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Abstract. We study statistical inference for stochastic partial differential equations (SPDEs). Thoughinference linear SPDEs have been studied well (with lot of problems still remain to be investigated)in the last two decades, inference for nonlinear SPDEs is in its infancy. The inference methods useboth inference for finite-dimensional diffusions and inference for classical i.i.d. sequences. Solving2D Navier-Stokes equation is one of the challenging problem of the last century. However, withadditive white noise, the equation has a strong solution. We estimate the viscosity coefficient of the2D stochastic Navier-Stokes (SNS) equation by minimum contrast method. We show n consistencyin contrast to √n consistency in the classical i.i.d. case where n is the number of observations. Weconsider both continuous and discrete observations in time. We also obtain the Berry-Esseen bounds.Then we estimate and control the Type I and Type II error of a simple hypothesis testing problemof the viscosity coefficient of the SNS equation. We study a class of rejection regions and providethresholds that guarantee that the statistical errors are smaller than the given upper bound. Thetests are of likelihood ratio type. The proofs are based on the large deviation bounds. Finally wegive Monte Carlo test procedure for simulated data.
1. Introduction and Preliminaries

Recently infinite dimensional stochastic differential equations (SDEs), such as the stochastic par-tial differential equations (SPDEs) are being paid a lot of attention in view of their modelingapplications in cell biology, neurophysiology, turbulence and oceonography and finance: see Itô(1984), Walsh (1986), Kallianpur and Xiong (1995), Holden et al. (1996), Adler et al. (1996),Carmona and Rozovskii (1999) and Bishwal (2017).Parameter estimation is an inverse problem. Loges (1984) initiated the study of parameter esti-mation in infinite dimensional stochastic differential equations. When the length of the observationtime becomes large, he obtained consistency and asymptotic normality of the maximum likelihood
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Eur. J. Stat. 1 (2021) 2estimator (MLE) of a real valued drift parameter in a Hilbert space valued SDE. Koski and Loges(1986) extended the work of Loges (1984) to minimum contrast estimators. Koski and Loges (1985)applied the work to a stochastic heat flow problem. Mohapl (1992) studied the asymptotics of MLEin a in a nuclear space valued SDE. Kim (1996) also studied the properties of MLE in a similar setup. See the monograph Bishwal (2008) for recent results on likelihood asymptotics and Bayesianasymptotics for drift estimation of finite and infinite dimensional stochastic differential equations.Huebner and Rozovskii (1995). introduced spectral method to study consistency, asymptoticnormality and asymptotic efficiency of MLE of a parameter in the drift coefficient of an SPDE. Thisapproach allows one to obtain asymptotics of estimators under conditions which guarantee thesingularity of the measures generated by the corresponding diffusion field for different parameters.Unlike in the finite dimensional cases, where the total observation time was assumed to be long
(T → ∞) or intensity of the noise was assumed to be small (ε → 0), here both are kept fixed.Here the asymptotics are obtained when the number of Fourier coefficients (n) of the solution ofSPDE becomes large.Huebner, Khasminskii and Rozovskii (1992) started statistical investigation in SPDEs. Theygave two contrast examples of parabolic SPDEs in one of which they obtained consistency, asymp-totic normality and asymptotic efficiency of the MLE as noise intensity decreases to zero under thecondition of absolute continuity of measures generated by the process for different parameters (thesituation is similar to the classical finite dimensional case) and in the other they obtained theseproperties as the finite dimensional projection becomes large under the condition of singularity ofthe measures generated by the process for different parameters. The second example was extendedby Huebner and Rozovskii (1995) and the first example was extended by Huebner (1999) to MLEfor general parabolic SPDEs where the partial differential operators commute and satisfy differentorder conditions in the two cases.For partially observed SPDE systems of both parabolic and hyperbolic type, parameter estima-tion is studied by Aihara (1992, 1994, 1995), Aihara and Bagchi (1988, 1989, 1991), Bagchi andBorkar (1984). The asymptotics when the finite dimensional approximations to solutions of SPDEsbecomes large was studied by Huebner and Rozovskii (1995).Under some conditions they showed that the MLE of the drift parameter in parabolic SPDE isconsistent, asymptotically normal and asymptotically efficient as n →∞. The spectral asymptoticsfor MLE was exteded by Huebner and Rozovskii (1995) (here after HR) to more general SPDEswhere the partial differential operators commute and satisfy some order conditions. Piterberg andRozovskii (1995) studied the properties MLE of a parameter in SPDE which are used to modelthe upper oceon variability in physical oceonogoaphy. Piterbarg and Rozovskii (1996) studied theproperties of MLE based on discrete observations of the corresponding diffusion field.



Eur. J. Stat. 1 (2021) 3Huebner (1997) extended the problem to the ML estimation of multidimensional parameter.Lototsky and Rozovskii (1999) studied the same problem without the commutativity condition. Smallnoise asymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimovand Khasminskii (1998).While moving from linear to nonlinear equation, stochastic Navier-Stokes equation in both 2and 3 dimensions have been extensively studied. See for instance, Lions and Magenes (1972),Bensoussan and Temam (1973), Breckner (2000), Mikelevicius and Rozovskii (2004). Howeverparameter estimation for nonlinear equation is fairly new.Consider the 2D stochastic Navier-Stokes equation
dUt = (θ4 U − (U · ∇)U −∇P )dt + dWt

∇ · U = 0

U0 = ξ

(1.1)

which describe the flow of a viscous incompressible fluid. Here U = (U1, U2) is the velocity and Pis the pressure.The coefficient θ > 0 corresponds to the kinematic viscosity of the fluid which is the unknownparameter to be estimated. Let uk = (U, φk) be the k-th generalized Fourier mode of the solution
U . Each Fourier mode uk represents a one-dimensional stable Ornstein-Uhlenbeck process.We estimate the parameter and test hypothesis based on a sample path U(ω) observed over afinite time interval [0, T ]. We assume that the governing equation evolve over a domain D. We willconsider two possible boundary conditions. In the first case we suppose that the flow occurs overall of R2 with D = [−L/2, L/2]2 for some L > 0 and prescribe the periodic boundary condition:

U(x + Lej , t) = U(x, t), x ∈ R2, t ≥ 0;

∫
D

U(x)dx = 0. (1.2)

We will also consider the case when D is a bounded subset of R2 with a smooth boundary ∂Dand assume the Dirichlet (no slip) boundary condition:

U(x, t) = 0, x ∈ ∂D, t ≥ 0. (1.3)

The stochastic forcing we consider is an additive space-time noise colored in space. Formallywe may write
σdW =

∑
k

λ−γk φkdWk (1.4)

where φk are eigenfunctions of the Stokes operator, λk represents the associated eigenvalues and
Wk , k ≥ 1 are one-dimensional independent Brownian motions. We assume γ is a real parametergreater than 1 which guarantees some spatial smoothness in the forcing. We may also derive thespace-time correlation structure of the noise term

E(σdW (x, t)σdW (y , s)) = K(x, y)δt−s (1.5)
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K(x, y) =

∑
k≥1

λ−2γ
k φk(x)φk(y). (1.6)

The stochastic Stokes equation associated with the SNE is
dŪ = −θAŪdt +

∑
k

λ−γk φkdWk , Ū(0) = Ū0. (1.7)

This is a 2D stochastic heat equation driven by additive cylindrical Brownian motion.Let us denote ūk , k ≥ 1, the Fourier coefficient of the solution Ū with respect to the system {φ}kin H, i.e., ūk = (Ū, φk), k ≥ 1. By (1.8), each Fourier mode represents a one dimensional stableOU process with dynamics
dūk + θλk ūkdt = λ−γk dWk , ūk(0) = ū0k , k ≥ 1. (1.8)

The solution of this equation is
ūk(t) = ūk(0)e−θλk t + λ−γk

∫ t

0

e−θλk(t−s)dWk(s), k ≥ 1, t ≥ 0. (1.9)

Here ūk = (Ū, φk) represents the k-th generalized Fourier mode of the solution U .This approximation may be rigourously justified by Galerkin approximation. We project U downto a finite dimensional space and for each n, Un = PnU, n ≥ 1 where Pn is the projection operatoron the finite dimensional space generated by the first n Fourier eigenvalues of the Stokes operator.The Un satisfies
dUn = −(θAUn + Pn(B(U))dt + σPndW, U

n(0) = Un0 . (1.10)

Though the main results in this work are similar to the previous works in the linear case, thedifficulties arise here due to the complex nature of the nonlinear term which couples all the modesof uk = (U, φk). In contrast to the linear case, we lose the explicit spectral information aboutthe elements uk because of coupling, uk are not independent. To overcome this difficulty, wedecompose, U = Ū + R. Here Ū is a linear system where the Fourier modes are independent.Recast (1.1) as a stochastic evolution equation
dU = −(θAU + B(U))dt + σdW

U(0) = U0.
(1.11)

We now introduce the basic function spaces designed to capture both the boundary conditionsand the divergence free nature of the flow.We first consider the space associated with the Dirichlet (no slip) boundary condition (1.3). Let
H := {U ∈ L2(D)2 : ∇ · U = 0, U · n = 0} where n is the outer pointing unit normal to ∂D.The space H is endowed as a Hilbert space with the L2 inner product (Ub, Uc) =

∫
D U

bUcdx andthe associated norm |U| = (U.U)1/2. The Leray-Hopf projector PH is defined as the orthogonalprojection of L2(D)d onto H. Let V := {U ∈ H1
0(D)2 : ∇ · U = 0} and endow this with the inner



Eur. J. Stat. 1 (2021) 5product (Ub, Uc) =
∫
M ∇U

b ·∇Ucdx . Due to the Dirichlet boundary conditions (1.3), the Poincareinequality |U| ≤ c‖U‖ holds for U ∈ V justifying the definition.Suppose the periodic boundary condition (1.2) holds. We take D = [−L/2, L/2]2 and definethe spaces L2
per (D)2, H1

per (D)2 to be the family of vector fields U = U(x) which are L periodic ineach direction and which belongs to L2(G)2 and H1(G)2 respectively for every open bounded set
G ⊂ R2. We define

H =

{
U ∈ L2

per (D)2 : ∇ · U = 0,

∫
D

U(x)dx = 0

}
(1.12)

and
V =

{
U ∈ H1

per (D)2 : ∇ · U = 0,

∫
D

U(x)dx = 0

}
(1.13)

The spaces H and V are endowed with the norms | · | and ‖ · ‖ respectively as above. We imposethe mean zero condition for defining H and V so that the Poincare inequality holds (cf. Temam(1995)).The linear portion of the SNS equation (1.1) is captured by the Stokes operator A = −PH∆which is an unbounded operator from H to H with domain D(A) = H2(M) ∩ V . Since A is selfadjoint with compact inverse A−1 : H → D(A), we may apply the standard theory of compact,symmetric operators to guarantee the existence of an orthonormal basis {φk , k ≥ 1} for H ofeigen functions of A with the associated eigenvalues {λk , k ≥ 1} forming an unbounded increasingsequence. Moreover,
λk
kλ1

→ 1 as k →∞.
For more details on the asymptotic behavior of the sequence {λk , k ≥ 1}, see Babenko (1982) andMetivier (1978) for the no slip case (1.3) and Constantin and Foias (1988) for the periodic case(1.2).Define Hn = Span{φ1, . . . , φn} and let Pn be the projection from H on to this space. We let
Qn := 1− Pn.Given α > 0, let D(Aα) = {U ∈ H :

∑
k λ

2α
k |uk |2 < ∞}, where uk = (U, φk). For U ∈ D(Aα),define

Aα(U) =
∑
k

λαk ukφk (1.14)

for U =
∑
k ukφk . Note that

|Aα2PnU| ≤ λα2−α1
n |Aα1PnU| (1.15)and

|Aα1QnU| ≤ λα1−α2
n |Aα2QnU| (1.16)for any α1 < α2.Now we consider the stochastic terms in (1.1). Let S = (Ω,F , P, {F}t≥0, {Wk}k≥1) be a

stochastic basis which is a complete filtered probability space with {Wk , k ≥ 1}, a sequence of



Eur. J. Stat. 1 (2021) 6independent standard Brownian motions relative to the filtration {Ft}t≥0. We assume Ft to becomplete and continuous. Writing formally W =
∑
k≥0 φkWk , W may be viewed as a cylindricalBrownian motion on H.We consider the family of Hilbert-Schmidt operators mapping H into D(Aβ), β ≥ 0. We denotethe family by L2(H,D(Aβ)). We assume that σ, understood as an operator, has the form

σφk = λ−γk φk

and we write
σdW (t) =

∞∑
k=1

λ−γk φkdWk(t), t ≥ 0. (1.17)

Given the assumption that γ > 1, we have σ ∈ L2(H,D(A1/2)).We may also formally derive the space-time corelation function structure of the noise term
E(σdW (x, t)σdW (y , s)) = K(x, y)δt−s

where K(x, y) =
∑
k≥1 λ

−2γ
k φk(x)φk(y).

Stochastic Stokes Equation

We do not have a precise spectral information about the Fourier coefficients uk = (U, φk), k ≥ 1in contrast to the linear case. To overcome this, we proceed to decompose the solution into alinear and nonlinear part U = Ū+R. The linear system associated with SNS equation (1.1) is thestochastic Stokes equation. The linear term Ū satisfies
dŪ + θAŪdt =

∑
k

λ−γk φkdWk , Ū(0) = Ū0. (1.18)

This system can be analyzed as a 2D stochastic heat equation driven by an additive cylindricalBrownian motion.
Nonlinear TermsThe residual R satisfies

∂tR + θAR = −B(U), R(0) = R0. (1.19)

The regularity properties of the residual R shows that R is slightly smoother than Ū . This extraregularity properties of R is used to show that the nonlinear part in the MLE, namely∫ T
0 (AUn)′G2Pn(B(U))dt∫ T

0 (AUn)′G2(AUn)dt
(1.20)

converges to zero as n →∞.
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Existence and Uniqueness of a strong pathwise solution of SNS Equation

We recall now some well established existence, uniqueness and regularity results for these equa-tions. The solutions we consider corresponds to ’strong solutions’ in the deterministic setting, seeTemam (2001). In our case since the stochastic basis S is fixed in advance, the considered solutionis ’strong’ (or pathwise) in the probabilistic sense.
Lemma 1.1 (Cialenko and Glatt-Holtz (2011))
i) Suppose we impose the periodic boundary conditions (1.2) or the Dirichlet boundary conditions
(1.3) and assume that U0 ∈ V, σ ∈ L2(H, V ). Then there exists a unique, H-valued, Ft-adapted
process U with

U ∈ L2
loc([0,∞);D(A)) ∩ C([0,∞); V ) a.s.

and so that for each t ≥ 0,

Ut +

∫ t

0

(θAU + B(U))du = U0 +
∑
k

σφkWk(t) (1.21)

with the equality understood in H.
ii) In the case of periodic boundary conditions (1.2), if β > 1/2 so that σ ∈ L2(H,D(Aβ)), U0 ∈

D(Aβ), then
U ∈ L2

loc([0,∞);D(Aβ+1/2)) ∩ C([0,∞);D(Aβ)).

We need the following preliminary results on LLN and CLT to prove our main theorems.
Lemma 1.2 (Law of Large Numbers)
Let ξn, n ≥ 1 be a sequence of random variables and bn, n ≥ 1 be an increasing sequence of
positive numbers such that limn→∞ bn =∞ and

∞∑
n=1

V ar(ξn)

b2
n

<∞.

i) If the random variables ξn are independent then,

lim
n→∞

∑n
k=1(ξk − Eξk)

bn
= 0 a.s.

ii) If the random variables ξn are uncorrelated then,

lim
n→∞

∑n
k=1(ξk − Eξk)

bn
= 0 in probabi l i ty .

Part (i) is from Shiryayev (1996). Part (ii) can be proved by using Markov inequality.
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Lemma 1.3 (CLT for Stochastic Integrals)
Let S = (Ω,F , P, {F}t≥0, {Wk}k≥1) be a stochastic basis. Suppose that σk ∈ L2(Ω;L2([0, T ]))

be a sequence of real valued predictable processes such that∑n
k=1

∫ T
0 σkdWk(t)(∑n

k=1 E
∫ T

0 σ2
kdt
)1/2

→ 1 in probabi l i ty as n →∞.

Then ∑n
k=1

∫ T
0 σkdWt(∑n

k=1 E
∫ T

0 σ2
kdt
)1/2

→D N (0, 1) as n →∞.

2. Parameter Estimation from Continuous Observation

2.1 First Order Asymptotic Theory

We study the consistency and asymptotic normality of the minimum contrast estimator in this sub-section. The n Fourier modes uk(t), k = 1, 2, . . . , n, 0 ≤ t ≤ T are the observations. Let Unbe the projection of the solution of the solution U onto Hn = PnH u Rn. The finite dimensionalsystem is given by
dUn = −(θAUn + Pn(B(U))dt + σPndW, U

n(0) = Un0Let P n,Tθ be the probability measure on C([0, T ];Rn) generated by Un. Let θ0 be the true valueof the parameter θ. Then the Radon-Nikodym derivative or likelihood ratio dPn,Tθ
dPn,Tθ0

(Un) is given by
dPn,Tθ
dPn,Tθ0

(Un) = exp

(
−(θ − θ0)

∫ T

0

(AUn)′G2dUn −
1

2
(θ2 − θ2

0)

∫ T

0

(AUn)′G2AUndt

−(θ − θ0)

∫ T

0

(AUn)′G2(AUn)ψndt

)
where G := (Pnσ)−1, ψn := Pn(B(U)). By maximizing the likelihood ratio with respect to theparameter of interest θ, one obtains the maximum likelihood estimator (MLE) of θ which is givenby

θ̌n,T = −
∫ T

0 (AUn)′G2dUn +
∫ T

0 (AUn)′G2Pn(B(U))dt∫ T
0 (AUn)′G2(AUn)dt

.

Action of G2 on Hn is equivalent to A2γ .A modified MLE is given by
θ̄n,T = −

∫ T
0 〈A

1+2αUn, dUn〉+
∫ T

0 〈A
1+2αUn, Pn(B(U))〉dt∫ T

0 |A1+αUn|2dt



Eur. J. Stat. 1 (2021) 9where α is a free parameter with a range specified later on. The action G2 on Hn s equivalent to
A2γ . Also observe that θ̄n,T is a special case of θ̌n,T with α = γ. Although θ̄n,T has the desirabletheoretical properties, it also assumes that Pn(B(U) is computable which could be a difficult task.Another estimator is obtained by approximation: By replacing Pn(B(U) with Pn(B(Un))

¯̄θn,T = −
∫ T

0 〈A
1+2αUn, dUn〉+

∫ T
0 〈A

1+2αUn, Pn(B(Un))〉dt∫ T
0 |A1+αUn|2dt

= −
∫ T

0 〈A
1+2αUn, dUn〉∫ T

0 |A1+αUn|2dt
−
∫ T

0 〈A
1+2αUn, Pn(B(Un))〉dt∫ T

0 |A1+αUn|2dt
=: θ̃n,T + κn,T

which depends on the first n Fourier modes.The term
κn,T := −

∫ T
0 〈A

1+2αUn, Pn(B(Un))〉dt∫ T
0 |A1+αUn|2dtis lower order and tends to zero as n →∞, see Corollary 2.2.The linearized MLE is given by

θ̂n,T = −
∫ T

0 〈A
1+2αUn, dUn〉∫ T

0 |A1+αUn|2dt
=

∑n
k=1 λ

1+2α
k

∫ T
0 ukduk∑n

k=1 λ
2+2α
k

∫ T
0 u2

kdt

=

∑n
k=1 λ

1+2α
k (u2

k (T )− u2
k (0)− Tλ−2γ

k )

2
∑n
k=1 λ

2+2α
k

∫ T
0 u2

kdt
.

Following Bishwal (2006), we propose the minimum contrast estimator (MCE) of θ which is givenby
θ̃n,T =

−T
n∑
k=1

λ1+2α−2γ
k

2

n∑
k=1

λ2+2α
k

∫ T

0

u2
kdt

.

Remark 2.1 It is known that MCE is asymptotically efficient but OLSE is not efficient for the finitedimensional OU process, see Tanaka (2013).
The following two propositions are from Cialenko and Glatt-Holtz (2011).

Proposition 2.1
a) For every δ1 < min{2 + 2α− 2γ, 1} we have

nδ1

∫ T
0 〈A

1+2α−γŪn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

→a.s. 0 as n → ∞.

b) Whenever δ2 < min{2 + 2α − 2γ, 3/2} in the case of periodic boundary conditions (1.2) or
whenever δ2 < min{2 + 2α− 2γ, 5/4 + 1− γ} in the case of Dirichlet boundary conditions (1.3),
we have

nδ2

∫ T
0 〈A

1+2α−γRn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

→P 0 as n → ∞.
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Corollary 2.1 Putting δ1 = δ2 = 0 and noting that Un = Ūn + Rn, we have

∫ T
0 〈A

1+2α−γUn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

→P 0 as n → ∞.

The following proposition is about the nonlinear term.
Proposition 2.2
For every δ ∈ [0,min{1/2, α− γ + 1} in the case (1.2) or δ ∈ [0,min{5/4− γ, α− γ + 1} in the
case of Dirichlet boundary condition (1.3), we have

nδ
∫ T

0 〈A
1+2αUn, PnB(U)〉dt∫ T
0 |A1+αUn|2dt

→ 0 a.s. as n → ∞.

Corollary 2.2 Putting δ = 0,∫ T
0 〈A

1+2αUn, PnB(U)〉dt∫ T
0 |A1+αUn|2dt

→ 0 a.s. as n → ∞.

Thus κn,T → 0 a.s. as n → ∞..The following is the main result of this sub-section.
Theorem 2.1

a) If α > γ − 1, then limn→∞ θ̂n,T = θ in probability as n →∞.
b) If α > γ − 1/2, then n(θ̂n,T − θ)→D η as n →∞

where η is a normal random variable with mean zero and variance 2θ(α−γ+1)2

λ1T (α−γ+1/2) .

Classical Proof:a) ConsistencyWe have for the linearized MLE
θ̂n,T = θ −

∫ T
0 〈A

1+2α−γUn, PnσdW 〉∫ T
0 |A1+αUn|2dt)

= θ −
∫ T

0 〈A
1+2α−γUn,

∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

.

Similarly for the MLE
θ̌n,T = θ −

∫ T
0 〈A

1+2α−γUn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt
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+

∫ T
0 〈A

1+2α−γUn, PnB(U)− PnB(Un)〉dt∫ T
0 |A1+αUn|2dt

.

Since θ̃n,T = θ̂n,T − κn,T , where
κn = −

∫ T
0 〈A

1+2α−γUn, PnB(U)〉dt∫ T
0 |A1+αUn|2dt

,

we have
θ̂n = θ − κn −

∫ T
0 〈A

1+2α−γUn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

.

We have for the MCE
θ̃n,T = θ −

∫ T
0 〈A

1+2α−γUn, PnσdW 〉∫ T
0 |A1+αUn|2dt)

= θ −
∫ T

0 〈A
1+2α−γUn,

∑
k φkdW

k〉∫ T
0 |A1+αUn|2dtUsing Corollary 2.1 , we obtain limn→∞ θ̂n,T = θ in probability as n →∞.b) Asymptotic NormalityLet

σk := λ1+2α−γ
k uk , ξk :=

∫ T

0

σ2
kdt, k ≥ 1.Then we have

E(ξk) ∼ λ2+4α−2γ
k λ

−(1+2γ)
k = λ1+4α−4γ

k ,

V ar(ξk) ∼ λ4+8α−4γ
k λ

−(3+4γ)
k = λ1+8α−8γ

k .Define bn :=
∑n
k=1 E(ξk). Under the given assumptions, 1 + 4α− 4γ < −1, on α, we have that

bn ∼ λ2+4α−4γ
n , we infer that bn is increasing and unbounded. Moreover,

∞∑
k=1

V ar(ξk)

b2
k

≤ c
∞∑
k=1

k−3 <∞.

and therefore by LLN we conclude that
lim
n→∞

∑n
k=1 ξk∑n

k=1 E(ξk)
= 1 a.s.

Consequently ∫ T
0 〈A

1+2α−γŪn,
∑
k φkdW

k〉
(
∫ T

0 |A1+αŪn|2dt)1/2
→ N (0, 1).

Noting that 1 + α > γ and 1 + 2α− γ > γ,
(E
∫ T

0 |A
1+2α−γŪn|2dt)1/2

(E
∫ T

0 |A1+αŪn|2dt)
∼
√

2θ

λ1T

α− γ + 1√
α− γ + 1/2

1

n
.

n

∫ T
0 〈A

1+2α−γŪn,
∑
k φkdW

k〉
(
∫ T

0 |A1+αŪn|2dt)
→ N

(
0,

2θ(α− γ + 1)2

λ1T (α− γ + 1/2)

)
.
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n(θ̂n,T − θ)→ N

(
0,

2θ(α− γ + 1)2

λ1T (α− γ + 1/2)

)
.

Thus the asymptotic normality of θ̂n follows.
With δ2 = 1, in Proposition 2.1, we obtain

n

∫ T
0 〈A

1+2α−γRn,
∑
k φkdW

k〉∫ T
0 |A1+αUn|2dt

→P 0.

Thus
1
n

∫ T
0 〈A

1+2α−γRn,
∑
k φkdW

k〉
1
n2

∫ T
0 |A1+αUn|2dt

→P 0.

∫ T
0 |A

1+αUn|2dt
E(
∫ T

0 |A1+αUn|2dt)
→a.s. 1

Remark 2.2 The smallest asymptotic variance corresponds to α = γ.
Remark 2.3 When γ → ∞, the system becomes smoother and when γ = ∞, the system becomesdeterministic.
Remark 2.4

E

∫ T

0

|A1+αŪn|2dt ∼ n2α−2γ+2.

When α = γ, this order is O(n2). Thus
1

n2
E

∫ T

0

|A1+αŪn|2dt ∼ C.

Hence
1

n

∫ T

0

〈A1+2α−γŪn,
∑
k

φkdW
k〉 →D N (0, C)

Note the unusual rate in comparison to the classical iid case where the rate is √n.
Remark 2.5 On the domain α > γ− 1/2, as a function of α, the asymptotic variance 2θ(α−γ+1)2

λ1T (α−γ+1/2)reaches its minimum when α = γ. In this case the asymptotic variance is given by 2θ
T

2
λ1

. Hence inthis case
n

√
T

2θ

√
λ1

2
(θ̃n,T − θ)→D N (0, 1).

Alternative Proof by the Malliavin-Stein’s Approach
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Fn,T := θ̃n,T − θ =

∫ T
0 〈A

1+2α−γŪn,
∑
k φkdW

k〉
(
∫ T

0 |A1+αŪn|2dt)
=: −

F1(n, T )

F2(n, T )

F̂n,T =

∫ T
0 〈A

1+2α−γŪn,
∑
k φkdW

k〉
E(
∫ T

0 |A1+αŪn|2dt)
=: −

F1(n, T )

C2
n,Twhere C2

n,T = E(F2(n, T )). We note that F̂n,T can be written as a double stochastic integral andit belongs to the second-order Wiener chaos.
Lemma 2.4 We have √

V ar

(
1

2
‖Cn,TDF̂n,T ‖2

H

)
→ 0 as n, T →∞

where D is the Malliavin derivative.
We show that Cn,TFn,T →D N(0, σ2)) as n, T → ∞ where σ2 comes from the fact that

E(C2
n,T F̂

2
n,T ) = σ2. We split Cn,TFn,T into

Cn,TFn,T = Cn,T (Fn,T − F̂n,T ) + Cn,T F̂n,T ).

Note that
Cn,T (Fn,T − F̂n,T ) =

C2
n,T

F2(n, T )

F1(n, T )

Cn,T

(
1−

F2(n, T )

C2
n,T

)
.

C2
n,T

F2(n, T )
→ 1, 1−

F2(n, T )

C2
n,T

→a.s. 0 as n, T →∞
F1(n, T )

Cn,T
= Cn,T F̂n,T →D N (0, σ2) as n, T →∞.

Hence by Slutzky’s theorem,
Cn,T (Fn,T − F̂n,T )→D 0 as n, T →∞.

which implies
Cn,T (Fn,T − F̂n,T )→P 0 as n, T →∞.

dTV (Cn,T F̂n,T ,N (0, σ2))→ 0 as n, T →∞.
Cn,T F̂n,T →w N (0, σ2) as n, T →∞.
Cn,TFn,T →w N (0, σ2)) as n, T →∞.
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Cn,T
σ
≈
√

2$
√
Tn

8θ0
as n, T →∞.

√
TnFn,T →w N (0,

σ2(8θ0)2)

2$
) as n, T →∞.

Hence
√
Tn(θ̃n,T − θ)→D N (0,

σ2(8θ0)2)

2$
) as n, T →∞.

2.2 Berry-Esseen Bounds

We obtain the rate of convergence to normality, i.e., the bound on the Kolmogorov distance betweenthe distribution of the estimator and the normal distribution.We consider the case α = γ. In this case, the asymptotic variance is given by 2θ
T

2
λ1

.Observe that
n

√
λ1

2

(
T

2θ

)1/2

(θ̃n,T − θ) =

√
λ1

2

1
n

(
2θ
T

)1/2
Jn,T

1
n2

(
2θ
T

)
In,Twhere

Jn,T := θIn,T −
T

2
and In,T :=

n∑
k=1

λ2+2α
k

∫ T

0

uk(t)2dt.

Let Φ(·) denote the standard normal distribution function. Throughout the paper, C denotes ageneric constant (which does not depend on T and x ). We have also tried to estimate the constantin the bound on normal approximation.We start with some preliminary lemmas.
Lemma 2.2.1 For every δ > 0,

P

{∣∣∣∣( 1

n2

2θ

T

2

λ1

)
In,T − 1

∣∣∣∣ ≥ δ} ≤ Cn−2δ−2.

Lemma 2.2.2

sup
x∈R

∣∣∣∣∣P
{√

λ1

2

1

n

(
2θ

T

)1/2

Jn,T ≤ x

}
−Φ(x)

∣∣∣∣∣ ≤ C T−1/2n−1.

The constant C in Lemma 2.2 is the constant in the classical Berry-Esseen theorem which isequal to 0.6751. The following lemma gives the error rate on the difference of the characteristicfunction of the denominator of the MCE and the normal characteristic function.



Eur. J. Stat. 1 (2021) 15

Lemma 2.2.3 (a) Let φn,T (z1) := E exp(z1In,T ), z1 ∈ C. Then φn,T (z1) exists for |z1| ≤ δ, for some
δ > 0 and is given by

φT (z1) = exp

(
θT

2

)[
2γ

(γ − θ)e−γT + (γ + θ)eγT

]1/2

where γ = (θ2 − 2z1)1/2 and we choose the principal branch of the square root.
(b) Let

Hn,T,x :=

(
1

n2

2θ

T

2

λ1

)1/2

Jn,T −
(

1

n2

2θ

T

2

λ1
In,T − 1

)
x.

Then for |x | ≤ 2(logT )1/2 and for |u| ≤ εT 1/2, where ε is sufficiently small
∣∣∣∣E exp(iuHn,T,x)− exp(

−u2

2
)

∣∣∣∣ ≤ C exp(
−u2

4
)(|u|+ |u|3)T−1/2n−1.

Proof : To prove (b), observe that
E exp(iuHn,T,x)

= E exp

[
−iu

(
2θ

n2T

2

λ1

)1/2

Jn,T − iu
(

2θ

n2T

2

λ1
In,T − 1

)
x

]

= E exp

[
−iu

(
2θ

n2T

2

λ1

)1/2{
θIn,T −

T

2

}
− iu

(
2θ

n2T

2

λ1
In,T − 1

)
x

]
= E exp(z1In,T + z3)

= exp(z3)φT (z1)

where z1 := −iuθδT,x , and z3 := iuT
2 δT,x with δT,x :=

(
2θ
n2T

2
λ1

)1/2
+ 2x

T .Note that φT (z1) satisfies the conditions of (a) by choosing ε sufficiently small. Let α1,T (u),

α2,T (u), α3,T (u) and α4,T (u) be functions which are O(|u|T−1/2), O(|u|2T−1/2), O(|u|3T−3/2)and O(|u|3T−1/2) respectively. Note that for the given range of values of x and u, the conditionson z1 for part (a) of Lemma are satisfied. Further, with βT (u) := 1 + iu
δT,x
θ +

u2δ2
T,x

2θ2 ,
γ = (θ2 − 2z1)1/2

= θ

[
1−

z1

θ2
−
z2

1

2θ4
+
z3

1

2θ8
+ · · ·

]
= θ

[
1 + iu

δT,x
θ

+
u2δ2

T,x

2θ2
+
iu3δ3

T,x

2θ3
+ · · ·

]
= θ[1 + α1,T (u) + α2,T (u) + α3,T (u)]

= θβT (u) + α3,T (u)

= θ[1 + α1,T (u)].
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γ − θ = α1,T , γ + θ = 2θ + α1,T .

Hence the above expectation equals
exp

(
z3 +

θT

2

)[
2θβT (u) + α3,T (u)

α1,T exp{−θTβT (u) + α4,T (u)}+ (2θ + α1,T (u)) exp{θTβT (u) + α4,T (u)}

]1/2

=

[
1 + α1,T (u)

α1,T exp(χT (u)) + (1 + α1,T (u)) exp(ψT (t))

]1/2

where
χT (u) = −θTβT (u) + α4,T (u)− 2z3 − θT

= −2θT + α1,T (u) + t2α1,T (u)

and
ψT (u) = θTβT (u) + α4,T (u)− 2z3 − θT

= θT

[
1 + iu

δT,x
θ

+
u2δ2

T,x

2θ2

]
+ α4,T (u)− iuT δT,x − θT

=
u2T

2θ

[(
2θ

T

)1/2

+
2x

T

]2

= u2 + u2α1,T (u).

Hence, for the given range of values of u, χT (t)− ψT (u) ≤ −θT .Hence the above expectation equals
exp(−

u2

2
)(1 + α1,T )1/2

[
α1,T exp{−2θT + α1,T + t2α1,T }+ (1 + α1,T (t)) exp{t2α1,T (t)}

]−1/2

= exp(−
u2

2
)
[
1 + α1,T )(1 + α1,T (1 + α1,T ) exp{−θT + α1,T + t2α1,T }

]
exp(u2α1,T (u)).

This completes the proof of the lemma.
To obtain the rate of normal approximation for the MCE, we need the following estimate on thetail behavior of the MCE.

Lemma 2.2.4

P

{(
n2T

2θ

λ1

2

)1/2

|θ̃n,T − θ| ≥ 2(logT )1/2

}
≤ CT−1/2n−1.
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Proof : Observe that
P

{(
n2T

2θ

λ1

2

)1/2

|θ̃n,T − θ| ≥ 2(log n2T )1/2

}

= P

{∣∣∣∣∣( 2θ
n2T

2
λ1

)1/2Jn,T

( 2θ
n2T

2
λ1

)In,T

∣∣∣∣∣ ≥ 2(log n2T )1/2

}
≤ P

{∣∣∣∣( 2θ

n2T

2

λ1
)1/2Jn,T

∣∣∣∣ ≥ (logT )1/2

}
+ P

{∣∣∣∣ 2θ

n2T

2

λ1
In,T

∣∣∣∣ ≤ 1

2

}
≤

∣∣∣∣P {(
2θ

n2T

2

λ1
)1/2|Jn,T | ≥ (log n2T )1/2

}
− 2Φ(−(log n2T )1/2)

∣∣∣∣
+2Φ(−(logT )1/2) + P

{∣∣∣∣ 2θ

n2T

2

λ1
In,T − 1

∣∣∣∣ ≥ 1

2

}
≤ sup

x∈R

∣∣∣∣P {(
2θ

n2T

2

λ1
)1/2|Jn,T | ≥ x

}
− 2Φ(−x)

∣∣∣∣
≤ sup

x∈R

∣∣∣∣P {(
2θ

n2T

2

λ1
)1/2|Jn,T | ≥ x

}
− 2Φ(−x)

∣∣∣∣
+2Φ(−(log n2T )1/2) + P

{∣∣∣∣( 2θ

n2T
)

2

λ1
In,T − 1

∣∣∣∣ ≥ 1

2

}
≤ CT−1/2n−1 + C(n2T log n2T )−1/2 + CT−1n−2

≤ CT−1/2n−1.

The bounds for the first and the third terms come from Lemma 2.2 and Lemma 2.1 respectively andthat for the middle term comes from Feller (1957, p. 166).
Now we are ready to obtain the uniform rate of normal approximation of the distribution of the MCE.
Theorem 2.2.5

sup
x∈R

∣∣∣∣∣P
{(

n2T

2θ

λ1

2

)1/2

(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ ≤ CθT−1/2n−1.

Proof : We shall consider two possibilities (i) and (ii).(i) |x | > 2(log n2T )1/2.We shall give a proof for the case x > 2(log n2T )1/2. The proof for the case x < −2(log n2T )1/2runs similarly. Note that∣∣∣∣P {(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣ ≤ P {(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≥ x

}
+ Φ(−x).

But Φ(−x) ≤ Φ(−2(log n2T )1/2) ≤ CT−2n−4. See Feller (1957, p. 166).Moreover by Lemma 2.4, we have
P

{
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≥ 2(log n2T )1/2

}
≤ CT−1/2n−1.
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n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣ ≤ CT−1/2n−1.

(ii) |x | ≤ 2(log n2T )1/2.
Let An,T :=

{
(
n2T

2θ

λ1

2
)1/2|θ̃n,T − θ| ≤ 2(log n2T )1/2

} and Bn,T :=

{
In,T
n2T

> c0

}
where 0 < c0 <

1
2θ . By Lemma 2.4, we have

P (Acn,T ) ≤ CT−1/2n−1. (2.1)

By Lemma 2.1, we have
P (Bcn,T ) = P

{
2θ

n2T

2

λ1
In,T − 1 < 2θc0 − 1

}

< P

{
|

2θ

n2T

2

λ1
In,T − 1| > 1− 2θc0

}
≤ CT−1n−2. (2.2)

Let b0 be some positive number. On the set An,T ∩ Bn,T for all T > T0 and n > n0 with
4b0(log n2

0T0)1/2( 2θ
n2

0T0

2
λ1

)1/2 ≤ c0, we have
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

⇒ In,T + b0n
2T (θ̃n,T − θ) < In,T + (

n2T

2θ

λ1

2
)1/22b0θx

⇒ (
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ)[In,T + b0n

2T (θT − θ)] < x [In,T + (
n2T

2θ

λ1

2
)1/22b0θx ]

⇒ (θ̃n,T − θ)In,T + b0n
2T (θn,T − θ)2 < (

2θ

n2T

2

λ1
)1/2In,T x + 2b0θx

2

⇒ −Jn,T + (θ̃n,T − θ)In,T + b0n
2T (θ̃n,T − θ)2 < −Jn,T + (

2θ

n2T

2

λ1
)1/2In,T x + 2b0θx

2

⇒ 0 < −Jn,T + (
2θ

n2T

2

λ1
)1/2In,T x + 2b0θx

2

since
In,T + b0n

2T (θ̃n,T − θ)

> n2n2Tc0 + b0n
2T (θ̃n,T − θ)

> 4b0(log n2T )1/2(
2θ

n2T

2

λ1
)1/2 − 2b0(log n2T )1/2(

2θ

n2T
)1/2

= 2b0(log n2T )1/2(
2θ

n2T

2

λ1
)1/2 > 0.
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4b0(log n2

0T0)1/2( 2θ
n2

0T0
)1/2 ≤ c0, we have

(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) > x

⇒ In,T − b0T (θ̃n,T − θ) < In,T − (
n2T

2θ

λ1

2
)1/22b0θx

⇒ (
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ)[In,T − b0T (θn,T − θ)] > x [In,T − (

n2T

2θ

λ1

2
)1/22b0θx ]

⇒ (θ̂n,T − θ)In,T − b0T (θ̃T − θ)2 > (
2θ

n2T
)1/2In,T x − 2b0θx

2

⇒ −Jn,T + (θ̃n,T − θ)IT − b0T (θ̃n,T − θ)2 > −Jn,T + (
2θ

n2T
)1/2In,T x − 2b0θx

2

⇒ 0 > −Jn,T + (
2θ

n2T
)1/2In,T x − 2b0θx

2

since
In,T − b0n

2T (θ̃n,T − θ)

> n2Tc0 − b0n
2T (θ̃n,T − θ)

> 4b0(log n2T )1/2(
2θ

n2T
)1/2 − 2b0(log n2T )1/2(

2θ

n2T
)1/2

= 2b0(log n2T )1/2(
2θ

n2T
)1/2 > 0.

Hence
0 < −Jn,T + (

2θ

n2T
)1/2In,T x − 2b0θx

2 ⇒ (
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x.

Letting
M±n,T,x :=

{
−Jn,T + (

2θ

n2T

2

λ1
)1/2In,T x ± 2b0θx

2 > 0

}
,

we obtain
M−n,T,x ∩An,T ∩Bn,T ⊆ An,T ∩Bn,T ∩

{
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
⊆ M+

n,T,x ∩An,T ∩Bn,T . (2.3)

If it is shown that ∣∣P {M±n,T,x}−Φ(x)
∣∣ ≤ CT−1/2n−1 (2.4)

for all T > T0 and n > n0 and |x | ≤ 2(log n2T )1/2, then the theorem would follow from (2.1) -(2.3).
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n,T,x . The proof for M−n,T,x is analogous.Observe that∣∣∣P {M+

n,T,x

}
−Φ(x)

∣∣∣
=

∣∣∣∣P {(
2θ

n2T

2

λ1
)1/2Jn,T −

(
2θ

n2T

2

λ1
In,T − 1

)
x < x + 2(

2θ

n2T

2

λ1
)1/2b0θx

2

}
−Φ(x)

∣∣∣∣
≤ sup

y∈R

∣∣∣∣P {(
2θ

n2T

2

λ1
)1/2Jn,T −

(
2θ

n2T

2

λ1
In,T − 1

)
x ≤ y

}
−Φ(y)

∣∣∣∣
+

∣∣∣∣Φ(x + (
2θ

n2T

2

λ1
)1/2b0θx

2

)
−Φ(x)

∣∣∣∣
=: D1 +D2.

(2.5)Lemma 2.3 (b) and Esseen’s lemma immediately yield
D1 ≤ CT−1/2n−1. (2.6)

On the other hand, for all T > T0 and n > n0,
D2 ≤ 2(

2θ

n2T

2

λ1
)1/2b0θx

2(2π)−1/2 exp(−x2/2)

where
|x − x | ≤ 2(

2θ

n2T

2

λ1
)1/2b0θx

2.

Since |x | ≤ 2(log n2T )1/2, it follows that |x̄ | > |x |/2 for all T > T0 and n > n0, and consequently
D2 ≤ 2(

2θ

n2T
)1/2b0θx

2(2π)−1/2x2 exp(−x2/8)

≤ CT−1/2n−1.
(2.7)

From (2.5) - (2.7), we obtain ∣∣P {M+
n,T,x

}
−Φ(x)

∣∣ ≤ CT−1/2n−1.

This completes the proof of the theorem.
The previous theorem does not give the precise estimate of the constant in the inequality. Thefollowing theorem gives a precise estimate of the constant.

Theorem 2.2.6 We have for all T ≥ T1, there exists ε(θ) > 0 such that

sup
x∈R

∣∣∣∣∣P
{(

n2T

2θ

λ1

2

)1/2

(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤
[

0.6751 + 0.4(log n2T )−1/2) + a(θ)T−1/2n−1
]
T−1/2n−1
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where T1 ∈ R+ such that for all T ≥ T1, T−1 logT ≤ (b(θ))2 and

b(θ) :=
a2a
−1
3 (a3 − 1)

2θ
d(θ),

d(θ) := min

(
ε(θ),

a2

2θa1a3

)
,

a(θ) := (1− a2)−2a2
3(1− a3)−2ε(θ)2θ − (1− a2)−2,

a1, a2, a3, are constants (not depending on θ) satisfying: a1 > 1, 0 < a2 < 1, a3 > 1.

Proof : Denote
Fn,T,θ :=

{(
2θ

n2T

2

λ1

)
In,T > a2

}
,

Gn,T,θ,ε :=

{
Jn,T
n2T

≤ ε
(
−εa1 +

a2

2θ

)}
,

Qn,T,θ :=

{(
2θ

n2T

2

λ1

)1/2

Jn,T > (log n2T )1/2

}
,

Rn,T,θ := Fn,T,θ ∩ Gn,T,θ,d(θ),

r := a−1
2 a3(a3 − 1)−1

where a1 > 1, 0 < a2 < 1 and a3 > 1.We obtain for all ε ∈ (0, ε(θ)],
Fn,T,θ ∩ Gn,T,θ,ε ⊂ {|θ̃n,T − θ| < ε}.

We shall consider two possibilities (i) and (ii).(i) |x | > r(logT )1/2.We shall give a proof for the case x < −r(log n2T )1/2. The proof for the case x > r(log n2T )1/2runs similarly.Observe that {
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
⊂

{
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ −r(log n2T )1/2

}
∩ Fn,T,θ ∩ Gn,T,θ,d(θ)

∪ F cn,T,θ ∪ Gcn,T,θ,d(θ)

⊂ Qn,T,θ ∪ F cn,T,θ ∪ Gcn,T,θ,d(θ).

Hence
P

{
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
≤ P (Qn,T,θ) + P (F cn,T,θ) + P (Gcn,T,θ,d(θ)).
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P (Qn,T,θ) = |P (Qn,T,θ)−Φ(−(log n2T )1/2)|+ Φ(−(log n2T )1/2)

≤ [0.6751 + 0.4(log n2T )−1/2]T−1/2n−1.

Further, for r > 1,
Φ(x) ≤ Φ(−r(log n2T )1/2)

≤ Φ(−(log n2T )1/2)

≤ (2π)−1/2(log n2T )−1/2T−1/2n−1.

Thus ∣∣∣∣P {(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣
≤ [0.6751 + 0.4(log n2T )−1/2]T−1/2 + P (F cn,T,θ) + P (Gcn,T,θ,d(θ)).

(ii) |x | ≤ r(log n2T )1/2.For all T ∈ R+ with n−1T−1/2(log n2T )1/2 < r−1(2θ)−1/2d(θ), we have,{
(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
∩ Fn,T,θ ∩ Gn,T,θ,d(θ)

=

{
Jn,T + (

2θ

Tn2

2

λ1
)1/2In,T x > 0

}
∩ Fn,T,θ ∩ GT,θ,d(θ)

by arguments similar to that in the proof of Theorem 2.5. From Lemma 2.2, we have
|P {Jn,T > 0} −Φ(0)| ≤ 0.6751 T−1/2n−1.

Hence ∣∣∣∣P {(
n2T

2θ

λ1

2
)1/2(θ̃n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣
≤ 0.6751 T−1/2n−1 + P (F cn,T,θ ∪ GcnT,θ,d(θ)) + |Φ(0)−Φ(x)|.

This completes the proof of the theorem.
3. Parameter Estimation from Discrete Observations

The n Fourier modes u1, u2, . . . , un are observed at m time points ti , i = 1, 2, . . . , m. We denote
uk(ti) by ui ,k . Thus ui ,k , i = 1, 2, . . . , m; k = 1, 2, . . . , n are the observations.Recall that the linearized MLE based on continuous time observations in [0, T ] is given by

θ̂n,T = −
∫ T

0 〈A
1+2αUn, dUn〉∫ T

0 |A1+αUn|2dt
=

∑n
k=1 λ

1+2α
k

∫ T
0 ukduk∑n

k=1 λ
2+2α
k

∫ T
0 u2

kdt
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=

∑n
k=1 λ

1+2α
k (u2

k (T )− u2
k (0)− Tλ−2γ

k )

2
∑n
k=1 λ

2+2α
k

∫ T
0 u2

kdt
.

By using Itô (Euler) type approximation of the stochastic integral and rectangular approximationof the ordinary integral the approximate maximum likelihood estimator (AMLE) is given by
θ̂m,n,T =

∑n
k=1 λ

1+2α
k

∑m
i=1 ui−1,k(ui ,k − ui−1,k)

2

m∑
i=1

n∑
k=1

λ2+2α
k u2

i−1,k(ti − ti−1)

.

By applying Itô formula to the stochastic integral and rectangular approximation of the ordinaryintegral the approximate maximum likelihood estimator (AMLE1) is given by
θ̂m,n,T,1 =

∑n
k=1 λ

1+2α
k (u2

k (T )− u2
k (0)− T

n∑
k=1

λ1+2α−2γ
k

2

m∑
i=1

n∑
k=1

λ2+2α
k u2

i−1,k(ti − ti−1)

.

By applying rectangular approximation of the ordinary integral the approximate minimum contrastestimator (AMCE) is given by
θ̃m,n,T =

−T
n∑
k=1

λ1+2α−2γ
k

2

m∑
i=1

n∑
k=1

λ2+2α
k u2

i−1,k(ti − ti−1)

.

By applying trapezoidal approximation of the ordinary integral the approximate minimum contrastestimator (AMCE1) is given by
θ̃m,n,T,1 =

−T
n∑
k=1

λ1+2α−2γ
k

m∑
i=1

n∑
k=1

λ2+2α
k [u2

i−1,k + u2
i ,k ](ti − ti−1)

.

We study Berry-Esseen bounds for these estimators in this section. Bishwal and Bose (2001)studied rates of convergence of approximate maximum likelihood estimators and Bishwal (2009)studied rates of convergence of approximate minimum contrast estimator in the one dimensionalOrnstein-Uhlenbeck process.
3.1 Berry-Esseen Bounds for AMLEs

Let us introduce the notations
Ym,n,T =

m∑
i=1

n∑
k=1

λ2+2α
k uk(ti−1)[Wk(ti)−Wk(ti−1)], Yn,T =

n∑
k=1

λ2+2α
k

∫ T

0

uk(t)dWk(t),
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Zm,n,T =

m∑
i=1

n∑
k=1

λ2+2α
k uk(ti−1)[uk(ti)− uk(ti−1)], Zn,T =

n∑
k=1

λ2+2α
k

∫ T

0

uk(t)duk(t),

Im,n,T =

m∑
i=1

n∑
k=1

λ2+2α
k u2

k (ti−1)(ti − ti−1), In,T =

n∑
k=1

λ2+2α
k

∫ T

0

u2
k (t) dt,

Vm,n,T =

m∑
i=1

n∑
k=1

λ2+2α
k

∫ ti

ti−1

uk(ti−1)[uk(t)− uk(ti−1)]dt, Υ =

(
λβ1

(4β/d + 2)θ0

)1/2

.

Lemma 3.1.1

(a) E|Ym,n,T − Yn,T |2 = O(T 2n3/m),(b) E|Zm,n,T − Zn,T |2 = O(T 2n3/m),(c) E|Im,n,T − In,T |2 = O(T 4n5/m2),(d) E|Vm,n,T |2 = O(T 4n5/m2).
Proof. Let gk,i(t) := uk(ti−1)− uk(t) for ti−1 ≤ t < ti , i = 1, 2, . . . , m, k = 1, 2, . . . , n. Since

E|uk(ti−1)− uk(t)|2k ≤ C(λ−2γ
k )k(ti−1 − t)k , k = 1, 2, . . . (3.1)

E|uk(ti−1) + uk(t)|2k ≤ C(λ−2γ−2β
k T )k , k = 1, 2, . . .

(by (3.11) of Chapter 4), hence
E|Ym,n,T − Yn,T |2

= E

∣∣∣∣∣ n∑
k=1

λ2+α
k

m∑
i=1

uk(ti−1)[Wk(ti)−Wk(ti−1)]−
∫ T

0

uk(t)dWk(t)

∣∣∣∣∣
2

=

n∑
k=1

λ4+2α
k E

∣∣∣∣∫ T

0

gk,i(t)dWk(t)

∣∣∣∣2
=

n∑
k=1

λ4+2α
k

∫ T

0

E(g2
k,i(t))dt

≤ C

n∑
k=1

λ4+2α
k

m∑
i=1

∫ ti

ti−1

|ti−1 − t|dt

= C

n∑
k=1

λ2+2α
k n

(ti − ti−1)2

2
= C

T 2n3

m
.

This completes the proof of (a).Using (2.1) and the fact that
uk(ti)− uk(ti−1) =

∫ ti

ti−1

θuk(t)dt +Wk(ti)−Wk(ti−1)
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E|Zm,n,T − ZT |2

= E

∣∣∣∣∣ n∑
k=1

λ2+2α
k

m∑
i=1

uk(ti−1)[Xti − uk(ti−1)]−
n∑
k=1

λ2+2α
k

∫ T

0

uk(t)dWk(t)

∣∣∣∣∣
2

=

n∑
k=1

λ2+2α
k E|

m∑
i=1

∫ ti

ti−1

θuk(t)uk(ti−1)dt +

m∑
i=1

uk(ti−1)[Wk(ti)−Wk(ti−1)]

−
∫ T

0

θX2
t dt −

∫ T

0

uk(t)dWk(t)|2

≤
n∑
k=1

λ2+2α
k 2E|

m∑
i=1

uk(ti−1)[Wk(ti)−Wk(ti−1)]−
∫ T

0

uk(t)dWk(t)|2

+2θ2
n∑
k=1

λ2+2α
k E|

m∑
i=1

∫ ti

ti−1

uk(t)[uk(ti−1)− uk(t)]dt|2.

=: N1 + N2.

N1 is O(T
2n2

m ) by Lemma 3.3.2(a). To estimate N2 let
ψk,i(t) := uk(t)[uk(ti−1)− uk(t)]

for ti−1 ≤ t < ti , i = 1, 2, . . . , n, k = 1, 2, . . . , m. Then
n∑
k=1

λ2+2α
k E|

m∑
i=1

∫ ti

ti−1

ψk,i(t)dt|2

=

n∑
k=1

λ2+2α
k

n∑
i=1

E|
∫ ti

ti−1

ψk,i(t)dt|2 + 2

n∑
k=1

λ2+2α
k

m∑
i ,j=1,i<j

E

[∫ ti

ti−1

ψk,i(t)dt

∫ ti

ti−1

ψj(s)ds

]
=: M1 +M2.

By the boundedness of E(u4
k (t)) and (2.1) we have

E(ψ2
k,i(t))

= E{uk(t)2[uk(ti−1)− uk(t)]2}
≤ {E(u4

k (t))}1/2{E[uk(ti−1)− uk(t)]4}1/2

≤ C(ti−1 − t).

(3.2)

Note that
M1 =

n∑
k=1

λ2+2α
k

m∑
i=1

E|
∫ ti

ti−1

ψi(t)dt|2

≤
n∑
k=1

λ2+2α
k

m∑
i=1

(ti − ti−1)

∫ ti

ti−1

E(ψ2(t))dt

≤ C
T

n

n∑
k=1

λ2+2α
k

m∑
i=1

∫ ti

ti−1

(t − ti−1)dt

≤ C
T

n

n∑
k=1

λ2+2α
k

n∑
i=1

(ti − ti−1)2 = C
T 3n4

m2
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M2 =

n∑
k=1

λ2+2α
k 2

m∑
i ,j=1,i<j

E

∫ ti

ti−1

∫ ti

tj−1

[ψk,i(t)ψk,j(s)]dtds

=

n∑
k=1

λ2+2α
k 2

m∑
i ,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

E[ψi(t)ψk,j(s)]dtds.

By Lemma 3.3.1, we have
E[ψk,i(t)ψk,j(s)]

= E[uk(t)(uk(ti−1)− uk(t))uk(s)(uk(tj−1)− uk(s))]

= E[uk(t)(uk(ti−1)− uk(t))]E[uk(s)(uk(tj−1)− uk(s))]

+ E[uk(t)uk(s)]E[(uk(ti−1)− uk(t))(uk(tj−1)− uk(s))]

+ E[uk(t)(uk(tj−1)− uk(s))]E[uk(s)(uk(ti−1)− uk(t))]

=: A1 + A2 + A3.

Note that
uk(t) = λ2+2α

k

∫ t

0

eθλ1(t−u)dWu, t ≥ 0.

Let a := eθλ1 . For s ≥ t, we have
E(uk(t)uk(s))

= E(

∫ t

0

eθλ1(t−u)dWk(u))(

∫ s

0

eθλ1(s−u)dWk(u))

=

∫ t

0

eθλ1(t+s−2u)du

=
1

2θλ1
[as+t − as−t ]

Observe that
E(uk(t)− uk(ti−1))(uk(s)− uk(tj−1))

= E(uk(t)uk(s))− E(uk(t)uk(tj−1))− E(uk(ti−1)uk(s)) + E(uk(ti−1)uk(tj−1))

=
1

2θ
(as − atj−1 )[(at − ati−1 ) + (a−ti−1 − a−t)]

=
1

2θ
(s − tj−1)at

∗
[(t − ti−1a

t∗∗ + (t − ti−1)a−t
∗∗∗

](where tj−1 < t∗ < s, ti−1 < t∗∗, t∗∗∗ < t)

≤
1

2θ
(s − tj−1)at(t − ti−1)ati−1 + (s − tj−1)at(t − ti−1)a−t ]

≤ C(s − tj−1)(t − ti−1).

Thus A2 ≤ C(s − tj−1)(t − ti−1) since |E(uk(t)uk(s))| is bounded.
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|E[uk(t)(uk(ti−1)− uk(t))]|

=
1

2|θ| [a
t+ti−1 − at−ti−1 − a2t + 1]

=
1

2|θ|a
t [ati−1 − a−ti−1 − at + a−t ]

≤
1

2|θ|a
t(t − ti−1)[ati−1 + a−t ]

≤ C(t − ti−1)

and
|E[uk(s)(uk(s)− uk(tj−1)]|

=
1

2|θ| [a
2s − 1− as+tj−1 + as+tj−1 ]

=
1

2|θ|a
s [as − a−s − atj−1 + a−tj−1 ]

≤
1

2|θ|a
s(s − tj−1)[atj−1 + a−s ]

≤ C(s − tj−1).

Thus A1 ≤ C(s − tj−1)(t − ti−1).Next
|E[uk(t)(uk(s)− uk(tj−1)]|

=
1

2|θ| [a
s+t − as−t − at+tj−1 + atj−1−t ]

=
1

2|θ|a
t(as − atj−1 )

≤
1

2|θ|a
t(1− a−2t)(s − tj−1)at

≤ (a2t − 1)(s − tj−1)

≤ C(s − tj−1)

and
|E[uk(s)(uk(t)− uk(ti−1)]|

=
1

2|θ| [a
t+s − as−t − as+ti−1 + as−ti−1 ]

=
1

2|θ|a
s [at − a−t − ati−1 + a−ti−1 ]

≤
1

2|θ|a
s(t − ti−1)[ati−1 + a−t ]

≤ C(t − ti−1).



Eur. J. Stat. 1 (2021) 28Thus A3 ≤ C(s − tj−1)(t − ti−1).Hence E[fi(t)fj(s)] ≤ C(s − tj−1)(t − ti−1).

Thus
M2 = 2

n∑
k=1

λ2+2α
k

m∑
i ,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

E[fi(t)fj(s)]dtds

≤ C

m∑
i ,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

(t − ti−1)(s − tj−1)dtds

= C

n∑
k=1

λ2+2α
k

m∑
i ,j=1,i<j

(ti−1 − ti)2(tj−1 − ti)2

= Cn2
n∑
k=1

λ2+2α
k (

T

n
)4 = C

n∑
k=1

λ6
k

T 4

m2
.

Hence, N2 is O(T
3

n2 ). Combining N1 and N2 completes the proof of (b). We next prove (c).Let χk,i(t) := u2
k (ti−1)− uk(t)2, ti−1 ≤ t < ti , i = 1, 2, . . . , m, k = 1, 2, . . . , m. Then

E|Im,n,T − In,T |2

= E|
n∑
k=1

λ4+2α
k

m∑
i=1

u2
k (ti−1)(ti − ti−1)−

∫ T

0

u2
k (t)dt|2

= E|
n∑
k=1

λ4+2α
k

m∑
i=1

∫ ti

ti−1

[u2
k (ti−1)− u2

k (t)]dt|2

=

n∑
k=1

λ8+4α
k E|

m∑
i=1

∫ ti

ti−1

χk,i(t)dt|2

=

n∑
k=1

λ8+4α
k

m∑
i=1

E|
∫ ti

ti−1

χk,i(t)dt|2 + 2

n∑
k=1

λ8+4α
k

m∑
i ,j=1,i<j

E

∫ ti

ti−1

∫ tj

tj−1

χk,i(t)χj(s)dtds

=: B1 + B2.

Eχ2
k,i(t) = E[u2

k (ti−1)− uk(t)2]2

= E[uk(ti−1)− uk(t)]2[uk(ti−1) + uk(t)]2

≤ {E[uk(ti−1)− uk(t)]4}1/2{{E[uk(ti−1) + uk(t)]4}1/2

≤ C(t − ti−1)
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B1 =

n∑
k=1

λ2+2α
k

m∑
i=1

E|
∫ ti

ti−1

χk,i(t)dt|2

≤
n∑
k=1

λ2+2α
k

m∑
i=1

(ti − ti−1)

∫ ti

ti−1

E(χ2
k,i(t))dt

≤ C
T

n

n∑
k=1

λ2+2α
k

m∑
i=1

∫ ti

ti−1

(t − ti−1)dt

≤ C

n∑
k=1

λ8
k

T 3n4

m2
.

Note that
E[χi(t)χj(s)]

= E(uk(ti−1)2 − uk(t)2)(uk(tj−1)2 − uk(s)2)

= E(uk(ti−1)− uk(t))(uk(ti−1) + uk(t))(uk(tj−1)− uk(s))(uk(tj−1) + uk(s))

Now using Lemma 3.3.1 and proceeding similar to the estimation of M2 it is easy to see that
B2 ≤ C

n∑
k=1

λ8
k

T 4

n2
≤
T 4n5

m2
.

Combining B1 and B2, (c) follows.We need the following elementary lemmas to prove our main results.
Lemma 3.1.2 Let X, Y and Z be any three random variables on a probability space (Ω,F , P ) with
P (Z > 0) = 1. Then, for any ε > 0, we have

(a) sup
x∈R
|P{X + Y ≤ x} −Φ(x)| ≤ sup

x∈R
|P{X ≤ x} −Φ(x)|+ P (|Y | > ε) + ε,

(b) sup
x∈R
|P{

X

Z
≤ x} −Φ(x)| ≤ sup

x∈R
|P{X ≤ x} −Φ(x)|+ P{|Z − 1| > ε}+ ε.

Lemma 1.1 (a) is from Michel and Pfanzagl (1971) and proof of (b) is elementary. Proof of thefollowing lemma is also elementary.
Lemma 3.1.3 Let Qn, Rn, Q and R be random variables on the same probability space (Ω,F , P )

with P (Rn > 0) = 1 and P (R > 0) = 1. Suppose |Qn − Q| = OP (δ1n) and |Rn − R| = OP (δ2n)

where δ1n, δ2n → 0 as n →∞. Then,∣∣∣∣QnRn − QR
∣∣∣∣ = OP (max(δ1n, δ2n)).
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Lemma 3.1.4 (Wick’s lemma) Let (ξ1, ξ2, ξ3, ξ4) be a Gaussian random vector with zero mean. Then,

E(ξ1ξ2ξ3ξ4) = E(ξ1ξ2)E(ξ3ξ4) + E(ξ1ξ3)E(ξ2ξ4) + E(ξ1ξ4)E(ξ2ξ3).

Let Φ(·) denote the standard normal distribution function. Throughout the paper C denotes ageneric constant (perhaps depending on θ, but not on anything else).
We need the following lemmas in the sequel whose proofs are similar to those in Bishwal (2000a).

Lemma 3.1.5 For every δ > 0,
P

{∣∣∣∣2θT 2

λ1
IT − 1

∣∣∣∣ ≥ δ} ≤ CT−1δ−2.

Lemma 3.1.6

sup
x∈R

∣∣∣∣∣P
{(
−

2θ

T

2

λ1

)1/2(
θIT −

T

2

)
≤ x

}
−Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

Lemma 3.1.7

(a) E|In,T − IT |2 = O

(
T 4

n2

)
.

(b) E

∣∣∣∣ In,T + Jn,T
2

− IT
∣∣∣∣2 = O

(
T 4

n2

)
.

Part (a) is similar to that in Bishwal and Bose (2001). The proof of part (b) is analogous to part(a). We omit the details.
Theorem 3.1.1 Let αn,T := max(T−1/2(logT )1/2, T

2

n (logT )−1, T
4

n2 (logT )−1). We have,

(a) sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(αn,T ).

(b) sup
x∈R

∣∣∣P {I1/2
n,T (θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣ = O(αn,T ).

(c) sup
x∈R

∣∣∣∣∣P
{(

T

|2θ̂m,n,T |
λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(αn,T ).

Proof : (a) It is easy to see that
θ̂m,n,T − θ =

Ym,n,T
Im,n,T

+ θ
Vm,n,T
Im,n,T

(3.3)
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sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2 Ym,n,T
Im,n,T

+

(
T

−2θ

λ1

2

)1/2

θ
Vm,n,T
Im,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2 Ym,n,T
Im,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(
T

−2θ

λ1

2

)1/2 Vm,n,T
Im,n,T

∣∣∣∣∣ > ε

}
+ ε.

=: K1 +K2 + ε.

(3.4)

Note that by Lemma 1.2.1 (b)
K1 = sup

x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2 Ym,n,T
Im,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣∣P

(
−2θ
T

2
λ1

)1/2
Ym,n,T(

−2θ
T

2
λ1

)
Im,n,T

≤ x

−Φ(x)

∣∣∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−2θ

T

2

λ1

)1/2

Ym,n,T ≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{(
−2θ
T

2
λ1

)
Im,n,T − 1 > ε

}
+ ε

=: J1 + J2 + ε.

(3.5)

J1 = sup
x∈R

∣∣∣∣∣P
{(
−2θ

T

2

λ1

)1/2

(Ym,n,T − Yn,T + Yn,T ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−2θ

T

2

λ1

)1/2

Yn,T ≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{(
−2θ

T

2

λ1

)1/2

|Ym,n,T − Yn,T | > ε

}
+ ε

≤ CT−1/2 +

(
−2θ

T

2

λ1

)
E|Ym,n,T − Yn,T |2

ε2
+ ε

≤ CT−1/2 + C
T/n

ε2
+ ε. (by Corollary 1.2.3(a) and Lemma 3.3.2(a).)

(3.6)

J2 = P

{∣∣∣∣(−2θ

T

2

λ1

)
(Im,n,T − In,T + In,T )− 1

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣(−2θ

T

2

λ1

)
In,T − 1

∣∣∣∣ > ε

2

}
+ P

{(
−

2θ

T

2

λ1

)
|Im,n,T − In,T | >

ε

2

}
≤ C exp

(
Tθ

16
ε2

)
+

16θ2

T 2

E|Im,n,T − In,T |2

ε2

≤ C exp

(
Tθ

16
ε2

)
+ C

T 2/n2

ε2
.

(3.8)
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E|Vm,n,T |2 ≤ C

T 4

n2
(3.9)

Next
K2 = P

{∣∣∣∣∣
(
T

−2θ

λ1

2

)1/2

θ
Vm,n,T
Im,n,T

∣∣∣∣∣ > ε

}

= P


∣∣∣∣∣∣∣
(
−2θ
T

2
λ1

)1/2
θVm,n,T(

−2θ
T

2
λ1

)
Im,n,T

∣∣∣∣∣∣∣ > ε


= P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

θVm,n,T

∣∣∣∣∣ > δ

}
+ P

{(
−

2θ

T

2

λ1

)
Im,n,T <

δ

ε

}
(where we choose δ = ε− Cε2)

≤ P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

θVm,n,T

∣∣∣∣∣ > δ

}
+ P

{∣∣∣∣(−2θ

T

2

λ1

)
Im,n,T − 1

∣∣∣∣ > δ1

}
(where δ1 =

ε− δ
δ

= Cε)

≤ −
2θ

T
θ2E|Vm,n,T |2

δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2/n2

δ2
1

≤ C
T 3/n2

δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2/n2

δ2
1

(by (3.9) and (3.8)).

(3.10)

Now combining bounds from J1, J2, K1 and K2, we have since T/n → 0

sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ CT−1/2 + C exp

(
Tθ

16
ε2

)
+ C

T/n

ε2
+ C

T 2/n2

ε2
+ C

T 3/n2

δ2

+C exp(
Tθ

16
δ2

1) + C(
T 2/n2

δ2
1

) + ε.

(3.11)

Choosing ε = CT−1/2(logT )1/2, C large, the terms of (3.11) are of the order
O(max(T−1/2(logT )1/2, T

2

n (logT )−1, T
4

n2 (logT )−1)). This proves (a).(b) Using the expression (3.3), we have
sup
x∈R

∣∣∣P {I1/2
m,n,T (θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{
Ym,n,T

I
1/2
m,n,T

+ θ
Vm,n,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{
Ym,n,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θVm,n,TI
1/2
m,n,T

∣∣∣∣∣ > ε

}
+ ε.

=: H1 +H2 + ε.

(3.12)
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H1 = sup

x∈R

∣∣∣∣∣P
{
Ym,n,T − Yn,T + Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣+ P

{
|Ym,n,T − Yn,T |

I
1/2
m,n,T

> ε

}
+ ε.

=: F1 + F2 + ε.

(3.13)

Now
F1 = sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−2θ

T

2

λ1

)1/2

Yn,T ≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

I
1/2
m,n,T − 1

∣∣∣∣∣ > ε

}
+ ε (by Lemma 1.2.1(b))

≤ C
−1/2
T + P

{∣∣∣∣(−2θ

T

)
Im,n,T − 1

∣∣∣∣ > ε

}
+ ε (byCorollary 1.2.3(a))

≤ CT−1/2 + C exp

(
−
Tθ

16
ε2

)
+ C

T 2/n2

ε2
+ ε. (by (3.8))

(3.14)

On the other hand,
F2 = P

{
|Ym,n,T − Yn,T |

I
1/2
m,n,T

> ε

}
≤ P

{(
−2θ

T

2

λ1

)1/2

|Ym,n,T − Yn,T | > δ

}
+ P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

I
1/2
m,n,T − 1

∣∣∣∣∣ > δ1

}
(where δ = ε− Cε2 and δ1 = (ε− δ)/ε > 0)

≤

(
−2θ
T

2
λ1

)
E|Ym,n,T − Yn,T |2

δ2
+ P

{∣∣∣∣(−2θ

T

)
Im,n,T − 1

∣∣∣∣ > δ1

}
≤ C

T/n

δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2/n2

δ2
1

(from Lemma 3.3.2(a) and (3.8).)
(3.15)Using (3.15) and (3.14) in (3.13), we obtain

H1 = sup
x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ CT−1/2 + C exp

(
Tθ

16
ε2

)
+ C

T/n

δ2
+ C

T 2/n2

δ2
1

+C exp(
Tθ

16
δ2

1) + C
T 2/n2

ε2
+ ε.

(3.16)
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H2 = P

{∣∣∣∣∣θVm,n,TI
1/2
m,n,T

∣∣∣∣∣ > ε

}

= P


∣∣∣∣(−2θ

T
2
λ1

)1/2
θVm,n,T

∣∣∣∣∣∣∣∣(−2θ
T

2
λ1

)1/2
I

1/2
m,n,T

∣∣∣∣ > ε


≤ P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

θVm,n,T

∣∣∣∣∣ > δ

}
+ P

{∣∣∣∣∣
(
−2θ

T

2

λ1

)1/2

I
1/2
m,n,T

∣∣∣∣∣ < δ/ε

}
≤

(
−

2θ

T

2

λ1

)
θ2E|Vm,n,T |2

δ2
+ P

{∣∣∣∣(−2θ

T

2

λ1

)
Im,n,T − 1

∣∣∣∣ > δ1

}
(where 0 < δ < ε and δ1 = (ε− δ)/ε = Cε > 0)

≤ C
T 3/n2

δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2/n2

δ2
1

. (from (3.9) and (3.8))

(3.17)

Using (3.17) and (3.16) in (3.12) and choosing ε = CT−1/2(logT )1/2, C large, the terms of (3.12)are of the order O(max(T−1/2(logT )1/2, T
2

n (logT )−1, T
4

n2 (logT )−1)). This proves (b).(c) Let Dm,n,T =
{
|θ̂m,n,T − θ| ≤ dT

} and dT = CT−1/2(logT )1/2.On the set Dm,n,T , expanding (2|θm,n,T |)−1/2, we obtain
(
−2θ̂m,n,T

)−1/2
= (−2θ)−1/2

[
1−

θ − θ̂m,n,T
θ

]−1/2

= (−2θ)−1/2

[
1 +

1

2

(
θ − θ̂m,n,T

θ

)
+O(d2

T )

]
.

Then
sup
x∈R

∣∣∣∣∣P
{(

T

2|θ̂m,n,T |
λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

T

2|θ̂m,n,T |
λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x,Dm,n,T

}
−Φ(x)

∣∣∣∣∣+ P (Dcm,n,T ).

(3.18)

P (Dcm,n,T )

= P
{
|θ̂m,n,T − θ| > CT−1/2(logT )1/2

}
= P

{(
T

−2θ

λ1

2

)1/2

|θ̂m,n,T − θ| > C(logT )1/2(−2θ)−1/2

}
≤ C(max(T−1/2(logT )1/2,

T 2

n
(logT )−1,

T 4

n2
(logT )−1)

+2(1−Φ
(

(logT )1/2(−2θ)−1/2
) (by Theorem 5.3.3(a))

≤ C(max(T−1/2(logT )1/2,
T 2

n
(logT )−1,

T 4

n2
(logT )−1)).
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(
θ̂m,n,T
θ

)1/2

− 1

∣∣∣∣∣∣ ≤ CT−1/2(logT )1/2.

Hence upon choosing ε = CT−1/2(logT )1/2, C large we obtain∣∣∣∣∣P
{(

T

−2θ̂m,n,T

λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x,Dm,n,T

}
−Φ(x)

∣∣∣∣∣
≤

∣∣∣∣∣P
{(

T

−2θ

λ1

2

)1/2

(θ̂m,n,T − θ) ≤ x,Dm,n,T

}
−Φ(x)

∣∣∣∣∣
+P


∣∣∣∣∣∣
(
θ̂m,n,T
θ

)1/2

− 1

∣∣∣∣∣∣ > ε,DT

+ ε

(by Lemma 1.2.1(b))
≤ C(max(T−1/2(logT )1/2, T

2

n (logT )−1, T
4

n2 (logT )−1))(by Theorem 3.3.3(a)).

(3.20)

(c) follows from (3.18) - (3.20).
Theorem 3.1.2

sup
x∈R

∣∣∣∣∣P
{
Im,n,T

(
−

2θ

T

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O

(
T−1/2

∨(
Tn

m

)1/3
)
.

Proof : Let am,n,T := Zm,n,T − Zn,T , bm,n,T := Im,n,T − In,T .

By Lemma 5.3.2 E|am,n,T |2 = O

(
T 2

n

)
and E|bm,n,T |2 = O

(
T 4

n2

)
. (3.21)

From (3.5), we have
Im,n,T θ̂m,n,T =

n∑
i=1

uk(ti−1) [uk(ti)− uk(ti−1)]

=

∫ T

0

uk(t)duk(t) + am,n,T

=

∫ T

0

uk(t)dWk(t) + θ

∫ T

0

u2
k (t)dt + am,n,T .

Hence Im,n,T (θ̂m,n,T − θ) = −θbm,n,T + am,n,T .
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sup
x∈R

∣∣∣∣∣P
{
Im,n,T

(
−

2θ

T

2

λ1

)1/2

(θ̂m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(
−

2θ

T

2

λ1

)1/2

[Yn,T − θbm,n,T + am,n,T ] ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−

2θ

T

2

λ1

)1/2

Yn,T ≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(
−

2θ

T

2

λ1

)1/2

[−θbm,n,T + am,n,T ]

∣∣∣∣∣ > ε

}
+ ε

≤ CT−1/2 +

(
−

2θ

T

2

λ1

)
E| − θbm,n,T + an,T |2

ε2
+ ε

≤ CT−1/2 + C
T/n

ε2
+ ε (by Corollary 1.2.3(a) and (3.21)).

Choosing ε =
(
T
n

)1/3, the rate is O (T−1/2
∨(

T
n

)1/3
).

Theorem 3.1.3

|θ̂m,n,T − θn,T | = OP (
T 2

n
)1/2.

Proof : Note that
θ̂m,n,T − θn,T =

Zm,n,T
Im,n,T

−
Zn,T
In,T

.

From Lemma 3.2 it follows that |Zm,n,T − Zn,T | = OP (
T 2

n
)1/2 and |Im,n,T − In,T | = OP (

T 4

n2
)1/2.Now the theorem follows easily from the from the Lemma 5.2.1.

3.2 Berry-Esseen Type Bounds for AMLE1

Theorem 3.2.1 Let βn,T = O

(
T−1/2(logT )1/2

∨ T 4n3

m2
(logT )−1

)
.

(a) sup
x∈R

∣∣∣∣∣P
{(
−
T

2θ

λ1

2

)1/2

(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(βn,T ),

(b) sup
x∈R

∣∣∣P {I1/2
n,T (θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣ = O(βn,T ),

(c) sup
x∈R

∣∣∣∣∣P
{(

T

2|θ̂m,n,T,1|
λ1

2

)1/2

(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(βn,T ).

Proof. (a) From (1.8), we have
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Im,n,T θ̂m,n,T,1 =
1

2
(u2
k (T )− T )

=

∫ T

0

uk(t)duk(t)

=

∫ T

0

uk(t)dWk(t) + θ

∫ T

0

uk(t)2dt

= Yn,T + θIn,T .

Thus (
−
T

2θ

λ1

2

)1/2

(θ̂m,n,T,1 − θ)

=
(− T

2θ )1/2YT + θ(− T
2θ
λ1
2 )1/2(In,T − Im,n,T )

In,T

=
(−2θ

T
2
λ1

)1/2Yn,T + (−2θ
T

2
λ1

)1/2(In,T − Im,n,T )

(−2θ
T )In,T

.

(4.1)

Now
sup
x∈R

∣∣∣∣∣P
{(
−
T

2θ

λ1

2

)1/2

(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

(−2θ
T

2
λ1

)1/2Yn,T + (−2θ
T )1/2(In,T − Im,n,T )

(−2θ
T

2
λ1

)Im,n,T
≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣P {(−
2θ

T

2

λ1
)1/2Yn,T ≤ x

}
−Φ(x)

∣∣∣∣
+P

{∣∣∣θ(−2θ
T

2
λ1

)1/2(Im,n,T − In,T )
∣∣∣ > ε

}
+ P

{∣∣∣∣(−2θ

T

2

λ1

)
Im,n,T − 1

∣∣∣∣ > ε

}
+ 2ε

≤ CT−1/2 + θ2
(−2θ

T
2
λ1

)E |Im,n,T − In,T |2

ε2
+ C exp(

Tθ

4
ε2) + C

T 2

n2ε2
+ 2ε

(4.2)

(The bound for the 3rd term in the r.h.s. of (4.2) is from (3.8).)
≤ CT−1/2 + C

T 3

n2ε2
+ C exp(

Tθ

4
ε2) + C

T 2

n2ε2
+ ε. (4.3)

(by Lemma 3.3.2 (c))Choosing ε = CT−1/2(logT )1/2, the terms in the r.h.s. of (4.3) are of the order
O(T−1/2(logT )1/2

∨
T 4

n2 (logT )−1).
(b) From (4.1), we have

I
1/2
m,n,T (θ̂m,n,T,1 − θ) =

Yn,T + θ(In,T − Im,n,T )

I
1/2
m,n,T

.
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sup
x∈R

∣∣∣P {I1/2
m,n,T (θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

+ θ
In,T − Im,n,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ(In,T − Im,n,T )

I
1/2
m,n,T

∣∣∣∣∣ > ε

}
+ ε

=: U1 + U2 + ε.

(4.4)

We have from (3.8),
U1 ≤ CT−1/2 + C exp(

Tθ

16
ε2) + C

T 2

n2ε2
+ ε. (4.5)

Now
U2 = P

{
|θ|

∣∣∣∣∣ Im,n,T − In,TI
1/2
m,n,T

∣∣∣∣∣ > ε

}

= P

|θ|
∣∣∣(−2θ

T
2
λ1

)1/2(Im,n,T − In,T )
∣∣∣∣∣∣(−2θ

T
2
λ1

)1/2I
1/2
m,n,T

∣∣∣ > ε


≤ P

{∣∣∣∣(−2θ

T

2

λ1
)1/2

∣∣∣∣ |Im,n,T − In,T | > δ

}
+ P

{∣∣∣∣(−2θ

T
)1/2I

1/2
m,n,T − 1

∣∣∣∣ > δ1

}
(where δ = ε− Cε2 and δ1 = (ε− δ)/ε > 0)

≤ (−
2θ

T

2

λ1
)
E|Im,n,T − In,T |2

δ2
+ P

{∣∣∣∣(−2θ

T
)Im,n,T − 1

∣∣∣∣ > δ1

}
(4.6)

≤ C
T 3

n2δ2
+ C exp(

Tθ

16
δ2

1) + C
T 2/n2

δ2
1

. (4.7)

Here the bound for the first term in the r.h.s. of (4.6) comes from Lemma 3.3.2(c) and that for thesecond term is from J2 in (3.8).Now using the bounds (4.5) and (4.7) in (4.4) with ε = CT−1/2(logT )1/2, we obtain that theterms in (4.4) is of the order O(T−1/2(logT )1/2
∨

T 4

n2 (logT )−1).
(c) Let Gm,n,T :=

{
|θ̂m,n,T,1 − θ| ≤ dT

} and dT = CT−1/2(logT )1/2. On the set GT , expanding
(2|θm,n,T,1|)1/2, we obtain,

(−2θ̂m,n,T,1)−1/2 = (−2θ)1/2

[
1−

θ − θ̂m,n,T,1
θ

]−1/2

= (−2θ)1/2[1 +
1

2
(
θ − θ̂m,n,T,1

θ
) +O(d2

T )].

Then
sup
x∈R

∣∣∣∣P {(
T

2|θ̂m,n,T,1|
λ1

2
)1/2(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)

∣∣∣∣
≤ sup

x∈R

{
P (

T

2|θ̂m,n,T,1|
)1/2(θ̂m,n,T,1 − θ) ≤ x, GT

}
+ P (GcT ).



Eur. J. Stat. 1 (2021) 39Now
P (Gcm,n,T )

= P
{
|θ̂m,n,T,1 − θ| > CT−1/2(logT )1/2

}
= P

{(
−
T

2θ

λ1

2

)1/2

|θ̂m,n,T,1 − θ| > C(logT )1/2(−2θ)−1/2

}
≤ C

(
T−1/2(logT )1/2

∨ T 4

n2
(logT )−1) + 2(1−Φ logT 1/2(−2θ)−1/2

)
(by Theorem 5.4.1(a))

≤ C(T−1/2(logT )1/2
∨ T 4

n2
(logT )−1).On the set GT , ∣∣∣∣∣∣

(
θ̂m,n,T,1
θ

)1/2

− 1

∣∣∣∣∣∣ ≤ CT−1/2(logT )1/2

Hence upon choosing ε = CT−1/2(logT )1/2, C large
∣∣∣∣∣P
{(

T

−2θm,n,T,1

)1/2

(θ̂m,n,T,1 − θ) ≤ x, Gm,n,T

}
−Φ(x)

∣∣∣∣∣
≤

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θ̂m,n,T,1 − θ) ≤ x, Gm,n,T

}
+P


∣∣∣∣∣∣
(
θ̂m,n,T,1
θ

)1/2

− 1

∣∣∣∣∣∣ > ε,Gm,n,T

+ ε

(by Lemma 1.2.1 (b))
≤ C(T−1/2(logT )1/2

∨
T 4

n2 (logT )−1) (by Theorem 3.4.1(a)).
Theorem 3.2.2

sup
x∈R
|P
{
Im,n,T (−

2θ

T

2

λ1
)1/2(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)| = O(T−1/2

∨
(
T 3n2

m2
)1/3).

Proof : From (4.1) we have
In,T

(
−

2θ

T

2

λ1

)1/2

(θ̂m,n,T,1 − θ) = (−
2θ

T

2

λ1
)1/2Yn,T + θ(−

2θ

T
)1/2 2

λ1
(In,T − Im,n,T ).

Hence by Corollary 1.2.3(a) and Lemma 3.3.2(c)
sup
x∈R
|P
{
In,T (−

2θ

T

2

λ1
)1/2(θ̂m,n,T,1 − θ) ≤ x

}
−Φ(x)|

= sup
x∈R
|P
{

(−
2θ

T

2

λ1
)1/2Yn,T + θ(−

2θ

T

2

λ1
)1/2(In,T − Im,n,T ) ≤ x

}
−Φ(x)|

≤ sup
x∈R
|P
{

(−
2θ

T
)1/2Yn,T ≤ x

}
−Φ(x)|+ P

{
|θ(−

2θ

T

2

λ1
)1/2(In,T − Im,n,T )| > ε

}
+ ε

≤ CT−1/2 + C
E|In,T − Im,n,T |2

Tε2
+ ε

≤ CT−1/2 + C
T 3n3

m2ε2
+ ε

.
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Choosing ε = (T
3n3

m2 )1/3, the theorem follows.
Theorem 3.2.3 |θ̂m,n,T,1 − θT | = OP (T

2n
m ).

Proof. We have from (2.3) θn,T = Zn,T /In,T . By Itô formula it is easy to see that
θm,n,T,1 = Zm,n,T /Im,n,T

Hence applying Lemma 3.3.7 with the aid of Lemma 3.3.2(c) the theorem follows.
3.3 Berry-Essen Bounds for AMCEs

The following theorem gives the bound on the error of normal approximation of the AMCE. Notethat part (a) uses parameter dependent nonrandom norming. While this is useful for testing hy-potheses about θ, it may not necessarily give a confidence interval. The normings in parts (b) and(c) are sample dependent which can be used for obtaining a confidence interval. Following theoremshows that asymptotic normality of the AMCEs need T →∞ and T√
n
→ 0.

Theorem 3.3.1 Denote bm,n,T := O(max(T−1/2(logT )1/2, (T
4

n2 )(logT )−1)).

(a) sup
x∈R

∣∣∣∣∣P
{(
−
T

2θ

λ1

2

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(bm,n,T ),

(b) sup
x∈R

∣∣∣P {I1/2
m,n,T (θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣ = O(bm,n,T ),

(c) sup
x∈R

∣∣∣∣∣P
{(

T

2|θ̃m,n,T |
λ1

2

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O(bm,n,T ).

Proof (a) Observe that
(
−
T

2θ

λ1

2

)1/2

(θ̃m,n,T − θ) =

(
−2θ
T

2
λ1

)1/2
Yn,T(

−2θ
T

2
λ1

)
Im,n,T

(2.1)

where
Yn,T := −θIn,T −

T

2
and Im,n,T :=

∫ T

0

uk(t)2dt.

Thus, we have
Im,n,T θ̃m,n,T = −

T

2
= Yn,T + θIm,n,T .
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−
T

2θ

λ1

2

)1/2

(θ̃m,n,T − θ)

=

(
− T

2θ
λ1
2

)1/2
Yn,T + θ

(
− T

2θ

)1/2
(In,T − Im,n,T )

Im,n,T

=

(
−2θ
T

2
λ1

)1/2
Yn,T +

(
−2θ
T

2
λ1

)1/2
(In,T − Im,n,T )(

−2θ
T

)
Im,n,T

(2.2)

Further,
P

{∣∣∣∣(−2θ

T

2

λ1

)
(Im,n,T − 1)

∣∣∣∣ > ε

}
=

{∣∣∣∣(−2θ

T

2

λ1

)
(Im,n,T − In,T + In,T )− 1

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣(−2θ

T

2

λ1

)
In,T − 1

∣∣∣∣ > ε

2

}
+ P

{(
−

2θ

T

2

λ1

)
|Im,n,T − In,T | >

ε

2

}
≤ C exp

(
Tθ

16
ε2

)
+

16θ2

T 2

E|Im,n,T − In,T |2

ε2

≤ C exp

(
Tθ

16
ε2

)
+ C

T 2/n2

ε2
. (2.3)

Next, observe that
sup
x∈R

∣∣∣∣∣P
{(
−
T

2θ

λ1

2

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣∣P

(
−2θ
T

2
λ1

)1/2
Yn,T +

(
−2θ
T

2
λ1

)1/2
(In,T − Im,n,T )(

−2θ
T

2
λ1

)
Im,n,T

≤ x

−Φ(x)

∣∣∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−

2θ

T

2

λ1

)1/2

Yn,T ≤ x

}
−Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣θ
(
−

2θ

T

2

λ1

)1/2

(Im,n,T − IT )

∣∣∣∣∣ > ε

}
+ P

{∣∣∣∣(−2θ

T

2

λ1

)
Im,n,T − 1

∣∣∣∣ > ε

}
+ 2ε

≤ CT−1/2 + θ2

(
−2θ
T

2
λ1

)
E|Im,n,T − In,T |2

ε2
+ C exp

(
Tθ

4
ε2

)
+ C

T 2

n2ε2
+ 2ε, (2.4)

(the bound for the 3rd term in the right hand side of (2.4) is obtained from (2.3))
≤ CT−1/2 + C

T 2

n2ε2
+ C exp

(
Tθ

4
ε2

)
+ C

T

n2ε2
+ ε (2.5)

(by Lemma 2.3(a)).
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O(max(T−1/2(logT )1/2, (T

4

n2 )(logT )−1)).

(b) From (2.1), we have
I

1/2
m,n,T (θ̃m,n,T − θ) =

Yn,T + θ(In,T − Im,n,T )

I
1/2
m,n,T

.

Then,
sup
x∈R

∣∣∣P {I1/2
m,n,T (θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

+ θ
In,T − Im,n,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{
Yn,T

I
1/2
m,n,T

≤ x

}
−Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ(In,T − Im,n,T )

I
1/2
m,n,T

∣∣∣∣∣ > ε

}
+ ε

=: U1 + U2 + ε. (2.6)

We have from (2.3),
U1 ≤ CT−1/2 + C exp

(
Tθ

16
ε2

)
+ C

T 2

n2ε2
+ ε. (2.7)

Now,
U2 = P

{
|θ|

∣∣∣∣∣ Im,n,T − In,TI
1/2
n,T

∣∣∣∣∣ > ε

}
= P

|θ|
∣∣∣(−2θ

T

)1/2
(Im,n,T − In,T )

∣∣∣∣∣∣∣(−2θ
T

2
λ1

)1/2
I

1/2
m,n,T

∣∣∣∣ > ε


≤ P

{∣∣∣∣∣
(
−

2θ

T

2

λ1

)1/2
∣∣∣∣∣ |Im,n,T − In,T | > δ

}
+ P

{∣∣∣∣∣
(
−

2θ

T

2

λ1

)1/2

I
1/2
m,n,T − 1

∣∣∣∣∣ > δ1

}
(2.8)

(where δ = ε− Cε2 and δ1 = (ε− δ)/ε > 0)

≤
(
−

2θ

T

)
E|Im,n,T − In,T |2

δ2
+ P

{∣∣∣∣(−2θ

T

2

λ1

)
Im,n,T − 1

∣∣∣∣ > δ1

}
≤ C

T 3

n2δ2
+ C exp

(
Tθ

16
δ2

1

)
+ C

T 2

n2δ2
1

. (2.9)

Here, the bound for the first term in the right hand side of (2.7) comes from Lemma 2.2(c) and thatfor the second term is obtained from (2.3).Now, using the bounds (2.7) and (2.9) in (2.6) with ε = CT−1/2(logT )1/2, we obtain that theterms in (2.6) are of the order O(max(T−1/2(logT )1/2, (T
4

n2 )(logT )−1)).
(c) Let

Gm,n,T :=
{
|θ̃m,n,T − θ| ≤ dT

}
, and dT := CT−1/2(logT )1/2.
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On the set GT , expanding (2|θ̃m,n,T |)1/2, we obtain
(−2θ̃m,n,T )−1/2 = (−2θ)1/2

[
1−

θ − θ̃m,n,T
θ

]−1/2

= (−2θ)1/2

[
1 +

1

2

(
θ − θ̃m,n,T

θ

)]
+O(d2

T ).

Then,
sup
x∈R

∣∣∣∣∣P
{(

T

2|θ̃m,n,T |

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

{
P

(
T

2|θ̃m,n,T |

)1/2

(θ̃m,n,T − θ) ≤ x, Gm,n,T

}
+ P (Gcm,n,T ).

Now,
P (Gcm,n,T ) = P

{
|θ̃m,n,T − θ| > CT−1/2(logT )1/2

}
= P

{(
−
T

2θ

λ1

2

)1/2

|θ̃m,n,T − θ| > C(logT )1/2(−2θ)−1/2

}
≤ Cmax

(
T−1/2(logT )1/2,

T 3

n2
(logT )−1

)
+ 2(1−Φ logT 1/2(−2θ)−1/2)

(by Theorem 2.1(a))
≤ Cmax

(
T−1/2(logT )1/2,

T 3

n2
(logT )−1

)
.

On the set GT , ∣∣∣∣∣∣
(
θ̃m,n,T
θ

)1/2

− 1

∣∣∣∣∣∣ ≤ CT−1/2(logT )1/2.

Hence, upon choosing ε = CT−1/2(logT )1/2, C large, we obtain∣∣∣∣∣P
{(

T

−2θ̃m,n,T

)1/2

(θ̃m,n,T − θ) ≤ x, Gm,n,T

}
−Φ(x)

∣∣∣∣∣
≤

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θ̃m,n,T − θ) ≤ x, Gm,n,T

}∣∣∣∣∣+ P


∣∣∣∣∣∣
(
θ̃m,n,T
θ

)1/2

− 1

∣∣∣∣∣∣ > ε,Gm,n,T

+ ε

(by Lemma 1.1(b))
≤ Cmax

(
T−1/2(logT )1/2,

T 4

n2
(logT )−1

)
(by Theorem 2.1(a)).

In the following theorem, we improve the bound on the error of normal approximation usinga mixture of random and nonrandom normings. Thus asymptotic normality of the AMCEs need
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T →∞ and T
n2/3 → 0 which are sharper than the bound in Theorem 2.1.

Theorem 3.3.2

sup
x∈R

∣∣∣∣∣P
{
Im,n,T

(
−

2θ

T

2

λ1

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣ = O

(
max

(
T−1/2,

(
T 3

n2

)1/3
))

.

Proof From (2.2), we have
Im,n,T

(
−

2θ

T

)1/2

(θ̃m,n,T − θ) =

(
−

2θ

T

2

λ1

)1/2

Yn,T + θ

(
−

2θ

T

)1/2

(In,T − Im,n,T ).

Hence, by Lemma 2.1–2.3
sup
x∈R

∣∣∣∣∣P
{
Im,n,T

(
−

2θ

T

2

λ1

)1/2

(θ̃m,n,T − θ) ≤ x

}
−Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(
−

2θ

T

2

λ1

)1/2

Yn,T + θ

(
−

2θ

T

)1/2

(In,T − Im,n,T ) ≤ x

}
−Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(
−

2θ

T

)1/2

Yn,T ≤ x

}
−Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ
(
−

2θ

T

2

λ1

)1/2

(In,T − Im,n,T )

∣∣∣∣∣ > ε

}
+ ε

≤ CT−1/2 + C
E|In,T − Im,n,T |2

Tε2
+ ε ≤ CT−1/2 + C

T 3

n2ε2
+ ε.

Choosing ε = (T
3

n2 )1/3, the theorem follows.
The following theorem gives stochastic bound on the error of approximation of the continuousMCE by AMCEs.

Theorem 3.3.3

(a) |θ̃m,n,T − θ̃n,T | = OP

(
T

n

)1/2

.

(b) |θ̃m,n,T,1 − θ̃n,T | = OP

(
T 2

n2

)1/2

.

Proof From (1.9) and (1.14), we have
θ̃n,T = −

T

2In,T
, θ̃m,n,T = −

T

2Im,n,T
.

Hence, applying Lemma 1.2 with the aid of Lemma 2.3(a) and noting that | Im,n,TT | = OP (1) and
| In,TT | = OP (1) the part (a) of theorem follows.From (1.9) and (1.16), we have

θ̃n,T = −
T

2In,T
, θ̃m,n,T,1 = −

T

Im,n,T + Jm,n,T
.

Applying Lemma 1.2 with the aid of Lemma 2.3(b) and noting that |Jm,n,TT | = OP (1) and
| In,TT | = OP (1) the part (b) of theorem follows.
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3.4 First Order Asymptotic Theory

As a consequence of the above three sub-sections we obtain the consistency and asymptotic nor-mality of the AMLE, AMLE1, AMCE and AMCE1:
Theorem 3.4.1

a) θ̂m,n,T → θ in probability as n →∞ and m →∞ such that n/m2 → 0.
b) n(θ̂m,n,T − θ)→D η as n →∞ and m →∞ such that n3/m2 → 0

where η is a normal random variable with mean zero and variance 2θ(α−γ+1)2

λ1T (α−γ+1/2) .

Theorem 3.4.2
a) θ̂m,n,T,1 → θ in probability as n →∞ and m →∞ such that n/m2 → 0.
b) n(θ̂m,n,T,1 − θ)→D η as n →∞ and m →∞ such that n3/m2 → 0

where η is a normal random variable with mean zero and variance 2θ(α−γ+1)2

λ1T (α−γ+1/2) .

Theorem 3.4.3
a) θ̃m,n,T → θ in probability as n →∞ and m →∞ such that n/m2 → 0.
b) n(θ̃m,n,T − θ)→D η as n →∞ and m →∞ such that n3/m2 → 0

where η is a normal random variable with mean zero and variance 2θ(α−γ+1)2

λ1T (α−γ+1/2) .

Theorem 3.4.4
a) θ̃m,n,T,1 → θ in probability as n →∞ and m →∞ such that n/m2 → 0.
b) n(θ̃m,n,T,1 − θ)→D η as n →∞ and m →∞ such that n3/m2 → 0

where η is a normal random variable with mean zero and variance 2θ(α−γ+1)2

λ1T (α−γ+1/2) .

4. Hypothesis Testing from Continuous Observation

We estimate and control the Type I and Type II errors of a simple hypothesis testing problem of theviscosity coefficient θ of the SNS equation (1.1). We study a class of rejection regions and providethresholds that guarantee that the statistical errors are smaller than the given upper bound. Thetests are of likelihood ratio type. The proofs are based on the large deviation bounds.The problem is to test the null hypothesis H0 : θ = θ0 versus the alternative hypothesis H1 :

θ = θ1 based on continuous observation UTn where θ0 6= θ1.



Eur. J. Stat. 1 (2021) 46Without loss of generality we will assume that θ1 > θ0. We fix the level of significance α ∈ (0, 1).Suppose R ∈ B(C[0, T ];Rn)) is a rejection region for the test, i.e, if UTn ∈ R, we reject the nullhypothesis and accept the alternative hypothesis. The quantity P n,Tθ0
(R) is called the Type I errorof the test R and 1− P n,Tθ1

(R) is called the Type II error. Naturally we seek rejection region withType I error P n,Tθ0
(R) smaller than the significance level α and thus we consider the following classof rejection regions:

Kα :=
{
R ∈ B(C[0, T ];Rn)) : P n,Tθ0

(R) ≤ α
}
.Consider the test of the form

Rn = {UTn : lnL(θ0, θ1, U
n
T ) ≥ ζN}

where ζ is some number depending on n and T and N :=
∑n
k=1 λ

2β
k .Let

R#
n = {UnT : L(θ0, θ1, U

n
T ) ≥ c̃α(n)},

K̃#
α :=

{
R ∈ B(C[0, T ];Rn)) : lim sup

n→∞

√
N(P n,Tθ0

(R)− α) ≤ α̃1

}
.

where c̃α(n) is a constant depending on n and α only and α̃1 is a constant depending on α. Theprobability P n,Tθ1
(R) of the true decision under H1 is called the power of the test and the goal isto find the most powerful rejection region R∗ ∈ Kα for the observation UTn .We say that the rejection region R∗ ∈ Kα is the most powerful (has the smallest Type II error)in the class Kα if

P n,Tθ1
(R) ≤ P n,Tθ1

(R∗), for all R ∈ Kα.The corresponding test is called the most powerful test.Our main results of this section are the following:
Theorem 4.1 For sufficiently large n, under the null hypothesis H0, we have

P n,Tθ0
(R#

n ) = α+ α1n
−1 +O(n−2).

For large enough n, we have ∣∣∣P n,Tθ0
(R#

n )− α
∣∣∣ ≤ Cn−1

where C is a constant independent of n.We show that the Type I Error has the following upper bound estimate:
Theorem 4.2

P n,Tθ0
(R0

n) ≤ (1 + ρ)α.

where ρ denotes a given threshold of error tolerance.We show that the Type II Error has the following upper bound estimate:
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Theorem 4.3

1− P n,Tθ1
(R0

n) ≤ (1 + ρ) exp

(
−

(θ1 − θ0)2

16θ0
NT

)
.

Let us denote by the rejection region (likelihood ratio test) of the form
R∗n = {UnT : L(θ0, θ1, U

n
T ) ≥ cα}

where cα ∈ R such that P n,Tθ1
(L(θ0, θ1, U

n
T ) ≥ cα) = α.

As one may expect, once we have an MLE for the parameter of interest θ as well as its consis-tency, a Neyman-Pearson type lemma should give an answer to a hypothesis testing problem.
Theorem 4.4 (Neyman-Pearson Lemma)
Let cα be a real number such that

P n,Tθ0
(L(θ0, θ1, U

n
T ) ≥ cα) = α.

Then,

R∗n = {UnT : L(θ0, θ1, U
n
T ) ≥ cα}

is the most powerful rejection region in the class Kα.

For a fixed n ∈ N, let K be a generic set of rejection regions
K ⊂ {(Rn)n∈N : Rn ∈ B(C[0, T ];Rn))}.

We say that the rejection region R∗n is asymptotically most powerful, in the class K, as n →∞ if
lim inf
n→∞

1− P n,Tθ1
(Rn)

1− P n,Tθ1
(R∗n)

≥ 1

for all Rn ∈ K.We will consider classes of rejection regions that have asymptotically a Type I error close tothe significance level α. On the other hand, one would like to consider rejection regions such that
P n,Tθ1

(Rn)→ 1 as n →∞. The concept of asymptotically most powerful test depicts to those tests,within the considered class of tests, that have the fastest rate of convergence of their powers toone. P n,Tθ1
(R∗n) has the fastest rate of convergence to 1 as n →∞Under H1, the OU process is

duk(t) = −θ1λ
2β
k uk(t)dt + σλ−γk dWk(t), uk(0) = 0.

The proof uses the following results:
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Proposition 4.1 Let u = (u1, u2, · · · , un) ∈ Rn and a > 0, we set

r(u, t) :=
a(θ2

1 − θ2
0)

2σ2

n∑
k=1

λ4β+2γ
k u2

k (t),

F (u) := exp

(
−
a(θ1 − θ0)

2σ2

n∑
k=1

λ2β+2γ
k u2

k +
a(θ1 − θ0)

2
NT

)
By the Feynman-Kac formula, the function

f (u, t) = Eθ1

[
exp

(
−
∫ T

t

r(Usn, s)ds

)
F (UTn )|Utn = u

]
is the only solution to the PDE

ft +
σ2

2

n∑
k=1

λ−2γ
k fukuk − θ1

n∑
k=1

λ2β
k uk fuk = r(u, t)f , f (u, T ) = F (u).

The solution of this PDE is

f (u, t) = exp

(
n∑
k=1

αku
2
k [sinh(γkt) + βk cosh(γkt)]

cosh(γkt) + βk sinh(γkt)
+

1

2

n∑
k=1

ln

∣∣∣∣cosh(γkT ) + βk sinh(γkT )

cosh(γkt) + βk sinh(γkt)

∣∣∣∣
+
θ1

2σ2

n∑
k=1

λ2β+2γ
k u2

k +
a(θ1 − θ0) + θ1

2
NT −

θ1

2
Nt

)
where

αk = −
1

2σ2
(a(θ2

1 − θ2
0) + θ2

1)1/2λ2β+2γ
k , βk =

p cosh(γkT )− sinh(γkT )

cosh(γkT )− p sinh(γkT )

γk = −(a(θ2
1 − θ2

0) + θ2
1)1/2λ2β

k , p =
a(θ1 − θ0) + θ1

(a(θ2
1 − θ2

0) + θ2
1)1/2

.

By taking u = t = 0, we obtain

gT (a) = E[exp(a lnL(θ0, θ1, U
T
n ))] = f (0, 0)

= exp

[
−

1

2

n∑
k=1

ln(cosh(γkT )− p sinh(γkT )) +
a(θ1 − θ0) + θ1

2
NT

]
.

Note that

c(a) := lim
T→∞

ln gT (a) =
[
−(a(θ2

1 − θ2
0) + θ2

1)1/2 + a(θ1 − θ0) + θ1

] N
2
.

Let the cumulant generating function of the log-likelihood ratio be given by
gT (a) := E[exp(a lnL(θ1, θ2, U

T
n ))].

By Itô’s formula, the log-likelihood ratio is given by
lnL(θ1, θ2, U

T
n )) = −

θ1 − θ0

2σ2

n∑
k=1

λ2β+2γ
k u2

k (T ) +
θ1 − θ0

2
NT −

θ2
1 − θ2

0

2σ2

n∑
k=1

∫ T

0

λ4β+2γ
k u2

k (t)dt.

We prove large deviations as n →∞.
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Ln(a) :=

1

N
lnE[exp(a lnL(θ0, θ1, U

T
n ))].

Proposition 4.2
The log-likelihood function satisfies

lim
n→∞

1

n2
lnP [(n−2 lnL(θ0, θ1, U

T
n )) ≥ η] = −I(η), η ∈

(
(θ1 − θ0)2

4θ1
N,
θ1 − θ0

2
N

)
,

lim
n→∞

1

n2
lnP [(n−2 lnL(θ0, θ1, U

T
n )) ≤ η] = −I(η), η ∈

(
−∞,

(θ1 − θ0)2

4θ1
N

)
where I is the Legender-Fenchel transform

I(η) := sup
a>a−

(aη − c(a)) = −
(4θ1η − (θ1 − θ0)2N)2

8(2η − (θ1 − θ0)N)(θ2
1 − θ2

0)
, η <

θ1 − θ0

2
N,

I(η) = +∞, η ≥
θ1 − θ0

2
N

with

c(a) := lim
n→∞

1

n
ln gT (a), a− = −

θ2
1

θ2
1 − θ2

0

, a+ = +∞.

c(a) is proper and convex with
η− = −∞, η0 =

(θ1 − θ0)2

4θ1
N, η+ =

(θ1 − θ0)

2
N.

Using the above results, we obtain the exponential rate of convergence of the power of the test.
Theorem 4.5

P n,Tθ1
(R#

n ) = 1− exp

(
−

(θ1 − θ0)2

4θ0
NT + o(T )

)
.

CLT for the Log-Likelihood Ratio Process (LLRP)

Lemma 4.1
1

N

lnL(θ0, θ1, U
T
n )− ηN −H′(aη)n

ζη
→D N (0, 1) as n →∞

where
η <

(θ1 − θ0)2T

4θ1and
ζ2
η =

(−2η + (θ1 − θ0)T )3

(θ2
1 − θ2

0)T 2
, H′(aη) = −

1

2
ln

(
1

2
+

1

2
D(a)

)
, D(a) =

θ0 + (θ1 − θ0)a√
θ2

0 + (θ2
1 − θ2

0)a
.
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Lemma 4.2

1√
N

n∑
k=1

λ2β+γ
k

∫ T

0

uk(t)dWk(t)→D N
(

0,
σ2T

2θ0

) as n →∞
where N =

∑n
k=1 λ

2β
k .

Let
ξk := λ2β+γ

k

∫ T

0

uk(t)dWk(t).

Then E(ξk) = 0 and
V ar(ξk) = Eξ2

k = λ4β+2γ
k

∫ T

0

Eu2
k (t)dt =

σ2

2θ

[
Tλ2β

k −
1

2θ

(
1− e−2θλ2β

k T
)]
∼ k2β/d

hence using Lemma 1.2,
1√
N

∑n
k=1 λ

2β+γ
k

∫ T
0 uk(t)dWk(t)(

1
N

∑n
k=1 λ

4β+2γ
k

∫ T
0 Eu2

k (t)dt
)1/2

→D N(0, 1) as n →∞.
By basic calculus, we have

1

N

n∑
k=1

λ4β+2γ
k

∫ T

0

Eu2
k (t)dt →

σ2T

2θ0
as n →∞

Hence the CLT result follows.
We have the following CLT for quadratic variations:

Lemma 4.3
√
n

(
1

n

n∑
k=1

χ2
k − 1

)
→ N (0, 2) as n →∞

where
χ2
k :=

2θ0

σ2(1− e−2θ0λ
2β
k T )

λ2β+2γ
k u2

k (T )

for k ≥ 1.Since uk(T ) ∼d N (0, σ2
k) where

σ−2
k =

2θ0

σ2(1− e−2θ0λ
2β
k T )

λ2β+2γ
k

we have χ2
k ∼d χ2(1) for k ≥ 1. Since uk(T ) are independent, the CLT gives the result.
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5. Hypothesis Testing from Discrete Observations

We partition the time interval [0, T ] into n equally spaced time intervals 0 = t0 < t1 < . . . < tm =

T with ∆T = ti − ti−1 = T/m. For each Fourier mode is observed at m time points. We observethe process UnT discretely at m time points. The n Fourier modes are observed at the times points
ti , i = 1, 2, . . . , m. Thus ui ,k , i = 1, 2, . . . , m; k = 1, 2, . . . , n are the observations. We denotethese data by Um,nT . Recall that ui ,k := uk(ti).The problem is to test the null hypothesis H0 : θ = θ0 versus the alternative hypothesis H1 :

θ = θ1 based on discrete observations ui ,k , i = 1, 2, . . . , m; k = 1, 2, . . . , n where θ0 6= θ1.Without loss of generality, we will assume that θ1 > θ0. We fix the level of significance α ∈ (0, 1).Suppose that R ∈ B(C[0, T ];Rn)) is a rejection region for the test, i.e, if Um,nT ∈ R, we reject thenull hypothesis and accept the alternative hypothesis. Naturally, we seek rejection region withType I error Pm,n,Tθ0
(R) smaller than the significance level α and thus we consider the followingclass of rejection regions:

Kα :=
{
R ∈ B(C[0, T ];Rn)) : Pm,n,Tθ0

(R) ≤ α
}
.

Consider the test of the form
R0
m,n,T = {Um,nT : lnL(θ0, θ1, U

m,n
T ) ≥ ζN}

where ζ is some number depending on m, n and T and N :=
∑n
k=1 λ

2β
k .The probability Pm,n,Tθ1

(R) of the true decision under H1 is called the power of the test and thegoal is to find the most powerful rejection region R∗ ∈ Kα for the observation UTn .We say that the rejection region R∗ ∈ Kα is the most powerful (has the smallest Type II error)in the class Kα if
Pm,n,Tθ1

(R) ≤ Pm,n,Tθ1
(R∗) for all R ∈ Kα.Our main results of this section are the following:

Theorem 5.1 ∣∣∣Pm,n,Tθ0
(R0

m,n,T )− α
∣∣∣ ≤ Cn−1m−1/2

where C is a constant independent of n.

We show that the Type I Error has the following upper bound estimate:
Theorem 5.2

Pm,n,Tθ0
(R0

m,n,T ) ≤ (1 + ρ)α.

The Type II Error has the following upper bound estimate:
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Theorem 5.3

1− Pm,n,Tθ1
(R0

m,n,T ) ≤ (1 + ρ) exp

(
−

(θ1 − θ0)2

16θ0
NT

)
.

Let us denote by the rejection region (likelihood ratio test) of the form
R∗m,n,T = {Um,nT : L(θ0, θ1, U

m,n
T ) ≥ cα}

where cα ∈ R such that Pm,n,Tθ1
(L(θ0, θ1, U

m,n
T ) ≥ cα) = α.

As one may expect, once we have an AMLE for the parameter of interest θ as well as its con-sistency, a Neyman-Pearson type lemma should give an answer to a hypothesis testing problem.
Theorem 5.4 (Neyman-Pearson Lemma)
Let cα be a real number such that

Pm,n,Tθ0
(L(θ0, θ1, U

m,n
T ) ≥ cα) = α.

Then

R∗m,n,T = {Um,nT : L(θ0, θ1, U
m,n
T ) ≥ cα}

is the most powerful rejection region in the class Kα.

For fixed m, n ∈ N, let K be a generic set of rejection regions
K ⊂ {(Rm,n,T )m∈N, n∈N : Rm,n,T ∈ B(C[0, T ];Rn))}.

We say that the rejection region R∗m,n,T is asymptotically most powerful, in the class K, as m →
∞, n →∞ if

lim inf
m→∞,n→∞

1− Pm,n,Tθ1
(Rm,n,T )

1− Pm,n,Tθ1
(R∗m,n,T )

≥ 1

for all Rm,n,T ∈ K.We will consider classes of rejection regions that have asymptotically a Type I error close tothe significance level α. On the other hand, one would like to consider rejection regions such that
Pm,n,Tθ1

(Rm,n,T )→ 1 as m →∞, n →∞. The concept of asymptotically most powerful test depictsto those tests, within the considered class of tests, that have the fastest rate of convergence of theirpowers to one. The probability Pm,n,Tθ1
(R∗m,n,T ) has the fastest rate of convergence to 1 as m →∞and n →∞.Under H1, the OU process is

duk(t) = −θ1λ
2β
k uk(t)dt + σλ−γk dWk(t), uk(0) = 0, k ≥ 1.

Given the tools of proofs of Section 4, the proofs of Section 5 depend on the approximations ofintegrals including stochastic integrals of Section 3.
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6. Monte Carlo Method

In order to simulate the trajectories of the solution (Fourier modes), we discretize the SPDE. Letthe Euler-Maruyama scheme of the solution be
ũjk(ti) = ũjk(ti−1)− θλ2

k ũ
j
k(ti−1)∆T + σλ−αk ξjk,i , u

j
k(ti) = uk(0), 1 ≤ j ≤ l , 1 ≤ i ≤ m 1 ≤ k ≤ n

where ξjk,i are iid Gaussian random variables with zero mean and variance ∆T = T/m = ti −
ti−1, 1 ≤ i ≤ m and l denotes the number of trials in the Monte Carlo experiment for each Fouriermode. Hence ũjk(ti) is the approximation of ujk(ti) which is the true value of the k-th Fourier modeat time ti of the j-th trial in the Monte Carlo Simulation. In what follows, we will investigatehow to approximate the Type I and Type II errors of R0 test using ũjk(ti) and how the numericalerrors are related to m, l, T and n. We obtain error estimates of the corresponding Monte Carloexperiments associated with the Euler scheme. We consider β = 1 and d = 1 with the randomforcing term being space time white noise γ = 0, σ = 1. We assume that G = [0, π] and the initialvalue U0 = 0. In this case λk = k . Using the likelihood ratio and Itô formula, we get

P n,Tθ0
(R0

T ) = P n,Tθ0
(lnL(θ0, θ1, U

T
n ) ≥ ηT )

= P n,Tθ0

(
−
∑n
k=1 λ

2+2α
k (

∫ T
0 uk(t)duk(t) + θ1+θ0

2θ0

∫ T
0 uk(t)(σλγkdWk(t)− duk)) ≥ σ2ηT

θ1−θ0

)
= P n,Tθ0

(∑n
k=1 λ

2+2α
k ( θ1−θ0

2

∫ T
0 u2

k (T )− σ2λ−2γ
k T ) + (θ1 + θ0)

∫ T
0 uk(t)(σλγkdWk(t))) ≥ 2θ0σ

2ηT
θ1−θ0

)
= P n,Tθ0

(
(θ1−θ0)

2σ(θ1+θ0)
√
T
XT − YT /

√
T ≥ 2θ0σ∆η

√
T

θ2
1−θ2

0

)
where

η := −
(θ1 − θ0)2

4θ0
N +

(θ1 − θ0)2

2θ2
0T

+
(θ1 − θ0)2

2θ2
0

√
−θ0NT−1 lnα+ T−2 ln2 α,

∆η := η +
(θ1 − θ0)2

4θ0
N, XT :=

n∑
k=1

λ2+2α
k u2

k (T ), YT :=

n∑
k=1

λ2+α
k

∫ T

0

uk(t)dWk(t).

We approximate XT and YT by
X̃ jn,T :=

n∑
k=1

λ2+2α
k ũjk(tn)2, Ỹ jn,T :=

n∑
k=1

λ2+α
k

m∑
i=1

ũjk(ti−1)ξjk,i

respectively. Define
R̃0,j
m,T :=

{
θ1 − θ0

2σ(θ1 + θ0)
√
N
X̃ jm,T − Ỹ

j
m,T /
√
N ≥

2θ0σ∆η

θ2
1 − θ2

0

√
N

}
.

The approximation of P n,Tθ0
(R0

n,T ) is given by
P̃ l ,m,n,Tθ0

(R0
T ) =

1

l

l∑
j=1

I
R̃0,j
m,T
.
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Theorem 6.1 ∣∣∣P̃ l ,m,n,Tθ0

(R0
l ,n,T )− P n,Tθ0

(R0
T )
∣∣∣ ≤ Cnν/3m−1/3 + Cl−1/2.

Proof. From Bishwal (2008, Chapter 8), we have
E|(Ỹ jm,T − YT )/

√
T |2 = O(∆T ), E|X̃ jm,T −XT | = O(∆T ).

For the large number of Fourier coefficients case, for some ν ≥ 0, we have
E|(Ỹ jm,T − YT )/

√
N|2 = O(nν/m), E|X̃ jm,T −XT | = O(nν/m).

Consequently, for any ε > 0, we have
P n,Tθ0

(R̃0,j
n,T ) ≤ P n,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥

2θ0σ∆η
√
T

θ2
1 − θ2

0

− ε

)

+P n,Tθ0
|Ỹ jm,T − YT |/

√
T ) ≥ ε/2) + P n,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
|X̃ jm,T −XT | ≥ ε/2

)
.

P n,Tθ0

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T ≥

2θ0σ∆η
√
T

θ2
1 − θ2

0

− ε

)
≤ P n,Tθ0

(R0
T )(1 + Cε).

From the above results and Chebyshev inequality, we conclude that
P n,Tθ0

(R̃0,j
n,T ) ≤ P n,Tθ0

((R0
T )(1 + Cε) + Cε−1E|X̃ jm,T −XT |/

√
T + E|(Ỹ jm,T − YT )/

√
T |2

Similarly, we have
P n,Tθ0

(R̃0,j
n,T ) ≥ P n,Tθ0

((R0
T )(1− Cε)− Cε−1E|X̃ jm,T −XT |/

√
T − E|(Ỹ jm,T − YT )/

√
T |2

Combining the above two inequalities we obtain
|P n,Tθ0

(R̃0
n,T )− P n,Tθ0

(R0
n,T )| ≤ CεP n,Tθ0

(R0
T ) + Cε−1E|X̃ jm,T −XT |/

√
T + E|(Ỹ jm,T − YT )/

√
T |2

This implies that
|P n,Tθ0

(R̃0
n,T )− P n,Tθ0

(R0
n,T )| ≤ C(∆T )1/3.

V ar

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T

)
≤ C

From here one can show that
V ar

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
X̃ jm,T − Ỹ

j
m,T /
√
T

)
= V ar

(
(θ1 − θ0)

2σ(θ1 + θ0)
√
T
XT − YT /

√
T

)
+O(∆T ).

This implies that the Monte Carlo error simulations can be controlled by l−1/2 uniformly withrespect to T and n. Therefore we have the following error estimate
|P̃ l ,m,n,Tθ0

(R0
T )− P n,Tθ0

(R0
T )| ≤ C(∆T )1/3 + Cl−1/2
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