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Abstract. This article fills a gap in distribution theory and statistics by introducing a new, simpleand intuitive two-parameter unit distribution derived from the gamma distribution. It serves as acomplementary option to the existing unit gamma distribution. The main features are explored throughboth theoretical and practical approaches. Specifically, the shapes of the corresponding probabilitydensity and hazard rate functions are studied, an understandable stochastic comparison with theexisting unit gamma distribution is provided, moments and incomplete moments are expressed, momentskewness and kurtosis are computed, random numbers are generated, and a new family of distributionsis proposed. A statistical application demonstrates how the two parameters can be estimated quiteeffectively and the fit to a real data set is tested. It is also shown that the new distribution is able tooutperform four well-known two-parameter unit distributions: the beta distribution, the Kumaraswamydistribution, the unit Weibull distribution and, more importantly, the existing unit gamma distribution.An appendix lists the main codes used in the application.

1. Introduction
1.1. Context. In the field of distribution theory, much effort has been devoted to the development ofnew and flexible distributions using various techniques. See, for example, [2,3,13,18]. A particularfocus has been on lifetime distributions, which are continuous distributions with support on theinterval (0,+∞). More recently, however, attention has shifted to distributions with support onthe interval (0, 1), known as unit distributions. This shift is largely driven by the growing need tomodel modern data that lie within this interval, such as rates, proportions, normalized values andpercentages.Historically, the availability of unit distributions has been limited. Classic examples include thebeta distribution [16], the Kumaraswamy distribution [24], the Topp-Leone distribution [39], the unitgamma (UG) distribution [15,34], the arcsine distribution [4], and the standard two-sided power dis-tribution [40]. As each unit distribution has its own advantages and limitations, new proposals haveemerged to enrich the modeling possibilities. These include the unit Burr III distribution [30,37], the
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Eur. J. Stat. 10.28924/ada/stat.5.6 2unit Lindley distribution [29], the unit Weibull (UW) distribution [28], the unit Gompertz distribu-tion [27], the unit Burr XII distribution [21], the unit inverse Gaussian distribution [14], the arcsecanthyperbolic normal distribution [22], the logit-slash distribution [20], the unit power-logarithmic dis-tribution [7], the unit half-normal distribution [5], the family of variable-power distributions [8], theunit modified Burr III distribution [17], the family of composed unit distributions [10] and the familyof negation unit distributions [9].
1.2. On the UG distribution. The motivation for this article stems from the following observation:despite the wide panel of unit distributions, the UG distribution seems to be the only unit variantof the gamma distribution in the literature. This led us to investigate another variant, which turnsout to be interesting enough to be highlighted. Before going into further detail, a review of the UGdistribution is necessary. First, we define the Gam(α, β) distribution, i.e., the (classical) gammadistribution with parameters α, β > 0, by the following cumulative distribution function (cdf):

F◦(x) =


1

Γ(α)
γ(α, βx), x > 0,

0, x ≤ 0,

(1)
where γ(a, b) =

∫ b
0 x

a−1e−xdx is the lower incomplete gamma function at a, b > 0 and Γ(a) =

limb→+∞ γ(a, b) =
∫ +∞

0 xa−1e−xdx is the standard gamma function at a > 0. The correspondingprobability density function (pdf) is obtained by differentiating F◦(x), which leads to
f◦(x) =


βα

Γ(α)
xα−1e−βx , x > 0,

0, x ≤ 0.

(2)
The gamma distribution is one of the best known lifetime distributions, extending the scope of theexponential distribution by introducing the shape parameter α. It is widely used in practice toefficiently analyze waiting times, lifetimes and other positively skewed phenomena. Among otherthings, it is the basis for the definition of the UG distribution. More precisely, given a randomvariable X with this gamma distribution, the distribution of the random variable

Y = e−X (3)
is with support (0, 1), and it is known as the UG(α, β) distribution, i.e., the UG distribution withparameters α, β. The underlying idea is therefore to apply an exponential decay to the values of
X , converting them to the interval (0, 1). In this way, we also capture the key properties of thegamma distribution, such as its flexibility in shape and skewness, while adapting these propertiesfor modeling quantities that lie within this interval. Based on the cdf of the gamma distribution inEquation (1) and the transformation in Equation (3), the cdf of the UG(α, β) distribution is defined
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F?(x) =


1−

1

Γ(α)
γ[α,−β log(x)], x ∈ (0, 1),

1, x ≥ 1,

0, x ≤ 0.

(4)
The corresponding pdf follows by differentiating F?(x), which leads to

f?(x) =


βα

Γ(α)
xβ−1[− log(x)]α−1, x > 0,

0, x ≤ 0.

(5)
This function can have various increasing, decreasing, constant and unimodal shapes. In addition,the corresponding hazard rate function (hrf) allows for decreasing and bathtub shapes. Thesefeatures make the UG distribution a flexible alternative to other two-parameter unit distributions,and, in particular, a direct competitor to the beta and Kumaraswamy distributions. From a statisticalpoint of view, the various methods for estimating the two parameters involved are well known. As aresult, the UG distribution has been used in several areas, including the estimation of bacterial orviral densities in biological studies, the construction of regression models, and the development ofcontrol charts for rates and proportions. Discussions of these properties and applications can befound in [1, 12,15,26,32,34,35,38].
1.3. Contributions. The exponential transformation of a random variable with the gamma distribu-tion, as described in Equation (3), is thus central to the definition of the UG distribution. Sur-prisingly, the current literature lacks attempts to explore alternative transformations for generatingdifferent unit versions of the gamma distribution. Classical ratio-type transformations, which havebeen successfully applied to other lifetime distributions, are a natural consideration. See, forexample, [5, 17,29,30].In this context, given a random variable X with the Gam(α, β) distribution, we thought toconsider the following transformed random variable:

Z =
1

1 + X
. (6)

The idea is to apply a simple polynomial decay to the values of X , converting them to the interval
(0, 1). The distribution of Z thus forms a new unit gamma distribution that follows the spirit of theUG distribution in terms of “capturing the flexibility of the gamma distribution while adapting itfor modeling quantities that lie within (0, 1)”, but with a different functional structure. We call itthe new unit gamma (NUG) distribution, also written as NUG(α, β) to indicate the two parametersinvolved.Preliminary theoretical and practical investigations on the NUG distribution show interestingresults, enough to attract specialists in distribution theory and statisticians. Among these results,
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Eur. J. Stat. 10.28924/ada/stat.5.6 4we focus first on the determination of the most important functions, namely the cdf, pdf, hrf and thequantile function (qf). The shapes of the cdf, pdf and hrf are discussed mainly through graphicalanalysis. In particular, we show how the NUG and UG distributions are complementary in thisrespect. In a more theoretical work, we prove that the NUG distribution stochastically dominatesthe UG distribution in a first order sense. Moments, incomplete moments, measures of skewnessand kurtosis are studied using formulas and numerics. The process of generating random numbersbased on the NUG distribution is detailed. The theory concludes with a discussion of a new familyof distributions. The statistical application of the NUG distribution is then developed through asimple and accurate estimation method. A concrete application is given by using a referenced dataset in [11], on the proportion of income spent on food for a sample of households. The result obtainedshows an acceptable performance, better than that of its direct two-parameter competitors, namelythe beta distribution, the Kumaraswamy distribution, the UW distributions and, more interestingly,the UG distribution.
1.4. Organization. The contributions described above are divided into several sections, as follows:The main functions of the NUG distribution are examined in detail in Section 2. Section 3 isdevoted to its technical characteristics. The statistical work is contained in Section 4. The articleends with some concluding remarks in Section 5. The codes corresponding to the data fittingperformance of the NUG distribution are given in the appendix.

2. The NUG Distribution
2.1. Determination of the cdf and graphical analysis. The expression of the cdf of the NUGdistribution is given in the proposition below.
Proposition 2.1. Let α, β > 0. The cdf of the NUG(α, β) distribution is expressed as

F (x) =


1−

1

Γ(α)
γ

[
α, β

(
1

x
− 1

)]
, x ∈ (0, 1),

1, x ≥ 1,

0, x ≤ 0.

(7)
Proof. As mentioned in the introduction, given a random variable X with the Gam(α, β) distribution,the NUG distribution is defined by the distribution of

Z =
1

1 + X
.

Since the support of X is (0,+∞), that of Z is (0, 1), from which we immediately derive F (x) = 0for x ≤ 0 and F (x) = 1 for x ≥ 1. For x ∈ (0, 1), using the probability operator P and the cdf of
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Eur. J. Stat. 10.28924/ada/stat.5.6 5the Gam(α, β) distribution given in Equation (1), we get
F (x) = P(Z ≤ x) = P

(
1

1 +X
≤ x

)
= 1− P

(
X ≤

1

x
− 1

)
= 1− F◦

(
1

x
− 1

)
= 1−

1

Γ(α)
γ

[
α, β

(
1

x
− 1

)]
.

This completes the proof. �

As for the cdf of the UG distribution given in Equation (4), we note that the incomplete gammafunction plays a key role in defining this cdf. Figure 1 shows examples of curves of this cdf withdifferent parameter configurations. Note that the free software R is used [33], with the basic function
curve.
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Figure 1. Examples of curves of the cdf of the NUG distribution
A variety of increasingly convex and concave shapes can be observed. This gives an indicationof the flexibility of the NUG distribution, which will be refined by studying the shapes of thecorresponding pdf and hrf.

2.2. Determination of the pdf and graphical analysis. The expression of the pdf of the NUGdistribution is given in the proposition below.
Proposition 2.2. Let α, β > 0. The pdf of the NUG(α, β) distribution is expressed as

f (x) =


βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/x , x ∈ (0, 1),

0, x 6∈ (0, 1).

(8)
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Proof. We proceed by differentiating the cdf of the NUG distribution determined in Equation (7).For x 6∈ (0, 1), it is clear that f (x) = F ′(x) = 0. For x ∈ (0, 1), using the standard differentiationrules of the composite function, we have
f (x) = F ′(x) =

{
1−

1

Γ(α)
γ

[
α, β

(
1

x
− 1

)]}′
=

βα

Γ(α)

1

x2

(
1

x
− 1

)α−1

e−β(1/x−1)

=
βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/x .

This ends the proof. �

Compared to the pdf of the UG distribution expressed in Equation (5), the pdf of the NUGdistribution deals mainly with simple power functions, which are more manageable than the powerof the minus logarithmic function. We also note the presence of an exponential term, which playsa crucial role for values around x = 0. The pdf of the UG distribution does not have this feature.Figure 2 shows examples of curves of this pdf with different parameter configurations.
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Figure 2. Examples of curves of the pdf of the NUG distribution
We observe different types of shapes, but mainly unimodal shapes. Compared to the pdf of theUG distribution, the pdf of the NUG distribution lacks decreasing shapes, but can reach a widervariety of unimodal shapes, including left-skewed, nearly symmetric and right-skewed unimodalshapes.

2.3. Determination of the hrf and graphical analysis. The expression of the hrf of the NUG dis-tribution is given in the proposition below.
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Proposition 2.3. Let α, β > 0. The hrf of the NUG(α, β) distribution is expressed as

h(x) =

β
αeβ

x−α−1(1− x)α−1e−β/x

γ [α, β (1/x − 1)]
, x ∈ (0, 1),

0, x 6∈ (0, 1).

Proof. The desired expression follows from the definition of a hrf, that is
h(x) =

f (x)

1− F (x)
,

for x ∈ (0, 1), and h(x) = 0 for x 6∈ (0, 1), combined with the expressions of F (x) and f (x) givenin Equations (7) and (8), respectively. This ends the proof. �

As with the pdf, the shapes of the corresponding hrf are informative about the modeling powerof a distribution. With this in mind, Figure 3 shows examples of curves of the hrf of the NUGdistribution with different parameter configurations.
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Figure 3. Examples of curves of the hrf of the NUG distribution
We observe that it allows increasing and bathtub shapes. This contrasts with the hrf of the UGdistribution, which allows decreasing shapes in addition to bathtub shapes. Thus, the NUG andUG distributions can be seen as complementary in this respect.

2.4. Determination of the qf. The expression of the qf of the NUG distribution is given in theproposition below.
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Proposition 2.4. Let α, β > 0. The qf of the NUG(α, β) distribution is expressed as

Q(y) =


β

β + γ−1[α, (1− y)Γ(α)]
, y ∈ (0, 1),

0, y 6∈ (0, 1),

where γ−1(a, b) is the inverse lower incomplete gamma function with respect to b, i.e., γ[a, γ−1(a, b)] =

b, at a, b > 0.

Proof. By the general definition of a qf, we must have F [Q(y)] = y for y ∈ (0, 1). Using theexpression of F (x) in Equation (7), for y ∈ (0, 1), the following equivalences hold true:
F [Q(y)] = y ⇔ 1−

1

Γ(α)
γ

{
α, β

[
1

Q(y)
− 1

]}
= y

⇔ γ

{
α, β

[
1

Q(y)
− 1

]}
= (1− y)Γ(α)

⇔ β

[
1

Q(y)
− 1

]
= γ−1 [α, (1− y)Γ(α)]

⇔
1

Q(y)
= 1 +

1

β
γ−1 [α, (1− y)Γ(α)]

⇔ Q(y) =
β

β + γ−1[α, (1− y)Γ(α)]
.

This ends the proof. �

Various quantile measures can be derived from this qf. Examples include the median given by
M = Q(1/2), the interquartile range given by I = Q(3/4) − Q(1/4), and the quartile skewnessgiven by K = [Q(3/4)−M]/[M −Q(1/4)]. We can also use this qf to generate random numbersfrom the NUG distribution, although a more direct approach can be considered, as described inSubsection 3.5. For more details on these measures, see [19,31].The next section is devoted to some technical characteristics of the NUG distribution.

3. Technical Characteristics
3.1. Stochastic comparison with the UG distribution. The proposition below shows a first-orderstochastic dominance involving the UG and NUG distributions. The complete theory on the notionof stochastic dominance can be found in [36].
Proposition 3.1. Let α, β > 0. Then the NUG(α, β) distribution first-order stochastic dominates
the UG(α, β) distribution, i.e., for any x ∈ R, we have

F (x) ≤ F?(x),

where F?(x) and F (x) are given in Equations (4) and (7), respectively.

https://doi.org/10.28924/ada/stat.5.6


Eur. J. Stat. 10.28924/ada/stat.5.6 9

Proof. We consider the random variable transformations at the basis of the UG and NUG distribu-tions. More precisely, given a random variable X with the Gam(α, β) distribution, Y = e−X hasthe UG(α, β) distribution and Z = 1/(1 +X) has the NUG(α, β) distribution. Using the followingwell-known exponential inequality: ex ≥ 1 + x for x ≥ 0 (which is in fact extended to x ∈ R), wehave
Y = e−X ≤

1

1 +X
= Z.

As a result, for any x ∈ R, we have {Z ≤ x} ⊆ {Y ≤ x}, which implies that
F (x) = P(Z ≤ x) ≤ P(Y ≤ x) = F?(x).

This ends the proof. �

This result highlights the different stochastic characteristics of the NUG and UG distributions,despite having the same support and being defined on the same gamma distribution baseline.
3.2. Moments. Due to the complexity of the pdf, the moments associated with the NUG distributiondo not have simple analytical expressions. However, they can be expressed as specific series. Thisis precisely formulated in the result below.
Proposition 3.2. Let α ∈ (0,+∞)\N, β > 0, r ∈ R and Z be a random variable with the
NUG(α, β) distribution. Then we have

E(Zr ) =
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ(α− r − k, β),

where E is the expectation operator, Γ(a, b) = Γ(a) − γ(a, b) =
∫ +∞
b xa−1e−xdx is the upper

incomplete gamma function at a, b > 0, and
(
a
k

)
= a(a − 1) . . . (a − k + 1)/k! is the generalized

binomial coefficient at a > 0 and k ∈ N.
For the special case where α ∈ N\{0}, the following finite series expansion holds:

E(Zr ) =
βreβ

Γ(α)

α−1∑
k=0

(−1)k
(
α− 1

k

)
βkΓ(α− r − k, β).

Proof. Based on the pdf of the NUG distribution defined in Equation (8), the law of the unconsciousstatistician gives
E(Zr ) =

∫ +∞

−∞
x r f (x)dx =

∫ 1

0

x r f (x)dx =

∫ 1

0

x r
βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/xdx. (9)

For x ∈ (0, 1) and α ∈ (0,+∞)\N, the generalized binomial decomposition ensures that
(1− x)α−1 =

+∞∑
k=0

(−1)k
(
α− 1

k

)
xk .
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Eur. J. Stat. 10.28924/ada/stat.5.6 10Using this and exchanging the symbols integral and sum by the Fubini theorem, we obtain∫ 1

0

x r
βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/xdx

=
βαeβ

Γ(α)

∫ 1

0

x r−α−1

[
+∞∑
k=0

(−1)k
(
α− 1

k

)
xk

]
e−β/xdx

=
βαeβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)∫ 1

0

x r−α−1+ke−β/xdx. (10)
Applying the change of variables y = β/x , we get∫ 1

0

x r−α−1+ke−β/xdx =

∫ β

+∞

(
β

y

)r−α−1+k

e−y
(
−
β

y2
dy

)
= βr−α+k

∫ +∞

β

yα−r−k−1e−ydy

= βr−α+kΓ(α− r − k, β). (11)
Combining Equations (9), (10) and (11), we find that

E(Zr ) =
βαeβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βr−α+kΓ(α− r − k, β)

=
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ(α− r − k, β).

For the special case where α ∈ N\{0}, we can use the standard binomial decomposition insteadof the generalized binomial decomposition, which gives
(1− x)α−1 =

α−1∑
k=0

(−1)k
(
α− 1

k

)
xk .

The desired finite series expression follows with the same arguments as above. This concludes theproof. �

In this proposition, we can see that r ∈ R, including the inverse moments associated with theNUG distribution by taking r negative.In the case where α ∈ (0,+∞)\N, we can derive an acceptable finite series approximation ofthe moments by replacing +∞ with a large integer. More precisely, in the setting of Proposition3.2, taking δ = 100, we have
E(Zr ) ≈

βreβ

Γ(α)

δ∑
k=0

(−1)k
(
α− 1

k

)
βkΓ(α− r − k, β).

This is of some computational interest as an alternative to integral approximation techniques.On the other hand, the moments are also essential for defining standard measures of skewnessand kurtosis. This aspect is considered in Subsection 3.4.
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Proposition 3.3. Let α, β > 0, Y be a random variable with the UG(α, β) distribution, Z be
a random variable with the NUG(α, β) distribution and g : (0, 1) → R be an non-decreasing
function. Then we have

E[g(Y )] ≤ E[g(Z)].

This inequality is reversed if g is assumed to be non-increasing rather than non-decreasing.

Proof. By the definitions of the UG and NUG distributions, we can introduce a random variable Xwith the Gam(α, β) distribution such that Y = e−X and Z = 1/(1 + X). Using the well-knownexponential inequality: ex ≥ 1 + x for x ≥ 0, we have
Y = e−X ≤

1

1 +X
= Z.

It follows from the non-decreasing property of g that g(Y ) ≤ g(Z), and by taking the expectationon both sides, we get
E[g(Y )] ≤ E[g(Z)].

Obviously this inequality is reversed if g is assumed to be non-increasing instead of non-decreasing.This completes the proof. �

This result shows that some moment measures or functions of the UG and NUG distributionscan be compared. For example, in the framework of Proposition 3.3, we have E(Y 2) ≤ E(Z2) and,for any s ≥ 0, E(e−sZ) ≤ E(e−sY ), which is an inequality involving the Laplace transform of theUG and NUG distributions at s .
3.3. Incomplete moments. The series methodology developed for the moments associated with theNUG distribution can be extended to the incomplete moments, as shown below.
Proposition 3.4. Let α ∈ (0,+∞)\N, β > 0, r ∈ R, ε ∈ (0, 1) and Z be a random variable with
the NUG(α, β) distribution. Then we have

E(Zr1{Z≤ε}) =
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ

(
α− r − k,

β

ε

)
,

where 1{Z≤ε} = 1 if the event {Z ≤ ε} is realized, otherwise 1{Z≤ε} = 0. For the special case
where α ∈ N\{0}, the following finite series expansion holds:

E(Zr1{Z≤ε}) =
βreβ

Γ(α)

α−1∑
k=0

(−1)k
(
α− 1

k

)
βkΓ

(
α− r − k,

β

ε

)
.
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Proof. The proof follows the line of that in Proposition 3.2. However, for the sake of completeness,we explain it in detail below. Considering that ε ∈ (0, 1), the law of the unconscious statisticiangives
E(Zr1{Z≤ε}) =

∫ ε

−∞
x r f (x)dx =

∫ ε

0

x r f (x)dx =

∫ ε

0

x r
βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/xdx. (12)

It follows from the generalized binomial decomposition that, for x ∈ (0, ε) ⊆ (0, 1) and α ∈
(0,+∞)\N,

(1− x)α−1 =

+∞∑
k=0

(−1)k
(
α− 1

k

)
xk .

Using this and exchanging the symbols integral and sum by the Fubini theorem, we obtain∫ ε

0

x r
βαeβ

Γ(α)
x−α−1(1− x)α−1e−β/xdx

=
βαeβ

Γ(α)

∫ ε

0

x r−α−1

[
+∞∑
k=0

(−1)k
(
α− 1

k

)
xk

]
e−β/xdx

=
βαeβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)∫ ε

0

x r−α−1+ke−β/xdx. (13)
Applying the change of variables y = β/x , we get∫ ε

0

x r−α−1+ke−β/xdx =

∫ β/ε

+∞

(
β

y

)r−α−1+k

e−y
(
−
β

y2
dy

)
= βr−α+k

∫ +∞

β/ε

yα−r−k−1e−ydy

= βr−α+kΓ

(
α− r − k,

β

ε

)
. (14)

Combining Equations (12), (13) and (14), we establish that
E(Zr1{Z≤ε}) =

βαeβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βr−α+kΓ

(
α− r − k,

β

ε

)
=
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ

(
α− r − k,

β

ε

)
.

For the special case where α ∈ N\{0}, using the standard binomial decomposition instead ofthe generalized binomial decomposition gives the claimed formula. This ends the proof. �

Clearly, if we apply ε→ 1, Proposition 3.4 becomes Proposition 3.2; it thus can be viewed as ageneralization.Like for the moments, in the case where α ∈ (0,+∞)\N, we can derive an acceptable finiteseries approximation of the incomplete moments by replacing +∞ with a large integer. More
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E(Zr1{Z≤ε}) ≈

βreβ

Γ(α)

δ∑
k=0

(−1)k
(
α− 1

k

)
βkΓ

(
α− r − k,

β

ε

)
.

A result about complementary incomplete moments, which is a consequence of Propositions 3.2and 3.4, concludes this subsection.
Proposition 3.5. Let α ∈ (0,+∞)\N, β > 0, r ∈ R, ε ∈ (0, 1) and Z be a random variable with
the NUG(α, β) distribution. Then we have

E(Zr1{Z>ε}) =
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkγ

(
α− r − k,

β

ε

)
.

For the special case where α ∈ N\{0}, the following finite series expansion holds:

E(Zr1{Z>ε}) =
βreβ

Γ(α)

α−1∑
k=0

(−1)k
(
α− 1

k

)
βkγ

(
α− r − k,

β

ε

)
.

Proof. We clearly have
E(Zr1{Z>ε}) = E(Zr )− E(Zr1{Z≤ε}).It follows from this, Propositions 3.2 and 3.4, and γ(a, b) = Γ(a)− Γ(a, b) that

E(Zr1{Z>ε}) =
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ (α− r − k)

−
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkΓ

(
α− r − k,

β

ε

)
=
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βk
[

Γ (α− r − k)− Γ

(
α− r − k,

β

ε

)]
=
βreβ

Γ(α)

+∞∑
k=0

(−1)k
(
α− 1

k

)
βkγ (α− r − k) .

The finite series formula can be derived in a similar way. This concludes the proof. �

Such incomplete moments are useful for characterizing partial properties of the NUG distribution,such as conditional means or truncated moments. We do not develop this aspect further.
3.4. Moments skewness and kurtosis. Even if we already have some knowledge about the skewnessand kurtosis of the NUG distribution thanks to the shape analysis of its pdf, it can be interesting tohave some numerical benchmarks on these aspects. We can therefore study some moment measuresassociated with the NUG distribution, such as the moment skewness and moment kurtosis. Givena random variable Z with the NUG(α, β) distribution, the moment skewness is defined by

C(Z) = E

{[
Z − E(Z)

σ(Z)

]3
}
,
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σ(Z) =

√
E {[Z − E(Z)]2}.It can be interpreted as follows: if C(Z) is greater than 0, the NUG distribution is positively skewed,if C(Z) is less than 0, the NUG is negatively skewed, and if C(Z) ≈ 0, the NUG distribution isnearly symmetric.In addition to the moment skewness, the moment kurtosis is defined by

D(Z) = E

{[
Z − E(Z)

σ(Z)

]4
}
.

It can be interpreted as follows: with the usual reference to the standard normal distribution as abenchmark, if D(Z) is greater than 3, the NUG distribution is leptokurtic, if D(Z) is less than 3,the NUG distribution is platykurtic, and if D(Z) ≈ 3, the NUG distribution is mesokurtic.With a view to analyzing the skewness and kurtosis of the NUG distribution, Table 1 presentsthe values of E(Z), E(Z2), σ(Z), C(Z) and D(Z) with different parameter configurations. Thesoftware R is used with the basic function integrate.
Table 1. Numerical values of E(Z), E(Z2), σ(Z), C(Z) and D(Z), where Z is arandom variable with the NUG(α, β) distribution with different parameter configu-rations

E(Z) E(Z2) σ(Z) C(Z) D(Z)

α = 0.1, β = 0.3 0.887 0.832 0.213 -2.059 6.176
α = 1, β = 0.5 0.461 0.269 0.237 0.481 2.214
α = 0.2, β = 1 0.891 0.822 0.169 -1.842 5.692
α = 2, β = 1 0.404 0.193 0.173 0.715 3.005
α = 1, β = 2 0.723 0.555 0.180 -0.417 2.298
α = 3, β = 8 0.744 0.564 0.106 -0.285 2.654
α = 4, β = 6 0.622 0.400 0.115 0.056 2.596
α = 8, β = 3 0.291 0.090 0.075 0.766 3.840

From this table, we can see that C(Z) can be greater than 0, less than 0 or approximately
0, meaning that the NUG distribution can have all skewness states. Furthermore, D(Z) can begreater than 3, less than 3 or approximately 3, meaning that the NUG distribution can have allkurtosis states. This highlights the flexibility of the NUG distribution in these aspects.
3.5. Random number generation. Thanks to the stochastic structure of the NUG distribution, gen-erating random numbers from a random variable Z with the NUG(α, β) distribution is straightfor-ward. If n is the desired value, the process is as follows:
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Eur. J. Stat. 10.28924/ada/stat.5.6 15(1) Fix α, β > 0.(2) Generate n random numbers from a random variable X with the Gam(α, β) distribution,say
x1, . . . , xn.

For example, with the software R, we can use the basic function rgamma.(3) For any i = 1, . . . , n, calculate
zi =

1

1 + xi
.

(4) The desired numbers are z1, . . . , zn.We now make a simple graphical representation of this process. We generate four samples of
n = 2500 random numbers from Z, each taken under a particular parameter configuration, and plotthe corresponding frequency histograms in Figure 4.
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Figure 4. Frequency histograms of four sample of n = 2500 random numbers gen-erated from a random variable Z with the NUG(α, β) distribution for the followingparameter configurations: (a) α = 0.4 and β = 0.8, (b) α = 3 and β = 4, (c) α = 4and β = 3, and (d) α = 4 and β = 0.5
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Eur. J. Stat. 10.28924/ada/stat.5.6 16As expected, the general shapes of the frequency histograms correspond to those observed forthe pdf of the NUG distribution in Figure 1.
3.6. NUG family of distributions. With a simple composed scheme, the NUG distribution can beused to generate various kinds of distributions, with different supports. Given a baseline continuousdistribution with the cdf G(x), x ∈ R, using the cdf of the NUG distribution determined in Equation(7), we define the NUG family of distributions by the following composite cdf:

Ff am(x) = F [G(x)]

= 1−
1

Γ(α)
γ

[
α, β

(
1

G(x)
− 1

)]
, x ∈ R.

Denoting g(x) the pdf associated with G(x) and using the pdf of the NUG distribution given inEquation (8), the pdf of the NUG family of distributions is expressed as
ff am(x) = g(x)f [G(x)]

= g(x)
βαeβ

Γ(α)
G(x)−α−1(1− x)α−1e−β/G(x), x ∈ R.

We briefly specify this family by considering the standard normal distribution for the baseline, i.e.,with the integral form cdf given by
G(x) = Φ(x) =

∫ x

−∞

1√
2π
e−t

2/2dt, x ∈ R

and the corresponding pdf expressed as
g(x) =

1√
2π
e−x

2/2, x ∈ R.

The NUG normal distribution is thus defined by the following pdf:
f†(x) =

1√
2π
e−x

2/2β
αeβ

Γ(α)
Φ(x)−α−1 [1−Φ(x)]α−1 e−β/Φ(x), x ∈ R.

By construction, it forms a new skewed version of the normal distribution. Figure 5 shows examplecurves of this pdf with different parameter configurations.
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Figure 5. Sample of curves of the pdf of the NUG normal distribution
Different skewed shapes are observed, especially right-skewed shapes with different degrees ofskewness.The different types of distributions that can generate the NUG distribution deserve a full study,which we leave to future work.The next section is devoted to the statistical application of the NUG distribution.

4. Statistical application
This section is devoted to the statistical application of the NUG distribution, with emphasis onits remarkable modeling accuracy.

4.1. Estimation method. The maximum likelihood (ML) is one of the best known parametric esti-mation methods. Its theory and practice are fully understood, which guarantees its effectiveness inmost statistical scenarios [6]. In the context of the NUG(α, β) distribution, under the assumptionthat α and β are unknown, the ML method is described below. Let n be the number of data and
x1, . . . , xn be data that lie in the interval (0, 1) and that are assumed to be possibly in distributionaladequacy with the NUG distribution. Based on the pdf given in Equation (8), the ML estimates of
α and β are given by the following “argmaxima”:

(α̂, β̂) = argmax(α,β)∈(0,+∞)2

n∑
i=1

log[f (xi)]

= argmax(α,β)∈(0,+∞)2

n∑
i=1

log

[
βαeβ

Γ(α)
x−α−1
i (1− xi)α−1e−β/xi

]
.
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Eur. J. Stat. 10.28924/ada/stat.5.6 18Note that the logarithmic term can be developed further, but is not of interest here; after this effortin a parallel work, it appears that the ML estimates α̂ and β̂ have no closed form expression.However, they can be calculated using scientific software such as R and the basic function nlminb.Once these estimates are obtained, we can derive the estimated pdf by a classical substitutionapproach, that is
f̂ (x) =

β̂α̂eβ̂

Γ(α̂)
x−α̂−1(1− x)α̂−1e−β̂/x (15)

for x ∈ (0, 1). This function can be thought of as the best fit that the pdf of the NUG distribution canmake to the data under consideration. Ideally, it should efficiently fit the shape of the correspondingnormalized histogram.
4.2. Distribution comparison. In this study, given a data set, two different criteria are considered tocompare different distributions. These are the Akaike information criterion (AIC) and the Bayesianinformation criterion (BIC), which are briefly discussed below in the context of the NUG distribution.The AIC is given by

AIC = 2k − 2

n∑
i=1

log
[
f̂ (xi)

]
,

where f̂ (x) is given in Equation (15) and k is the number of parameters (in this case, k = 2). TheAIC evaluates the quality of the distribution by balancing the goodness of fit with the complexityof the distribution. A lower AIC value indicates a better-fitting distribution.The BIC is given by
BIC = k log(n)− 2

n∑
i=1

log
[
f̂ (xi)

]
.

It is similar to the AIC but imposes a stronger penalty on complex distributions. While both AICand BIC assess the fit and complexity of the distribution, the BIC is more stringent when it comesto penalizing the inclusion of additional parameters. As with the AIC, a lower BIC value indicatesa better-fitting distribution.We also consider four famous unit distributions as competitors, also defined with two parameters
α, β > 0: the beta, Kumaraswamy, UW and UG distributions, which are briefly described below.The beta distribution is defined by the following pdf:

f∨(x) =


1

B(α, β)
xα−1(1− x)β−1, x ∈ (0, 1),

0, x 6∈ (0, 1),

where B(a, b) =
∫ 1

0 x
a−1(1−x)b−1dx is the standard beta function. The beta distribution is one ofthe most commonly used unit distributions. See also the book [16], which gives a complete overviewof its theory and applications.
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f4(x) =

αβxα−1(1− xα)β−1, x ∈ (0, 1),

0, x 6∈ (0, 1).It can be presented as a more manageable functional alternative to the pdf of the beta distribution.The details of this distribution can be found in [24].The UW distribution is defined by the following pdf:
f�(x) =


α

βα
1

x
[− log(x)]α−1e−[− log(x)/β]α , x ∈ (0, 1),

0, x 6∈ (0, 1).This is a slightly modified parameter version of [28], more closely related to the pdf implementedin the function dweibull of R.Finally, we recall that the UG distribution is defined by the pdf in Equation (5).The remainder of this section is devoted to the concrete application of the NUG distribution infitting a real data set, and its fitting comparisons with the above competitors.
4.3. Real data analysis. We consider a data set derived from [11], described as the proportion ofincome spent on food for 38 households in a large US city. It is freely available in the R package
betareg and can be retrieved precisely by the following commands involving a division operation:
FoodExpenditure$food / FoodExpenditure$income. This data set has also been used in [10]for a similar purpose.First, a summary of the data is given in Table 2.

Minimum First quartile Median Mean Third quartile Maximum0.1075 0.2269 0.2611 0.2897 0.3469 0.5612
Table 2. Basic summary of the consided data

We also represent the frequency histogram of the data and the corresponding boxplot in Figure6.
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Figure 6. (a) Frequency histogram and (b) boxplot of the data

From this figure, we can see that the data are right skewed and have two values that can beconsidered as outliers. Given its shape, the NUG distribution is a candidate for a two-parameterunit distribution that can fit them.After carrying out the ML estimation of the parameters of the unit distributions under consid-eration and the calculation of their respective AIC and BIC, we summarize the results obtained inTable 3.
Distribution α̂ β̂ AIC BICNUG 4.543241 1.578676 -68.271292 -64.996120UW 4.128786 1.424609 -67.868722 -64.593549UG 13.26089 10.22977 -67.12632 -63.85115beta 6.07164 14.82210 -66.69289 -63.41772Kumaraswamy 2.954554 26.965413 -62.978199 -59.703027

Table 3. Parameter estimates, AIC, and BIC for five different two-parameter unitdistributions, including the NUG distribution
With the lowest AIC and BIC, the NUG distribution can be considered the best for fitting. Itis followed by the UW distribution, which is known to be particularly efficient for such fittingexercises [28]. Furthermore, to highlight the significance of the results, we mention that the NUGdistribution can outperform certain three-parameter unit distributions. In particular, it is indicatedin [10, Table 2] that, for the same data set, the I-UDa distribution has an AIC of −67.337 andthe II-UDa distribution has an AIC of −67.400, both of which are greater than that of the NUGdistribution, i.e., AIC = −68.271292 (and also greater than that of the UW distribution, i.e.,

AIC = −67.868722).
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Eur. J. Stat. 10.28924/ada/stat.5.6 21We also note that, for the NUG distribution, the ML estimates of α and β are given by
α̂ = 4.543241, β̂ = 1.578676.

As a result, the corresponding estimated pdf is
f̂ (x) =

1.5786764.543241e1.578676

Γ(4.543241)
x−4.543241−1(1− x)4.543241−1e−1.578676/x

for x ∈ (0, 1), with Γ(4.543241) ≈ 12.35455.To visualize the efficiency of our approach, the curve of this estimated pdf is plotted over thenormalized histogram of the data in Figure 7.
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Figure 7. Curve of the estimated pdf of the NUG distribution over the normalizedhistogram of the data
We can see that the red curve captures well the overall shape of the histogram, including thetwo outliers. This simple but significant data analysis shows that the NUG distribution should beconsidered among the notable two-parameter unit distributions. It clearly has potential for furtherapplications in various areas of statistics.To ensure reproducibility, we conclude this section by noting that the main codes used for thisanalysis are provided in the appendix.

5. Conclusion
This article shows that much remains to be done in the theory and practice of unit distribu-tions, using simple transformations and the well-known lifetime distributions. This claim has beenillustrated by considering the NUG distribution, which is a new and simple two-parameter unit
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Eur. J. Stat. 10.28924/ada/stat.5.6 22variant of the gamma distribution. We have compared it with the existing unit gamma distribution,i.e., the UG distribution, to see how they complement each other. The theoretical properties ofthe NUG have been examined in detail with formulas for the main functions, moments and vari-ous stochastic properties. A random number generation process is presented and validated witha numerical study, also supported graphically. The theory concludes with a brief presentation ofthe NUG family of distributions. Statistical analysis on a famous real data set shows that theNUG distribution fits better than four famous two-parameter unit distributions, namely the betadistribution, the Kumaraswamy distribution, the unit Weibull distribution and, more importantly,the existing unit gamma distribution.The logical perspectives of this work include the points below.
• A more detailed study of the NUG family of distributions, together with applications ofsome members of this family in data analysis.
• A possible regression model using the NUG distribution as the response variable in ageneralized regression framework, assessing its fit relative to traditional unit distributionsbased on real-world proportional data.
• The extension of the NUG distribution to allow for more flexible structures, such as theinclusion of shape parameters aiming to provide greater control over skewness and kurtosis.
• The investigation of potential copula models using the NUG distribution, exploring itsapplicability in modeling dependence structures in multivariate data.
• The use of the NUG distribution in machine learning, particularly in probabilistic model-ing, generative adversarial networks (GANs), and neural network-based density estimationtechniques.

All these aspects need to be further explored to improve the theoretical understanding and practicalapplicability of the NUG distribution in statistical modeling and data analysis.
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References
[1] M.F. Akram, S. Ali, I. Shah, G. Marcon, Unit Interval Time and Magnitude Monitoring Using Beta and Unit GammaDistributions, J. Math. 2022 (2022), 7951748. https://doi.org/10.1155/2022/7951748.[2] M.A. Aljarrah, C. Lee, F. Famoye, On Generating T-X Family of Distributions Using Quantile Functions, J. Stat.Distrib. Appl. 1 (2014), 24. https://doi.org/10.1186/2195-5832-1-2[3] A. Alzaatreh, C. Lee, F. Famoye, A New Method for Generating Families of Continuous Distributions, Metron 71(2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y.[4] B.C. Arnold, R.A. Groeneveld, Some Properties of the Arcsine Distribution, J. Amer. Stat. Assoc. 75 (1980), 173–175.

https://doi.org/10.1080/01621459.1980.10477449.

https://doi.org/10.28924/ada/stat.5.6
https://doi.org/10.1155/2022/7951748
https://doi.org/10.1186/2195-5832-1-2
https://doi.org/10.1007/s40300-013-0007-y
https://doi.org/10.1080/01621459.1980.10477449


Eur. J. Stat. 10.28924/ada/stat.5.6 23

[5] H.S. Bakouch, A.S. Nik, A. Asgharzadeh, H.S. Salinas, A Flexible Probability Model for Proportion Data: Unit-Half-Normal Distribution, Communications in Statistics: Case Studies, Data Anal. Appl. 7 (2021), 271–288. https:
//doi.org/10.1080/23737484.2021.1882355.[6] G. Casella, R.L. Berger, Statistical Inference, Duxbury Press, Pacific Grove, CA, (2002).[7] C. Chesneau, Study of a Unit Power-Logarithmic Distribution, Open J. Math. Sci. 5 (2021), 218–235. https:
//doi.org/10.30538/oms2021.0159.[8] C. Chesneau, a Collection of New Variable-Power Parametric Cumulative Distribution Functions for (0, 1)-Supported Distributions, Res. Com. Math. Math. Sci. 15 (2023), 89-152.[9] C. Chesneau, Negation-Type Unit Distributions: Concept, Theory and Examples, Math. Pannon. 30 (2024), 191–212.
https://doi.org/10.1556/314.2024.00018.[10] F. Condino, F. Domma, Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models, Mathematics 11 (2023), 2888. https://doi.org/10.3390/math11132888.[11] F. Cribari-Neto, A. Zeileis, Beta Regression in R, J. Stat. Softw. 34 (2010), 1-24. https://doi.org/10.18637/
jss.v034.i02[12] S. Dey, F.B. Menezes, J. Mazucheli, Comparison of Estimation Methods for Unit-Gamma Distribution, J. Data Sci.17 (2021), 768–801. https://doi.org/10.6339/JDS.201910_17(4).0009.[13] N. Eugene, C. Lee, F. Famoye, Beta-Normal Distribution and Its Applications, Commun. Stat. - Theory Methods 31(2002), 497–512. https://doi.org/10.1081/STA-120003130.[14] M.E. Ghitany, J. Mazucheli, A.F.B. Menezes, F. Alqallaf, The Unit-Inverse Gaussian Distribution: A New Alternativeto Two-Parameter Distributions on the Unit Interval, Commun. Stat. - Theory Methods 48 (2019), 3423–3438.
https://doi.org/10.1080/03610926.2018.1476717.[15] A. Grassia, On a Family of Distributions With Argument Between 0 and 1 Obtained by Transformation of theGamma Distribution and Derived Compound Distributions, Austrian J. Stat. 19 (1977), 108-114. https://doi.
org/10.1111/j.1467-842X.1977.tb01277.x.[16] A.K. Gupta, S. Nadarajah, Handbook of Beta Distribution and Its Applications, Marcel Dekker, New York, USA,(2004).[17] M.A. Haq, S. Hashmi, K. Aidi, P.F.L. Ramos, Unit Modified Burr-Iii Distribution: Estimation, Characterizations andValidation Test, Ann. Data Sci. 10 (2023), 415-449. https://doi.org/10.1007/s40745-020-00298-6.[18] M. Jones, Families of Distributions Arising from the Distributions of Order Statistics, Test 13 (2004) 1-43. https:
//doi.org/10.1007/BF02602999.[19] J.F. Kenney, E.S. Keeping, Mathematics of Statistics, Princeton, New Jersey, USA, (1962).[20] M. Korkmaz, A New Heavy-Tailed Distribution Defined on the Bounded Interval: The Logit Slash Distribution andIts Applications, J. Appl. Stat. 473 (2019), 2097-2119. https://doi.org/10.1080/02664763.2019.1704701.[21] M. Korkmaz, C. Chesneau, On the Unit Burr-XII Distribution With the Quantile Regression Modeling and Applica-tions, Comput. Appl. Math. 40 (2021), 1-26. https://doi.org/10.1007/s40314-021-01418-5.[22] M. Korkmaz, C. Chesneau, Z. Korkmaz, On the Arcsecant Hyperbolic Normal Distribution. Properties, QuantileRegression Modeling and Applications, Symmetry 13 (2021), 117. https://doi.org/10.3390/sym13010117.[23] S. Kotz, J.R. Van Dorp, Beyond Beta: Other Continuous Families of Distributions with Bounded Support andApplications, World Scientific Publishing, Singapore, (2004).[24] P. Kumaraswamy, A Generalized Probability Density Function for Double-Bounded Random Processes, J. Hydrol.46 (1980), 79-88. https://doi.org/10.1016/0022-1694(80)90036-0.[25] A.W. Marshall, I. Olkin, Life Distributions, Springer, New York, USA, (2007).

https://doi.org/10.28924/ada/stat.5.6
https://doi.org/10.1080/23737484.2021.1882355
https://doi.org/10.1080/23737484.2021.1882355
https://doi.org/10.30538/oms2021.0159
https://doi.org/10.30538/oms2021.0159
https://doi.org/10.1556/314.2024.00018
https://doi.org/10.3390/math11132888
https://doi.org/10.18637/jss.v034.i02
https://doi.org/10.18637/jss.v034.i02
https://doi.org/10.6339/JDS.201910_17(4).0009
https://doi.org/10.1081/STA-120003130
https://doi.org/10.1080/03610926.2018.1476717
https://doi.org/10.1111/j.1467-842X.1977.tb01277.x
https://doi.org/10.1111/j.1467-842X.1977.tb01277.x
https://doi.org/10.1007/s40745-020-00298-6
https://doi.org/10.1007/BF02602999
https://doi.org/10.1007/BF02602999
https://doi.org/10.1080/02664763.2019.1704701
https://doi.org/10.1007/s40314-021-01418-5
https://doi.org/10.3390/sym13010117
https://doi.org/10.1016/0022-1694(80)90036-0


Eur. J. Stat. 10.28924/ada/stat.5.6 24

[26] J. Mazucheli, A.F.B. Menezes, S. Dey, Improved Maximum-Likelihood Estimators for the Parameters of the Unit-Gamma Distribution, Commun. Stat. - Theory Methods 47 (2018), 3767-3778. https://doi.org/10.1080/

03610926.2017.1361993.[27] J. Mazucheli, A.F.B. Menezes, S. Dey, Unit-Gompertz Distribution with Applications, Statistica 79 (2019), 26-43.
https://doi.org/10.6092/issn.1973-2201/8497.[28] J. Mazucheli, A. Menezes, M. Ghitany, The Unit-Weibull Distribution and Associated Inference, J. Appl. Probab.Stat. 13 (2018), 1-22.[29] J. Mazucheli, A. Menezes, S. Chakraborty, On the One Parameter Unit-Lindley Distribution and Its AssociatedRegression Model for Proportion Data, J. Appl. Stat. 46 (2019), 700-714. https://doi.org/10.1080/02664763.
2018.1511774.[30] K. Modi, V. Gill, Unit Burr III Distribution with Application, J. Stat. Manag. Syst. 23 (2020), 579-592. https:
//doi.org/10.1080/09720510.2019.1646503.[31] J.J. Moors, A Quantile Alternative for Kurtosis, J. R. Stat. Soc. D, 37 (1998), 25-32. https://doi.org/10.2307/
2348376.[32] A.M. Mousa, A.A. El-Sheikh, M.A. Abdel-Fattah, A Gamma Regression for Bounded Continuous Variables, Adv.Appl. Stat. 49 (2016), 305–326. https://doi.org/10.17654/AS049040305.[33] R Core Team, R: A Language and Environment for Statistical Computing [Internet], Vienna, Austria, (2016). https:
//www.R-project.org.[34] M.V. Ratnaparkhl, J.E. Mosimann, On the Normality of Transformed Beta and Unit-Gamma Random Variables,Commun. Stat. - Theory Methods 19 (1990), 3833-3854. https://doi.org/10.1080/03610929008830416.[35] E.O. Rochá, C.L.N. Azevedo, J.M.A. Mota, M.J. Batista, J.S. Nobre, Bayesian Inference for Unit Gamma Distribution,Rev. Cad. Pedagóg. 21 (2024), e7690. https://doi.org/10.54033/cadpedv21n9-101.[36] M. Shaked, J.G. Shanthikumar, Stochastic Orders, Springer Verlag, New York, USA, (2007).[37] D.P. Singh, M. Jha, Y. Tripathi, L. Wang, Reliability Estimation in a Multicomponent Stress-Strength Model forUnit Burr III Distribution under Progressive Censoring, Qual. Technol. Quant. Manag. 19 (2022), 605-632. https:
//doi.org/10.1080/16843703.2022.2049508.[38] P.R. Tadikamalla, On a Family of Distributions Obtained by the Transformation of the Gamma Distribution, J. Stat.Comput. Simul. 13 (1981), 209-214. https://doi.org/10.1080/00949658108810497.[39] C.W. Topp, F.C. Leone, A Family of J-Shaped Frequency Functions, J. Am. Stat. Assoc. 50 (1955) 209-219. https:
//doi.org/10.2307/2281107.[40] J.R. Van Dorp, S. Kotz, The Standard Two-Sided Power Distribution and Its Properties, Am. Stat. 56 (2002), 90-99.
https://doi.org/10.1198/000313002317572745.

https://doi.org/10.28924/ada/stat.5.6
https://doi.org/10.1080/03610926.2017.1361993
https://doi.org/10.1080/03610926.2017.1361993
https://doi.org/10.6092/issn.1973-2201/8497
https://doi.org/10.1080/02664763.2018.1511774
https://doi.org/10.1080/02664763.2018.1511774
https://doi.org/10.1080/09720510.2019.1646503
https://doi.org/10.1080/09720510.2019.1646503
https://doi.org/10.2307/2348376
https://doi.org/10.2307/2348376
https://doi.org/10.17654/AS049040305
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1080/03610929008830416
https://doi.org/10.54033/cadpedv21n9-101
https://doi.org/10.1080/16843703.2022.2049508
https://doi.org/10.1080/16843703.2022.2049508
https://doi.org/10.1080/00949658108810497
https://doi.org/10.2307/2281107
https://doi.org/10.2307/2281107
https://doi.org/10.1198/000313002317572745


Eur. J. Stat. 10.28924/ada/stat.5.6 25Appendix
The main R codes for the real data analysis performed with the NUG distribution are givenbelow.

1 # Load the necessary library2 library(betareg)34 # Load the necessary data5 data("FoodExpenditure")67 # Define the transformed proportion data8 datta <- FoodExpenditure$food / FoodExpenditure$income910 # Define the NUG log -likelihood function11 R <- function(theta , datta) {12 x <- datta13 alpha <- theta [1]14 beta <- theta [2]15 g <- (1/x^2) * dgamma (1/x - 1, shape = alpha , rate = beta)16 S <- -sum(log(g))17 return(S)18 }1920 # Estimate parameters using numerical optimization21 d <- nlminb(start = c(0.5, 1), R, lower = c(0, 0),22 upper = c(100, 100), datta = datta)2324 # Define the pdf of the NUG distribution25 g <- function(x, theta) {26 alpha <- theta [1]27 beta <- theta [2]28 h <- (1/x^2) * dgamma (1/x - 1, shape = alpha , rate = beta)29 return(h)30 }3132 # Plot histogram of the data and the estimated pdf of the NUG distribution33 hist(datta , prob = TRUE , breaks = 12, main = "", xlab = "x",34 ylab = "", ylim = c(0, 6), col = "#36 b612", density = 20)35 curve(g(x, c(d$par[1], d$par [2])), col = "red", lty = 1,36 lwd = 2, add = TRUE)37 legend("top", legend = c("Estimated␣pdf␣of␣the␣NUG␣distribution"),38 col = c("red"), lwd = 2, lty = 1, cex = 0.8)39 grid()4041 # Compute the AIC and BIC42 AIC <- 2 * d$objective + 2 * 243 BIC <- 2 * d$objective + 2 * log(length(datta))4445 # Output estimated parameters and model selection criteria46 c(d$par[1], d$par[2], AIC , BIC)
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