€
~1/2 T/n
< CT + Ce—2 + € (by Corollary 1.2.3(a) and (3.21)).
Choosing € = (%)1/3, the rate is O (T_1/2\/ (%)1/3). O
Theorem 3.1.3
N T?
|9m,n,T - 9n,T| = OP(T)I/Z-
Proof : Note that
~ 4 V4
gm,n,T . Qn,T _ m,n, T _ n,T.
/m,n,T /n,T
T2 T4
From Lemma 3.2 it follows that |Z,n7 — Zn7| = Op(T)l/2 and |lmn7 — InT| = Op(ﬁ)l/z.
Now the theorem follows easily from the from the Lemma 5.2.1. 0

3.2 Berry-Esseen Type Bounds for AMLE1
—-1/2 1/2 T*n? —1
Theorem 3.2.1 Let B, = O (T (log T)/2\/ ——(log T) )
1/2
P{(—;;zl) (ém,n,T,l_e) SX]’ _CD(X)

(5) sup [P {1371 = 6) < x} = 00| = OB 1),

R e
P { (2|émn7—1|2) (Qm,n,T,l - 9) < X} _ (D(X)

(a) sup = O(Bn,1),

x€R

(c) sup = O(Bn.7)-

x€R

Proof. (a) From (1.8), we have
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A~ 1
/m,n,Tem,n,T,l = 5(”%(7—)_7—)
T
= [ wdu
07 T
- / uk(t)de(t)+9/ U (£)2dt
0 0
= Yn,T+9/n,T-
Thus
T\
(_2921) (emnTl_G)
_ (@)Y te- T_M)l/z( T = ImnT) (4.1)
(= 2Ny, T +( 2 2 2)2(1, T—/mnT)
( T)/nT
Now
T\
a7 | (-3%)  @nara-0)<xf -0
(20 2 l/2y + 20N\1/2 | —
_ SUDP<( T>\) 29(2 ) ( T mnT)_X *(D(X)
xeR L ( T>\1)/m,n,7’
20 2
< sup[PL-F 0y < x) - 000 (42
x€R L T >\1 9
20 2
+P {(9(—%%)1/2(/,,, e — /n,T)) > e} +P H (_TM) I T — 1| > e} +2¢
20 2 2
E|l =1 To T?
< CT~ 1/2~|—92( T Z'H'T | +Ce><p(—€2)~|—C72 S5+ 2¢
€ 4 n<e
(The bound for the 3rd term in the r.h.s. of (4.2) is from (3.8).)
T3 T6 T?
< cT-1/2 1.2
<CT +Cn2€2—|—Cexp( 7€ )+Cn2€2+e. (4.3)

(by Lemma 3.3.2 (c))
Choosing € = CT~Y2(log T)'/2, the terms in the r.h.s. of (4.3) are of the order
O(T~Y2(log )2\ T (log T) ).

(b) From (4.1), we have

Yo +0(n1 — ImnT)
;/iT(emnTl_e) - 1’;2 S

m,n, T
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Now
sup P{ 172 T(em nr1—0) < x} - @(X)‘
XER
- /m,n,T
= 1/2 1/2 <xp—P(x)
xeR { mnT mn,T
o(/ —/
< sup 1/2 <xt—dx)|+P (n,T1/2 mnT)
xR /mnT m,n, T

= U1+U2+€.

We have from (3.8),
2

Now

T6 T
—1/2 2
Uy <cTv +Cexp(1—6€ )—I—CHTGQ—I—G.
/m,n,T_ /n,T
1172

m,n,T

‘( 27951)1/2(/mnT - /nT)’

( 20 2 )1/2/1/2

m,n,T

U = P‘[9|

> €

= Pyl

20 2
< {'(—9 YW\l = Inr| > 5} +P{ (- )1/2/},7/3,7— 1' > 51}
(where § = ¢ — Ce? and 6; = (¢ — 6)/e > 0)
29 2 E|/mnT n,T’2 20
< 5 52 +P (_7)Im,n,7’_1 >61
T3 T2/n2
<C—s 252 + Cexp(—éz) +C 5

>e}+e

(4.4)

(4.5)

(4.6)

(4.7)

Here the bound for the first term in the r.h.s. of (4.6) comes from Lemma 3.3.2(c) and that for the

second term is from J in (3.8).

Now using the bounds (4.5) and (4.7) in (4.4) with € = CT~2(log T)*/2, we obtain that the

terms in (4.4) is of the order O(T~Y/2(log T)/2\/ %(log 1.

(c) Let GrnT = {1Omn71— 0l < dr} and dr = CT~Y2(log T)'/2. On the set Gr, expanding

(2/6m,n7.1])1/2, we obtain,

. ~1/2
~ -0
(=20mn71)" V2 = (—20)'/2 [1 - g,n,m]

= (—20)"?[1+ = ($TU +0(d?)].

Then

-
P{(2|9mnT1| > )1/2(9mnT1—9) <X]’ — d(x)

IN

xER 2|9m,n,T,1‘

o
sup {P(A)l/ (B2 —6) < x, GT} + P(GT).
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Now
P(G nT)
= P{lmnr1—06>CT2(log 7)1/2}
T\
= P52 1Bmnra— 6] > CllogT)/?(~26) /2
20 2
T4
< C (T1/2(Iog T)2\/ —(log 7)1 +2(1 — dlog T1/2(—29)1/2)
(by Theorem 5.4.1(a))
T4
—1/2 1/2 -1
< C(T2(0g T2\ 5 (log T) 7).

On the set G,
1/2

(9”7'”'“ — 1| < CTY2(log T)*/?

6

Hence upon choosing € = CT~Y2(log T)'/2, C large

1/2
P { (_297_) (ém,n,T,l - 0) <X, Gm,n,T} — CD(x)

m,n,T,1
~ 1/2
T \'? . g
>~ P { (_29) (Gm,n,T,l - 9) < X, Gm,n,T]’ +P{ ( m,g,T,l ) — 1| >¢, Gm,n,T +e€
(by Lemma 1.2.1 (b))
< C(T™Y2(log T)Y2\/ L3 (log T)~1) (by Theorem 3.4.1(a)). O

Theorem 3.2.2

P L -2 291028, 070~ 0) < x} — 0] = 072\ /(g3
)5(2]% m,n, T T >\1 m,n,T,1 S X X)| = m2 .

Proof : From (4.1) we have

g o \1/2 29 2 20,2
i (~F ) Gt =)= (-7 2 o1 + 0= 2 (7~ I

Hence by Corollary 1.2.3(a) and Lemma 3.3.2(c)

wpm{/ (292f/@mﬁlmsX}¢wﬂ

< 0 20 2
= SU]PR|'D {(_ )1/2YnT 9(_7 )1/2(l T — /mnT) < X} - CD(X)|

XE

29 2

< w@Pﬁ ﬂﬂnr<x}—¢un+Pﬁm )”%mr—mnﬂhw}+e-

XxXe
< CT—1/2 E|/n,T m,n,T| +e
= Te2

1/2 T3n3

< CcTY24cC te

m2e2
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Choosing € = (%)1/3, the theorem follows.

Theorem 3.2.3 |0, ,71 — 07| = Op(T0).
Proof. We have from (2.3) 6,7 = Z,7/I5 7. By It6 formula it is easy to see that

em,n,T,l = Zm,n,T//m,n,T

Hence applying Lemma 3.3.7 with the aid of Lemma 3.3.2(c) the theorem follows.

3.3 Berry-Essen Bounds for AMCEs

The following theorem gives the bound on the error of normal approximation of the AMCE. Note

that part (a) uses parameter dependent nonrandom norming. While this is useful for testing hy-

potheses about 0, it may not necessarily give a confidence interval. The normings in parts (b) and

(c) are sample dependent which can be used for obtaining a confidence interval. Following theorem

shows that asymptotic normality of the AMCEs need T — oo and % — 0.

Theorem 3.3.1 Denote by, , 7 := O(max(T~2(log T)'/2, (13)(log T)~1)).

(a) sup
x€ER

(b) sup
x€R
(c) sup
x€R

1/2
P{ (_27;21) (ém,n,T_e) SX} —(D(X) :O(bm,n,T)v

P {/,ln/,f,;(ém,n,r -0) < x} - <D(x)‘ = O(bm,n,1),

P{ (TAl ) G —8) < x} — o (x)

2|‘§m,n,7'| 2

Proof (a) Observe that

where

Thus, we have

= O(bm,n,T)-

(2.1)
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Hence,

(2.2)

Further,

(7 — 1)' e

IN

|
(Imn7 = InT +1In7) — 1’ > e}
|

€ 20 2 €
/n,T_ 1' > 2]’ +P{(_7—>\1) |/m,n,T_ /n,T| > 2}

1602 E“m,n,T - /n,T|2
T2 2

< Cexp(

< Cexp ( (2.3)

x€R

1/2
sup P{ (_2221) (ém,n,T - 9) < X]’ - CD(X)

1/2 1/2
(_2*7?%1) Yo1 + (_QT)%) (/n,T_lm,n,T)
= sup|P p <x ¢ —d(x)
x€R (_ZT%) /m,n,T
20 2 \ /2
< sup|Pi|—=— Yo <xt —P(x
< sup {( Fo] ars } ()
20 2\ /2 26 2
+P{9(_T>\1) (/mnT—/T) >€}+P{‘(—T>\l)/mnT—1'>€}+2€
20 2 2
—F5 ) Ellmnt = In7l 2
-1/2 2( T 1) m ”‘ 70, T
< CT Y240 : + Cexp (46 +C5m +2e (2.4)
(the bound for the 3™ term in the right hand side of (2.4) is obtained from (2.3))
T? To T
—1/2 2
< cTY +C,7262+Cexp(46)+Cr7262+€ (2.5)

(by Lemma 2.3(a)).
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Choosing € = CT~2(log T)'/2, the terms in the right hand side of (2.5) are of the order
O(max(T~/2(log )2, (L)(log T)™). ¢

(b) From (2.1), we have

j1/2 7+ 007 — lmnT)
mnT(Gm”T_g) Y /1n/2 ma :
m,n, T

Then,

sup P{ rln/iT(anT—G) <x} —(D(X))
x€ER

Yo T InT = ImnT
= sup P{/l;; +6-=2 /1/2mn gx}—cb(x)

x€R

m,n, T m,n, T
Yo Ol —1
< sup P{ 1/2 <X]’—CD(X) —i—P{ (n,Tl/2 m.n,T) >€}+€
x€R /mnT m,n, T
= U +U+e (2.6)
We have from (2.3),
7o , T?
-1/2
Up <CT /+Cexp(16 )+C22+e (2.7)
Now,
26\1/2
/ — 1 ‘(_*) (Imn7—1 ,T)’
U = Pilel|22l 2 > et = P10l 7 "1/2 LAad
/nT ' —&A) 1/2
' T X\ m,n, T
26 2 \ /2 20 2\
< P{ (—TM) Umn7 = InT| > 6t + P (—TM) e r—1>61t (28)
(where § =€ — Ce? and 6; = (¢ — §)/e > 0)
20\ Ellmnt — InTl? 20 2
- (_T) 5 FEUNTT N e 2 2 0
T T6 T2

Here, the bound for the first term in the right hand side of (2.7) comes from Lemma 2.2(c) and that

for the second term is obtained from (2.3).
Now, using the bounds (2.7) and (2.9) in (2.6) with € = CT1/2(log T)/2, we obtain that the

terms in (2.6) are of the order O(max(T ~%/2(log T)%/2, (L;

(c) Let

Gm,n,T = {|9~m,n,T - 9‘ < dT}, and

2)(log T)™1)). m

dr == CT Y2(log )2,
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On the set GT, expanding (20, ,7])*/2, we obtain

o—6, .1
(_29~m,n,T)_1/2 = (_29)1/2 [1 o 9’”,77—]
1[0-6
= (—20)'/2 [1 +5 %”'T ] +0(d?).
Then,
T 1/2
sup |P (N) Omnt —0) < xt —d(x)
x€eR 2|9m'n,7—|
1/2
< supq P (~) (em,n,T_Q) < X, Gm,n,T +P(Gr§1nT)'
x€eR 2|9m,nyT| o
Now,

P(Ghnr) = P{lBmar — 61> CT Y2(l0g )12}

T a2 _
= p{(—%;) |6im,n, 7 — 6] > C(log T)"/?(—26) 1/2}

IN

T3
C max (T—1/2(|og )2, —5 (log T)—l) +2(1 — dlog T2 (—26)"1/?)

(by Theorem 2.1(a))

IN

T3
C max (T—1/2(|og )2, —5 (log T)—l) .

On the set G,

- 1/2
Om.nT —1| < CTY2(log T)2.

6

Hence, upon choosing € = CT~/2(log T)/2, C large, we obtain
P{ () (Qm,n,T_g) <X, Gm,n,T} — ®(x)

_2§m,n,T
~ 1/2
Gm,n,T )

T2
P{(_QQ) OmnTt —6) <X, Gm,n,T} 7

+ P -1 >e,GmnT ¢ +€

IA

(by Lemma 1.1(b))

IA

T4
C max (T‘l/z(log Y2, F(Iog )t )

(by Theorem 2.1(a)). 0

In the following theorem, we improve the bound on the error of normal approximation using

a mixture of random and nonrandom normings. Thus asymptotic normality of the AMCEs need
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T — oo and % — 0 which are sharper than the bound in Theorem 2.1.

Theorem 3.3.2

20 2\ /2 _
sup |P { /1mnt (_TA) @mnT—0)<xt—d(x)|=0
x€eR 1

Proof From (2.2), we have

20\ 12 20 2 \ /2 20\ 1/2
/m,n,T (_7—) (Qm,n,T - 9) = (_T>\1) Yn,T +0 (_7—) (/n,T - /m,n,T)-

Hence, by Lemma 2.1-2.3

20 2 \'/?
sup |P{/1mnt (_TA) OmnT —0) <xp —d(x)
xeR 1

20 2 \1/? 26\ /2
= sup P{ (_) Yn,T +6 (_) (/n,T - /m,n,T) <Xxp— CD(X)

x€R T X\ T
26\ /2
sup |P (_T) Yor <xp —®Xx)|+P
XER
T3
+e< CT_1/2+Cﬁ+E.
n<e

20 2

1/2
0 (_—,—>\1) (/n,T_/m,n,T)

IN

>€}—i—e

Choosing € = (%;)1/3, the theorem follows. 0O

E|/n,T - /m,n,T|2

< CcT Y2
< TP

The following theorem gives stochastic bound on the error of approximation of the continuous
MCE by AMCEs.

Theorem 3.3.3
T\ 1/2

(a) ‘ém,n,T - én,T| =0Op (n

_ ~ o\ 1/2
(b) 1Omn11— 0071l =0P (I72) .
Proof From (1.9) and (1.14), we have

~ T ~ T
Qn,T = -

6 = .
2hpy" T 2l

Hence, applying Lemma 1.2 with the aid of Lemma 2.3(a) and noting that |I'"7-”'T| = Op(1) and
|I”T'T| = Op(1) the part (a) of theorem follows.
From (1.9) and (1.16), we have
Op1 =— T . OmnTa= —;-
' 2lnT B Imn, 7+ IminT

Applying Lemma 1.2 with the aid of Lemma 2.3(b) and noting that |Jr”%7| = Op(1) and
InT = Op(1) the part (b) of theorem follows.
T P -




Eur. J. Stat. 1 (2021)

3.4 First Order Asymptotic Theory

As a consequence of the above three sub-sections we obtain the consistency and asymptotic nor-
mality of the AMLE, AMLE1, AMCE and AMCE1:

Theorem 3.4.1
a) Bm.n 1 — 6 in probability as n — co and m — oo such that n/m? — 0.
b) n(Bmn1 —6) =P 1 as n— oo and m — oo such that n/m? — 0

. . . . 20(a—y+1)>?
where 1 is a normal random variable with mean zero and variance T (a—yE1/2)"

Theorem 3.4.2
a) 671 — 0 in probability as n — oo and m — oo such that n/m? — 0.
b) n(Omn11—6) =P n asn— oo and m — oo such that n*/m? — 0

) . . . 20(a—y+1)>?
where m is a normal random variable with mean zero and variance T (a=yi1/2)"

Theorem 3.4.3
a) 0., n 7 — 0 in probability as n — oo and m — oo such that n/m? — 0.
b) n(Omn1 —0) =P 1 asn— oo and m — oo such that n/m? — 0

. . , . 20(a—y+1)>?
where m is a normal random variable with mean zero and variance N (o= E1/2)-

Theorem 3.4.4
a) Bm.n 11 — 6 in probability as n — co and m — oo such that n/m? — 0.
b) n(Omn11—6) =P n asn— oo and m — oo such that n*/m? — 0

. . . . 26(a—y+1)?
where 1 is a normal random variable with mean zero and variance NT (a=T1/2)"

4. Hypothesis Testing from Continuous Observation

We estimate and control the Type | and Type Il errors of a simple hypothesis testing problem of the
viscosity coefficient 8 of the SNS equation (1.1). We study a class of rejection regions and provide
thresholds that quarantee that the statistical errors are smaller than the given upper bound. The
tests are of likelihood ratio type. The proofs are based on the large deviation bounds.

The problem is to test the null hypothesis Hp : 8 = 6y versus the alternative hypothesis H; :

6 = 6; based on continuous observation U] where 8y # 6.
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Without loss of generality we will assume that 8; > 6y. We fix the level of significance o € (0, 1).
Suppose R € B(C[0, T];R")) is a rejection region for the test, i.e, if U] € R, we reject the null
hypothesis and accept the alternative hypothesis. The quantity PQ’Z]'T(R) is called the Type | error
of the test R and 1 — Penl'T(R) is called the Type Il error. Naturally we seek rejection region with
Type | error Pe’;'T(R) smaller than the significance level a and thus we consider the following class
of rejection regions:

Ko = {R € B(C[0, TIR™) : PT(R) < a} |

Consider the test of the form

Rn={U] :InL(60,61,U7) > (N}

where ( is some number depending on nand T and N :=3) |_; Aiﬁ.

Let

Rif = {U}: L(60,61,UF) > Ea(m)},
K# = {R € B(C[0, TI;R")) - lim sup VN(P5:T(R) — a) < &1} .
n—oo

where ¢4 (n) is a constant depending on n and a only and &; is a constant depending on a. The
probability PGZ'T(R) of the true decision under H; is called the power of the test and the goal is
to find the most powerful rejection region R* € K, for the observation U/

We say that the rejection region R* € Ky, is the most powerful (has the smallest Type Il error)

in the class K, if
Penl'T(R) < Penl'T(R*): for all R € Kq.

The corresponding test is called the most powerful test.

Our main results of this section are the following:

Theorem 4.1 For sufficiently large n, under the null hypothesis Hy, we have
PET(RY) =a+ain ' +0(n?).
For large enough n, we have
P (RE)—al < Cn7!

where C is a constant independent of n.

We show that the Type | Error has the following upper bound estimate:

Theorem 4.2
PrT(R9) < (14 p)ar.

where p denotes a given threshold of error tolerance.

We show that the Type Il Error has the following upper bound estimate:
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Theorem 4.3
(61— 60)°
166,

Let us denote by the rejection region (likelihood ratio test) of the form

1-— PQ”I'T(RS) < (1+p)exp NT | .

R;: = {U?— : L(90,91, U?—) > Ca}

where ¢, € R such that P7 (L(6o, 61, UF) > ca) = .

As one may expect, once we have an MLE for the parameter of interest 6 as well as its consis-

tency, a Neyman-Pearson type lemma should give an answer to a hypothesis testing problem.

Theorem 4.4 (Neyman-Pearson Lemma)

Let ¢, be a real number such that

P T (L(60. 61, UL) > o) = a.
Then,

R: = {U?— . L(@o,@l, U?—) > Ca}

is the most powerful rejection region in the class K.

For a fixed n € N, let K be a generic set of rejection regions
K C {(Rn)nexn : Rn € B(C[0, T];R"))}.

We say that the rejection region R}, is asymptotically most powerful, in the class K, as n — oo if
T
. - Pgnl (Rn)
liminf ————— >
n—oo ] — P91’ (RE)
for all R, € K.

We will consider classes of rejection regions that have asymptotically a Type | error close to
the significance level . On the other hand, one would like to consider rejection regions such that
PQ”l'T(R,,) — 1 as n — oo. The concept of asymptotically most powerful test depicts to those tests,
within the considered class of tests, that have the fastest rate of convergence of their powers to

one. PQZ'T(Rf,) has the fastest rate of convergence to 1 as n — oo
Under H1, the OU process is

dug(t) = =01 0P uk (t)dt + oX, T dWi(t), uk(0) = 0.

The proof uses the following results:
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Proposition 4.1 Letu = (uy, up, -+ ,up) € R" and a > 0, we set

02 — 63) —
r(u, t) ;= al61 — o) Zkiﬁﬂwuf(t).
k=1

0 0 0
F(u) = exp (_3( ; ! O)szmzq 2+ a( 12 %) T
=1

By the Feynman-Kac formula, the function

f(u, t) = Eg, [exp (—/tT r(Uﬁ,s)ds) F(UNUE = u]

is the only solution to the PDE

A ZA St ~912>\ Ugfy, = r(u, t)f,  f(u, T) = F(u).

The solution of this PDE is

f(u, t) = ex Z ayuz[sinh(ykt) + Bk cosh(yxt)] Z cosh(ykT) + Bk sinh(y«T)
P e~ cosh(vkt) + B sinh(xt) &= | cosh(vkt) + By sinh(Vkt)
01 61— 60) + 0 0
R P Vac i "’(120)*1/\/7 e
where

pcosh(yxT) — sinh(y,T)
cosh(vxT) — psinh(yxT)
a(61 — o) + 61

(a(67 — 65) +67)1/2

oy = — 5 2(3(92 90)+92)1/2>\2ﬁ+2’y 6 _

Y = —(a(63 — 63) + 6V, p=

By taking u = t = 0, we obtain
gr(a) = Elexp(aln L(6o, 61, U; ))] = £(0,0)

3(91 — 90) + 91 NT] -

= exp [—; Z In(cosh(yxT) — psinh(yT)) + 5

k=1
Note that

c(a) = TI|_r>noo Ingr(a) = [—(a(@% —02) 4+ 62)Y2 4 a(6;, — 6p) + 91] g

Let the cumulant generating function of the log-likelihood ratio be given by
gr(a) == Elexp(aln L(61, 62, UD))].

By Ito’s formula, the log-likelihood ratio is given by

n

InL(61. 6> UT __91_90 - 2642y 2(T 91_90NT_9%—98 T 4B+2y 2
nL(81,602,Uy)) = =55 ) N T(T) + = 20z 2 ) N TuE(Dde
k=1 k=1

We prove large deviations as n — oo.
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Let
1
Lp(a) = N In E[exp(aln L(6g, 01, U,,T))].

Proposition 4.2
The log-likelihood function satisfies

im0 P20 (60,01, UD) = 1 = ~1(n). e

n—oo N

(61— 60)2, 61— 6o
464 N, 2 NI

lim %In Pl(n"2InL(60,61,Ul)) <ml=—I(n), ne (—

n—oo

(61 — 69)?
00, 26, N

where | is the Legender-Fenchel transform

(4611 — (61 — 60)°N)? 61 — o
/ = sup (an — c(a)) = — , N,
() = sup (an = ca) = —gron G — oM@ —) "~ 2
61— 6
I(n) = +oo, = =5—=N
with
1 62
c(a) = nI|_>mOOE Ingr(a), a— = —9% @ ay = +oo.

c(a) is proper and convex with

_ 2 _
(61 — 60) N, = (61 90)/\/_

e 2

Using the above results, we obtain the exponential rate of convergence of the power of the test.

Theorem 4.5
(61— 60)?

PGZ'T(R#) =1—exp 20,

NT +o(T) ] .

CLT for the Log-Likelihood Ratio Process (LLRP)

Lemma 4.1

1InL(6g, 61, UT) —nN —H’

11InL(6o,61,Us) —m H(a")”_ﬁj\/’(o,l)asn%oo

N Cn
where

(91—90)27—
< "0,

and

H'(ay) = —%In (; + ;D(a)) © D(a) = ot (01— 6

2 _ (—2n+ (61— 60)T)3 _
V82 + (62 — 63)a

NGRS
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Recall that ux(T), kK > 1 are independent. We have the following CLT for stochastic integrals
by using CLT for martingales:

Lemma 4.2

T 02T
0

1y 2[3+"y/ D a’T
\/NkZ1>\k ue(t)dWi (1) =P N {0, 26, | @sn—

where N =Y 7, 220

Let

]
£ 1= NPT ]O e (£) AW (£).

Then E(&) =0 and

T 2
1
var(e) = £6 = N [ (gt =3[ - & (1 e T) | s
0 26 26

hence using Lemma 1.2,
-
7 k=t ATy uk(£)dWi(t)

(% > p1 >‘15+2fy foT E“/%(t)dt)

5 —P N(0,1) as n — .

By basic calculus, we have

1< apray [ g2 o?T
—> A 7[ Eug(t)dt - —— as n — oo
/\/g k , Euk(®) 260

Hence the CLT result follows.

We have the following CLT for quadratic variations:

Lemma 4.3
1< 5
vn (ank—l) — N(0,2) as n — oo
k=1
where
26
2. 0 2B+2vy, 2
Xk = o2(1 — efzeoxiﬁT)Ak ue(T)

for k > 1.

Since ux(T) ~9 N(0, 02) where

o 200 26427
T T 2 —200APTy K
02(1—e <M 1)

we have x2 ~? x2(1) for k > 1. Since ux(T) are independent, the CLT gives the result.
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5. Hypothesis Testing from Discrete Observations

We partition the time interval [0, T] into n equally spaced time intervals 0 =tp < t; < ... < t, =
T with AT =t; — ti_y = T/m. For each Fourier mode is observed at m time points. We observe
the process U} discretely at m time points. The n Fourier modes are observed at the times points
t,i=12,..., m. Thus ujg, I =1,2,..., m, k=1,2,..., n are the observations. We denote
these data by U7"". Recall that u; x = uk(t;).

The problem is to test the null hypothesis Hp : 6 = 6y versus the alternative hypothesis H; :
0 = 01 based on discrete observations u;k, i =1,2,..., m, k=12,..., n where 6y # 6.

Without loss of generality, we will assume that 8; > 6y. We fix the level of significance o € (0, 1).
Suppose that R € B(C[0, T];R")) is a rejection region for the test, i.e, if U"" € R, we reject the
null hypothesis and accept the alternative hypothesis. Naturally, we seek rejection region with
Type | error Pé:'”'T(R) smaller than the significance level a and thus we consider the following

class of rejection regions:
Ko = {R € B(C[0, T R™) : AT (R) < a} .
Consider the test of the form
Ronn = {UP" - In L (60,61, UP") > CN}

where ( is some number depending on m,nand T and N :=3% }_; Aiﬁ.

The probability POT'”'T(R) of the true decision under H; is called the power of the test and the
goal is to find the most powerful rejection region R* € KCo for the observation U/ .

We say that the rejection region R* € Ky, is the most powerful (has the smallest Type Il error)

in the class ICy if

Por™T(R) < P ™ T (R*) for all R € Ka.

Our main results of this section are the following:
Theorem 5.1

LT (R ) o < Cortm 12

where C is a constant independent of n.
We show that the Type | Error has the following upper bound estimate:

Theorem 5.2
Py " T (R 1) < (1+ p)a.

The Type Il Error has the following upper bound estimate:
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Theorem 5.3
(61— 60)°
166,

Let us denote by the rejection region (likelihood ratio test) of the form

1- P@T'n'T(Rgv,n,T) < (1+p)exp NT | .
Rent = U™ 1 L(60,01, UT"") > ca}

where ¢, € R such that PQT'"’T(L(OO, 01, UF"") > cy) = .

As one may expect, once we have an AMLE for the parameter of interest 9 as well as its con-

sistency, a Neyman-Pearson type lemma should give an answer to a hypothesis testing problem.

Theorem 5.4 (Neyman-Pearson Lemma)

Let ¢4 be a real number such that
Par™ T (L (60,61, UP") > o) = a.
Then
RY nr = (UM L(6, 61, UM") > co}

is the most powerful rejection region in the class K.

For fixed m, n € N, let I be a generic set of rejection regions

KC {(Rm,n,T)meN, neN - Rm,n,T € B(C[O, T];Rn))}-

We say that the rejection region R}, . + is asymptotically most powerful, in the class K, as m —

00, n — oo if
1= P (RyynT
liminf o (Rmn7)

m—00,n—00 1 — Pem'n'T(an
1

,n,T) a
for all Ry € K.

We will consider classes of rejection regions that have asymptotically a Type | error close to
the significance level . On the other hand, one would like to consider rejection regions such that
PQT'”’T(R,,,,”,T) — 1las m— 0o, n— oo. The concept of asymptotically most powerful test depicts
to those tests, within the considered class of tests, that have the fastest rate of convergence of their
powers to one. The probability ’DGT'H'T(R;:,n,T) has the fastest rate of convergence to 1 as m — oo
and n — oo.

Under H1, the OU process is

dug(t) = =0 0P uy(t)dt + oX T dWi(t), uk(0) =0, k> 1.

Given the tools of proofs of Section 4, the proofs of Section 5 depend on the approximations of

integrals including stochastic integrals of Section 3.
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6. Monte Carlo Method

In order to simulate the trajectories of the solution (Fourier modes), we discretize the SPDE. Let

the Euler-Maruyama scheme of the solution be
() = B(ti-1) = O (6-1)AT + 0N %€, u(6) = uk(0), 1 <j </, 1<i<m 1<k<n

where 51/;’,- are iid Gaussian random variables with zero mean and variance AT = T/m = t; —
ti_1,1 </ < mand / denotes the number of trials in the Monte Carlo experiment for each Fourier
mode. Hence ﬂi(t/) is the approximation of u{((t,-) which is the true value of the k-th Fourier mode
at time t; of the j-th trial in the Monte Carlo Simulation. In what follows, we will investigate
how to approximate the Type | and Type Il errors of R test using L7{((t,') and how the numerical
errors are related to m,/, T and n. We obtain error estimates of the corresponding Monte Carlo
experiments associated with the Euler scheme. We consider 3 = 1 and d = 1 with the random
forcing term being space time white noise vy = 0,0 = 1. We assume that G = [0, 71| and the initial

value Uy = 0. In this case Ay = k. Using the likelihood ratio and It6 formula, we get
P T (RY) = PyT(In L(60, 61, U ) = nT)
= PP (= o NS () du(t) + 0558 [T ui(£) (0N} dWi(t) — duy)) > gfngo)
= PT (Tr AEF2 (855 ] B(T) = o2 T) + (61 + 60) Jy uk(B)(@N]aWi(1)) = 24T )

nT (61—60) 26 aAn\F
= Fo, 2a(911+900)f Y7 /VT > 20 )

where

61 — 6p)? 61 — 6p)?2 61 — 6p)?
77::_(1 O)N+(1 0)° | (61— 6o)

460 202T 262

\/ OoNTLina+ T-2In?a,

0, — 0 2 n n T
Anzzm(l%cﬂw, Xr= Y NPFRR(T), vro= ) A2t ]O Ui (£) dWi(1).
k=1 k=1

We approximate X7 and Y7 by
n m ) )
n L= Z >\2+2auj (tn)2 yJ . Z Ai—&-a Z %(tl,_l)gij
k=1 =1

respectively. Define

~0 i 91 — 90 > 2900’AT)
R = X! VN > VN }
m.T {20(91 +O)WN T VoV 03 — 63

The approximation of Pe’z)’T(Rn'T) is given by

ﬁgl[,)m,n T(RT

\\p—l

e
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The following theorem gives error estimate on the Monte Carlo simulations:

Theorem 6.1
P T (RY ) = Pt (RY)| < C*Bm 2 - cr /2.
Proof. From Bishwal (2008, Chapter 8), we have
E|(Y] 7= Yr)/VT? =O(AT), E|X),+— X7|=O(AT).
For the large number of Fourier coefficients case, for some v > 0, we have
(Y3, = Yr)/VNP =0(n"/m), E|X! - — X[ =0(n"/m).

Consequently, for any € > 0, we have

.y 61 — 6o) 2000 AnVT
PMT(ROLY < poT ( Xt —Yr/NT > 222100
6 (RoT) = Fa 2061 1 60T T/IVT 2 62— 62

~ 61 — 6o) o
+PMTIY Y| )NT >62+P”'T( ( X —X >62).
6o | m,T T|/ )_ / ) [ 20(914-90)\/?' mT T| fel /
61 — 6p) 2000 ANV T
pT O =), vy > Z0BVT ) pnT ROy 4 Ce).
6 (za(el+90)ﬁ ToYIIVT 2 62 — 62 < Fo;' (R7)( )

From the above results and Chebyshev inequality, we conclude that
PoT (Ro) < P T((RP(L+ Ce) + Ce T EIR, 7 = XTl/VT + EIV 7 = YP)/VTI
Similarly, we have
P T (RYL) > PRT((R$)(1— Ce) — CeE|X, 7 — X |/NT — E|(VY, + = Yr) VT
Combining the above two inequalities we obtain
P T (R 1) — P T (RO < CePT(RY) + Ce EIXL, 7 = X7 |/VT + EI(YS, 7 = Yr) /VTI?

This implies that
|P9'Z)’T('Q2,T) - P@Z’T(RS,TN < C(AT)Y3,

, ( (61 — o)

20(61 + Qo)ﬁXT - YT/ﬁ) =¢

From here one can show that

(6:1=6) g g [ B=8)
20(91%0)#%,7—\%,7/#) =Va (20(91+90)ﬁxr Yr/VT | +O(AT).

This implies that the Monte Carlo error simulations can be controlled by /=1/2 uniformly with

respect to T and n. Therefore we have the following error estimate

|Po™" T (RY) = P (R < C(AT)Y? + €172
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which holds true with high probability (confidence interval for the Monte Carlo estimate) where /

is the number of trials of Monte Carlo simulations.
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