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ABsTRACT. This article fills a gap in distribution theory and statistics by introducing a new, simple
and intuitive two-parameter unit distribution derived from the gamma distribution. It serves as a
complementary option to the existing unit gamma distribution. The main features are explored through
both theoretical and practical approaches. Specifically, the shapes of the corresponding probability
density and hazard rate functions are studied, an understandable stochastic comparison with the
existing unit gamma distribution is provided, moments and incomplete moments are expressed, moment
skewness and kurtosis are computed, random numbers are generated, and a new family of distributions
is proposed. A statistical application demonstrates how the two parameters can be estimated quite
effectively and the fit to a real data set is tested. It is also shown that the new distribution is able to
outperform four well-known two-parameter unit distributions: the beta distribution, the Kumaraswamy
distribution, the unit Weibull distribution and, more importantly, the existing unit gamma distribution.

An appendix lists the main codes used in the application.

1. INTRODUCTION

1.1. Context. In the field of distribution theory, much effort has been devoted to the development of
new and flexible distributions using various techniques. See, for example, [2,3,713,18]. A particular
focus has been on lifetime distributions, which are continuous distributions with support on the
interval (0, +00). More recently, however, attention has shifted to distributions with support on
the interval (0, 1), known as unit distributions. This shift is largely driven by the growing need to
model modern data that lie within this interval, such as rates, proportions, normalized values and
percentages.

Historically, the availability of unit distributions has been limited. Classic examples include the
beta distribution [16], the Kumaraswamy distribution [24], the Topp-Leone distribution [39], the unit
gamma (UG) distribution [15,34], the arcsine distribution [4], and the standard two-sided power dis-
tribution [40]. As each unit distribution has its own advantages and limitations, new proposals have
emerged to enrich the modeling possibilities. These include the unit Burr Ill distribution [30,37], the
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unit Lindley distribution [29], the unit Weibull (UW) distribution [28], the unit Gompertz distribu-
tion [27], the unit Burr XII distribution [21], the unit inverse Gaussian distribution [14], the arcsecant
hyperbolic normal distribution [22], the logit-slash distribution [20], the unit power-logarithmic dis-
tribution [7], the unit half-normal distribution [5], the family of variable-power distributions [8], the
unit modified Burr Ill distribution [17], the family of composed unit distributions [10] and the family

of negation unit distributions [9].

1.2. On the UG distribution. The motivation for this article stems from the following observation:
despite the wide panel of unit distributions, the UG distribution seems to be the only unit variant
of the gamma distribution in the literature. This led us to investigate another variant, which turns
out to be interesting enough to be highlighted. Before going into further detail, a review of the UG
distribution is necessary. First, we define the Gam(a, B8) distribution, i.e., the (classical) gamma

distribution with parameters o, 3 > 0, by the following cumulative distribution function (cdf):

1
F(0) = @’y(a,ﬁx), x > 0, )

0, x <0,

where y(a, b) = fob x?~te™*dx is the lower incomplete gamma function at a,b > 0 and I'(a) =
liMb—s+00¥(a, b) = [;"° x?"1e™*dx is the standard gamma function at a > 0. The corresponding

probability density function (pdf) is obtained by differentiating F,(x), which leads to

a
an’le’ﬁx, x>0,

£(x) =4 Ma) 2)
0, x < 0.

The gamma distribution is one of the best known lifetime distributions, extending the scope of the
exponential distribution by introducing the shape parameter . It is widely used in practice to
efficiently analyze waiting times, lifetimes and other positively skewed phenomena. Among other
things, it is the basis for the definition of the UG distribution. More precisely, given a random

variable X with this gamma distribution, the distribution of the random variable
y =e X (3)

is with support (0,1), and it is known as the UG(e, @) distribution, i.e., the UG distribution with
parameters o, 3. The underlying idea is therefore to apply an exponential decay to the values of
X, converting them to the interval (0, 1). In this way, we also capture the key properties of the
gamma distribution, such as its flexibility in shape and skewness, while adapting these properties
for modeling quantities that lie within this interval. Based on the cdf of the gamma distribution in

Equation (1) and the transformation in Equation (3), the cdf of the UG(a, B) distribution is defined
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by
1-— r(la)'y[oc, —Blog(x)], x€(0,1),
Fox) =191, x>1, (4)
0, x < 0.

The corresponding pdf follows by differentiating F,(x), which leads to

b B=1—log(x)]*"t, x>0,
fu(x) =1 (@) 5)

0, x < 0.
This function can have various increasing, decreasing, constant and unimodal shapes. In addition,
the corresponding hazard rate function (hrf) allows for decreasing and bathtub shapes. These
features make the UG distribution a flexible alternative to other two-parameter unit distributions,
and, in particular, a direct competitor to the beta and Kumaraswamy distributions. From a statistical
point of view, the various methods for estimating the two parameters involved are well known. As a
result, the UG distribution has been used in several areas, including the estimation of bacterial or
viral densities in biological studies, the construction of regression models, and the development of

control charts for rates and proportions. Discussions of these properties and applications can be
found in [1,12,15,26,32,34, 35, 38].

1.3. Contributions. The exponential transformation of a random variable with the gamma distribu-
tion, as described in Equation (3), is thus central to the definition of the UG distribution. Sur-
prisingly, the current literature lacks attempts to explore alternative transformations for generating
different unit versions of the gamma distribution. Classical ratio-type transformations, which have
been successfully applied to other lifetime distributions, are a natural consideration. See, for
example, [5,17,29,30].
In this context, given a random variable X with the Gam(a, B) distribution, we thought to
consider the following transformed random variable:
1
Z = T X (6)
The idea is to apply a simple polynomial decay to the values of X, converting them to the interval
(0,1). The distribution of Z thus forms a new unit gamma distribution that follows the spirit of the
UG distribution in terms of “capturing the flexibility of the gamma distribution while adapting it
for modeling quantities that lie within (0, 1)", but with a different functional structure. We call it
the new unit gamma (NUQG) distribution, also written as NUG (e, B) to indicate the two parameters
involved.
Preliminary theoretical and practical investigations on the NUG distribution show interesting

results, enough to attract specialists in distribution theory and statisticians. Among these results,
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we focus first on the determination of the most important functions, namely the cdf, pdf, hrf and the
quantile function (qgf). The shapes of the cdf, pdf and hrf are discussed mainly through graphical
analysis. In particular, we show how the NUG and UG distributions are complementary in this
respect. In a more theoretical work, we prove that the NUG distribution stochastically dominates
the UG distribution in a first order sense. Moments, incomplete moments, measures of skewness
and kurtosis are studied using formulas and numerics. The process of generating random numbers
based on the NUG distribution is detailed. The theory concludes with a discussion of a new family
of distributions. The statistical application of the NUG distribution is then developed through a
simple and accurate estimation method. A concrete application is given by using a referenced data
set in[11], on the proportion of income spent on food for a sample of households. The result obtained
shows an acceptable performance, better than that of its direct two-parameter competitors, namely
the beta distribution, the Kumaraswamy distribution, the UW distributions and, more interestingly,

the UG distribution.

1.4. Organization. The contributions described above are divided into several sections, as follows:
The main functions of the NUG distribution are examined in detail in Section 2. Section 3 is
devoted to its technical characteristics. The statistical work is contained in Section 4. The article
ends with some concluding remarks in Section 5. The codes corresponding to the data fitting

performance of the NUG distribution are given in the appendix.

2. THE NUG DisTrIBUTION

2.1. Determination of the cdf and graphical analysis. The expression of the cdf of the NUG

distribution is given in the proposition below.

Proposition 2.1. Let o, 8 > 0. The cdf of the NUG(ex, B) distribution is expressed as

1—|_(1a)fy[oc,ﬁ ()1(—1)] x €(0,1),
F(x) =11, x>1, (7)

0, x < 0.
Proof. As mentioned in the introduction, given a random variable X with the Gam(a, 3) distribution,
the NUG distribution is defined by the distribution of

1
=——=.
1+ X

Since the support of X is (0, +00), that of Z is (0, 1), from which we immediately derive F(x) =0
for x <0 and F(x) =1 for x > 1. For x € (0, 1), using the probability operator P and the cdf of
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the Gam(a, B) distribution given in Equation (1), we get

1+X ™~ -

R o R i

This completes the proof. O

F(x):]P’(ng):IF’(1<x) :1—]P’(X<)1<—1)

As for the cdf of the UG distribution given in Equation (4), we note that the incomplete gamma
function plays a key role in defining this cdf. Figure 1 shows examples of curves of this cdf with
different parameter configurations. Note that the free software R is used [33], with the basic function

curve.

cdf
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Ficure 1. Examples of curves of the cdf of the NUG distribution

A variety of increasingly convex and concave shapes can be observed. This gives an indication
of the flexibility of the NUG distribution, which will be refined by studying the shapes of the
corresponding pdf and hrf.

2.2. Determination of the pdf and graphical analysis. The expression of the pdf of the NUG

distribution is given in the proposition below.
Proposition 2.2. Let o, 8 > 0. The pdf of the NUG (e, B) distribution is expressed as

:8aeﬁ —a— a—-1_-8/x
F(x) = I_(a)X L1 —x)*te P/ xe(0,1), @

0, x & (0,1).
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Proof. We proceed by differentiating the cdf of the NUG distribution determined in Equation (7).

For x ¢ (0, 1), it is clear that f(x) = F'(x) = 0. For x € (0, 1), using the standard differentiation

rules of the composite function, we have

f(X)ZF'(X)z{l fa” [ 5( )”/:rﬁ(;xlz(i_l)a_le—ﬁ(l/x—l)

o
" )

—a—l(l _ X)a—le—ﬁ/x'

This ends the proof. O

Compared to the pdf of the UG distribution expressed in Equation (5), the pdf of the NUG
distribution deals mainly with simple power functions, which are more manageable than the power
of the minus logarithmic function. We also note the presence of an exponential term, which plays
a crucial role for values around x = 0. The pdf of the UG distribution does not have this feature.

Figure 2 shows examples of curves of this pdf with different parameter configurations.
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Ficure 2. Examples of curves of the pdf of the NUG distribution

We observe different types of shapes, but mainly unimodal shapes. Compared to the pdf of the
UG distribution, the pdf of the NUG distribution lacks decreasing shapes, but can reach a wider

variety of unimodal shapes, including left-skewed, nearly symmetric and right-skewed unimodal

shapes.

2.3. Determination of the hrf and graphical analysis. The expression of the hrf of the NUG dis-

tribution is given in the proposition below.
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Proposition 2.3. Let o, 8 > 0. The hrf of the NUG(cx, B) distribution is expressed as

X~ (1 — x)aleBx
v[a,B(1/x —1)] x € (0,1),

a

h(x) =
x ¢ (0,1).

Proof. The desired expression follows from the definition of a hrf, that is

f(x)
h(x) = — 7
0= 1-Fp
for x € (0,1), and h(x) = 0 for x & (0, 1), combined with the expressions of F(x) and f(x) given
in Equations (7) and (8), respectively. This ends the proof. ]

As with the pdf, the shapes of the corresponding hrf are informative about the modeling power

of a distribution. With this in mind, Figure 3 shows examples of curves of the hrf of the NUG

distribution with different parameter configurations.
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FiGure 3. Examples of curves of the hrf of the NUG distribution

We observe that it allows increasing and bathtub shapes. This contrasts with the hrf of the UG

distribution, which allows decreasing shapes in addition to bathtub shapes. Thus, the NUG and

UG distributions can be seen as complementary in this respect.

2.4. Determination of the gf. The expression of the gf of the NUG distribution is given in the

proposition below.
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Proposition 2.4. Let o, 8 > 0. The gf of the NUG(a, B) distribution is expressed as

6]
Qly) = 4 B+ (1 =) ()]’ y€(0,1),
o y ¢ (0,1),

wherey~1(a, b) is the inverse lower incomplete gamma function with respect to b, i.e,, y[a, Y~ *(a, b)] =

b, at a, b > 0.

Proof. By the general definition of a gf, we must have F[Q(y)] = y for y € (0,1). Using the
expression of F(x) in Equation (7), for y € (0, 1), the following equivalences hold true:

F[Q(y)]zyﬁl—@W{a.ﬁ[(?(lm—l]}:y

(e8| g 1} =0

1 _
@ﬁ[w - 1] — o (1— ) (a)]
1

o Q(ly) =14 577 [ (1= ) (@)
- B
QW)= F T = @)
This ends the proof. O

Various quantile measures can be derived from this gqf. Examples include the median given by
M = Q(1/2), the interquartile range given by / = Q(3/4) — Q(1/4), and the quartile skewness
given by K = [Q(3/4) — M]/[M — Q(1/4)]. We can also use this gf to generate random numbers
from the NUG distribution, although a more direct approach can be considered, as described in
Subsection 3.5. For more details on these measures, see [19,31].

The next section is devoted to some technical characteristics of the NUG distribution.

3. TeEcHNICAL CHARACTERISTICS

3.1. Stochastic comparison with the UG distribution. The proposition below shows a first-order
stochastic dominance involving the UG and NUG distributions. The complete theory on the notion

of stochastic dominance can be found in [36].

Proposition 3.1. Let a,8 > 0. Then the NUG(a, B) distribution first-order stochastic dominates
the UG (a, B) distribution, i.e., for any x € R, we have

F(x) < F.(x),

where F,(x) and F(x) are given in Equations (4) and (7), respectively.


https://doi.org/10.28924/ada/stat.5.6

Eur. J. Stat.

Proof. We consider the random variable transformations at the basis of the UG and NUG distribu-
tions. More precisely, given a random variable X with the Gam(a, ) distribution, Y = =X has
the UG(a, B) distribution and Z = 1/(1+ X) has the NUG(a, B) distribution. Using the following
well-known exponential inequality: € > 1 + x for x > 0 (which is in fact extended to x € R), we

have

1
Y —e X< - —
¢ S1ix

As a result, for any x € R, we have {Z < x} C {Y < x}, which implies that
F(x)=P(Z < x) <P(Y < x) = F.(x).
This ends the proof. |

This result highlights the different stochastic characteristics of the NUG and UG distributions,

despite having the same support and being defined on the same gamma distribution baseline.

3.2. Moments. Due to the complexity of the pdf, the moments associated with the NUG distribution
do not have simple analytical expressions. However, they can be expressed as specific series. This

is precisely formulated in the result below.

Proposition 3.2. Let & € (0,+)\N, 8 > 0, r € R and Z be a random variable with the
NUG(a, B) distribution. Then we have

pred

r_ _k k —r—
E(Z") r()Z()( )ﬁr<a k.B).

where E is the expectation operator, ['(a, b) = '(a) — y(a,b) = +°Ox ~le™Xdx is the upper
incomplete gamma function at a,b > 0, and (}) = a(a—1)...(a — k + 1)/k! is the generalized
binomial coefficient at a > 0 and k € N.

For the special case where oo € N\{0}, the following finite series expansion holds:

E(Z") =

)Z(— e L R

Proof. Based on the pdf of the NUG distribution defined in Equation (8), the law of the unconscious

statistician gives

p*ef
Ma)

For x € (0,1) and o € (0, +00)\N, the generalized binomial decomposition ensures that

(1-x)°1= g(—nk (O‘ P 1)xk

+oo 1 1
IE(Zr)Z/ er(X)dx:/O x"f(x)dx = i x" X1 —x)¥ e P Xax.  (9)

—00


https://doi.org/10.28924/ada/stat.5.6

Eur. J. Stat.

Using this and exchanging the symbols integral and sum by the Fubini theorem, we obtain

1 a
/0 xri(;jx_o‘_l(l — x)* L Bl/xgx

a 1 +oo .
_ ?(;lj i y—a-l [Z(_l)k (Ot ) 1)Xk] e—l3/de
k=0

N

- Tl )Z( 1) ( )/ler_o‘_er_B/de. (10)

Applying the change of variables y = 3/x, we get

1 J6] r—oa—1+k
/ Xr—a—l—i—ke—ﬁ/xdx :/ (’6) e Y (—'6201)/)
0 —+o00 y y

+
:6r—a+k/ Ooya—r—k—le—ydy
B

Zﬁr_o‘+k|_(oz—r—k,ﬁ). (,l,l)

Combining Equations (9), (10) and (11), we find that

E(Z7) _[3%5 Z(— ) ( 1)ﬁr_"+k|'(a—r—k,ﬁ)

ey = kfae—1Y x
_F(a)z(_l)( . )5 Mo —r—k,B).

For the special case where a € N\{0}, we can use the standard binomial decomposition instead

of the generalized binomial decomposition, which gives

(1-x)t = Z( Vo F

The desired finite series expression follows with the same arguments as above. This concludes the

proof. O

In this proposition, we can see that r € R, including the inverse moments associated with the
NUG distribution by taking r negative.

In the case where a € (0, +00)\N, we can derive an acceptable finite series approximation of
the moments by replacing +o0o with a large integer. More precisely, in the setting of Proposition
3.2, taking 0 = 100, we have

5 8 B
E(Z) ~ E(Zﬁ) S (—1)* (O‘ . 1)ﬁkr(a —r— kD).

k=0
This is of some computational interest as an alternative to integral approximation techniques.
On the other hand, the moments are also essential for defining standard measures of skewness

and kurtosis. This aspect is considered in Subsection 3.4.
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We end this subsection with a moment result involving the UG and NUG distributions.

Proposition 3.3. Let o, > 0, Y be a random variable with the UG(c,B) distribution, Z be
a random variable with the NUG(a, B) distribution and g : (0,1) — R be an non-decreasing

function. Then we have
E[g(Y)] < E[g(2)].

This inequality is reversed if g is assumed to be non-increasing rather than non-decreasing.

Proof. By the definitions of the UG and NUG distributions, we can introduce a random variable X
with the Gam(a, B) distribution such that Y = e and Z = 1/(1 + X). Using the well-known

exponential inequality: e* > 14 x for x > 0, we have

1
= _X<7:
v=e 1+ X z

It follows from the non-decreasing property of g that g(Y) < g(Z), and by taking the expectation

on both sides, we get
E[g(Y)] < E[g(2)].

Obviously this inequality is reversed if g is assumed to be non-increasing instead of non-decreasing.

This completes the proof. O

This result shows that some moment measures or functions of the UG and NUG distributions
can be compared. For example, in the framework of Proposition 3.3, we have E(Y?) < E(Z?) and,
for any s > 0, E(e 5%) < E(e™°Y), which is an inequality involving the Laplace transform of the
UG and NUG distributions at s.

3.3. Incomplete moments. The series methodology developed for the moments associated with the

NUG distribution can be extended to the incomplete moments, as shown below.

Proposition 3.4. Let o € (0,400)\N, 8 >0, r € R, € € (0,1) and Z be a random variable with
the NUG (o, B) distribution. Then we have

E(Z'l{z<q) = I-E;[;:io(—l)k(oj 1)5kr (a —r— k[:) ,
=0

where 1;7<, = 1 if the event {Z < €} is realized, otherwise 1{7<., = 0. For the special case

where oo € N\{0}, the following finite series expansion holds:

E(Z'(z<q) = ?Ejg(—l)k (O‘ P 1)5kr (a — f) .
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Proof. The proof follows the line of that in Proposition 3.2. However, for the sake of completeness,
we explain it in detail below. Considering that € € (0, 1), the law of the unconscious statistician

gives

€ € € 50466
E(Z"1{z<g) = / x"f(x)dx = / x"f(x)dx= | x"
B -0 0 0 (o)

It follows from the generalized binomial decomposition that, for x € (0,€¢) C (0,1) and o €
(0, +00)\N,

x4 (1 = x)* e B Xgx.  (12)

Xt = Z}1)( Yt

Using this and exchanging the symbols integral and sum by the Fubini theorem, we obtain

/0e Xrlﬁ_c(xjxo‘l(l — X)a’le*ﬁ/xdx
_ pef ¢ r—a—1 - k(e—1) « —B/x
=T Jo X LZO(—l) ( P )x e dx

a +oo . €
S (1) e

Applying the change of variables y = 3/x, we get

B/ r—a—1+k
/exr—a—1+ke—ﬁ/xdx :/ ‘ ('B) e Y (_'Bzdy)
0 +o0 y y

—+00
_ ﬁr—a—&-k / ya—r—k—le—ydy
B/e

zﬁ“mﬁwa—r—kf). (14)

Combining Equations (12), (13) and (14), we establish that

E(Z"z<e)) = ?cze[; Z(—) ( 1)5r_a+kr(a—r—k,[:)

‘?Ee?f<—> P ]

For the special case where o € N\{0}, using the standard binomial decomposition instead of

the generalized binomial decomposition gives the claimed formula. This ends the proof. ]

Clearly, if we apply € = 1, Proposition 3.4 becomes Proposition 3.2; it thus can be viewed as a
generalization.
Like for the moments, in the case where o € (0, +00)\N, we can derive an acceptable finite

series approximation of the incomplete moments by replacing +oco with a large integer. More
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precisely, in the setting of Proposition 3.4, taking 6 = 100, we have

r .8 4 _
E(Z"l{z<q) = %Z(—l)k(& k 1)5kr (a— r— kf) .
k=0

A result about complementary incomplete moments, which is a consequence of Propositions 3.2

and 3.4, concludes this subsection.

Proposition 3.5. Let a € (0,4+o0)\N, 8 >0, r € R, € € (0,1) and Z be a random variable with
the NUG(a, B8) distribution. Then we have

E(Z l{zsq) = 5r€5 Z(— )k ( ) (a—r—k,ﬁ).

€
For the special case where a € N\{0}, the following finite series expansion holds:

Bref -

r()Z( D" e k)

E(Z"1{z5¢) =
Proof. We clearly have
E(Z"1l{z5¢) = E(Z") — E(Z"1{z<q).

It follows from this, Propositions 3.2 and 3.4, and «y(a, b) = (a) — I'(a, b) that

ro8 T
E(Z'1 7o) = 56 Z( (@ )Bkl'(oc—r—k)

¥
oL or e
.

r(a) k €

rﬁ"‘oo

ARy (R )

€
rﬁ—i-oo
-2 PEEH (3 erva-r-n.

The finite series formula can be derived in a similar way. This concludes the proof. O

Such incomplete moments are useful for characterizing partial properties of the NUG distribution,

such as conditional means or truncated moments. We do not develop this aspect further.

3.4. Moments skewness and kurtosis. Even if we already have some knowledge about the skewness
and kurtosis of the NUG distribution thanks to the shape analysis of its pdf, it can be interesting to
have some numerical benchmarks on these aspects. We can therefore study some moment measures
associated with the NUG distribution, such as the moment skewness and moment kurtosis. Given

a random variable Z with the NUG(a, B) distribution, the moment skewness is defined by

wo-= {7227}
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where

o(2) = VE{[Z -E(2)P}.
It can be interpreted as follows: if C(Z) is greater than 0, the NUG distribution is positively skewed,
it C(Z) is less than 0, the NUG is negatively skewed, and if C(Z) =~ 0, the NUG distribution is
nearly symmetric.

In addition to the moment skewness, the moment kurtosis is defined by

o[£

It can be interpreted as follows: with the usual reference to the standard normal distribution as a
benchmark, if D(Z) is greater than 3, the NUG distribution is leptokurtic, if D(Z) is less than 3,
the NUG distribution is platykurtic, and if D(Z) =~ 3, the NUG distribution is mesokurtic.

With a view to analyzing the skewness and kurtosis of the NUG distribution, Table 1 presents
the values of E(Z), E(Z?), 0(Z), C(Z) and D(Z) with different parameter configurations. The

software R is used with the basic function integrate.

TasLE 1. Numerical values of E(Z), E(Z?), 0(Z), C(Z) and D(Z), where Z is a
random variable with the NUG(a, B) distribution with different parameter configu-

rations

E(Z)| E(Z%) | 0o(2) | C(2) | D(2)

a=0.1 6=03]0887| 0832 | 0213 | -2.059 | 6.176

a=1 =05 | 0461 | 0269 | 0.237 | 0.481 | 2.214

a=02 =1 |0891 | 0822 | 0.169 | -1.842 | 5.692

a=2 =1 0.404 | 0193 | 0173 | 0.715 | 3.005

a=1 B=2 0.723 | 0.555 | 0.180 | -0.417 | 2.298

a=3 =28 0.744 | 0564 | 0.106 | -0.285 | 2.654

a=4 =6 0.622 | 0.400 | 0.115 | 0.056 | 2.596

a=8 B=3 0.291 | 0.090 | 0.075 | 0.766 | 3.840

From this table, we can see that C(Z) can be greater than O, less than 0 or approximately
0, meaning that the NUG distribution can have all skewness states. Furthermore, D(Z) can be
greater than 3, less than 3 or approximately 3, meaning that the NUG distribution can have all

kurtosis states. This highlights the flexibility of the NUG distribution in these aspects.

3.5. Random number generation. Thanks to the stochastic structure of the NUG distribution, gen-
erating random numbers from a random variable Z with the NUG(«a, 3) distribution is straightfor-

ward. If n is the desired value, the process is as follows:
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(1) Fix o, 3> 0.
(2) Generate n random numbers from a random variable X with the Gam(a, 3) distribution,

say

For example, with the software R, we can use the basic function rgamma.

(3) Foranyi=1,..., n, calculate
1
1 -f-X,'.

Zj =

(4) The desired numbers are z, ..., Zn.

We now make a simple graphical representation of this process. We generate four samples of
n = 2500 random numbers from Z, each taken under a particular parameter configuration, and plot

the corresponding frequency histograms in Figure 4.

Histogram of the 2500 random numbers Histogram of the 2500 random numbers
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L |

Frequency
400
]
Frequency

200
L
0 50 100 150 200 250 300 350
L

(a)

Histogram of the 2500 random numbers
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200
L

0
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FIGURE 4. Frequency histograms of four sample of n = 2500 random numbers gen-
erated from a random variable Z with the NUG(«a, B) distribution for the following
parameter configurations: (a) a =0.4and 3=0.8, (b)a=3and B =4, (c)a=4
and3=3,and (d)a=4and 3=0.5
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As expected, the general shapes of the frequency histograms correspond to those observed for

the pdf of the NUG distribution in Figure 1.

3.6. NUG family of distributions. With a simple composed scheme, the NUG distribution can be
used to generate various kinds of distributions, with different supports. Given a baseline continuous
distribution with the cdf G(x), x € R, using the cdf of the NUG distribution determined in Equation
(7), we define the NUG family of distributions by the following composite cdf:

Fram(x) = FIG(x)]

:1—&;7Pﬁ(&b—QJ,XGR

Denoting g(x) the pdf associated with G(x) and using the pdf of the NUG distribution given in
Equation (8), the pdf of the NUG family of distributions is expressed as

fram(x) = g(x)f[G(x)]

g el
(o)

We briefly specify this family by considering the standard normal distribution for the baseline, i.e.,

=g(x) G(x)™¥ N1 —x)¥ e P/ xeR.

with the integral form cdf given by

G(x) = d(x) = / L

e P24t xeR
—oo V2T

and the corresponding pdf expressed as

1 —x2/2
X) = e . xeR.
9(x) = 5=
The NUG normal distribution is thus defined by the following pdf:
1 2/, 0%€P -
fi(x) = —e X P ()" 1 - d(x)|* e PPN xeR.
100 = e 00 L - 9(x)]

By construction, it forms a new skewed version of the normal distribution. Figure 5 shows example

curves of this pdf with different parameter configurations.
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Ficure 5. Sample of curves of the pdf of the NUG normal distribution

Different skewed shapes are observed, especially right-skewed shapes with different degrees of
skewness.

The different types of distributions that can generate the NUG distribution deserve a full study,
which we leave to future work.

The next section is devoted to the statistical application of the NUG distribution.

4. STATISTICAL APPLICATION

This section is devoted to the statistical application of the NUG distribution, with emphasis on

its remarkable modeling accuracy.

4.1. Estimation method. The maximum likelihood (ML) is one of the best known parametric esti-
mation methods. Its theory and practice are fully understood, which guarantees its effectiveness in
most statistical scenarios [6]. In the context of the NUG(e, B) distribution, under the assumption
that o and B are unknown, the ML method is described below. Let n be the number of data and
X1, ..., Xp be data that lie in the interval (0, 1) and that are assumed to be possibly in distributional
adequacy with the NUG distribution. Based on the pdf given in Equation (8), the ML estimates of

a and 3 are given by the following “argmaxima”:

n
(&, B) = argmax(q,g)e(0,+00)2 2 109[f (x))]
i=1

n ﬁaeﬁ .
= argmax(aﬁ)e(oy+oo)2 Z |Og [ r(a) Xj_a_ (1 . Xi)a—le—ﬁ/x,':l ]
i=1



https://doi.org/10.28924/ada/stat.5.6

Eur. J. Stat.

Note that the logarithmic term can be developed further, but is not of interest here; after this effort
in a parallel work, it appears that the ML estimates & and (3 have no closed form expression.
However, they can be calculated using scientific software such as R and the basic function nlminb.
Once these estimates are obtained, we can derive the estimated pdf by a classical substitution
approach, that is

. jaeh . R

f(x) = ?(&)x—a—lu — x)&teP/x (15)
for x € (0, 1). This function can be thought of as the best fit that the pdf of the NUG distribution can
make to the data under consideration. Ideally, it should efficiently fit the shape of the corresponding

normalized histogram.

4.2. Distribution comparison. In this study, given a data set, two different criteria are considered to

compare different distributions. These are the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC), which are briefly discussed below in the context of the NUG distribution.
The AIC is given by

n
AIC =2k —2) log [F(x)].
=1

where f(x) is given in Equation (15) and k is the number of parameters (in this case, k = 2). The
AIC evaluates the quality of the distribution by balancing the goodness of fit with the complexity
of the distribution. A lower AIC value indicates a better-fitting distribution.

The BIC is given by

BIC = klog(n) — 2 i log [F(xi)] -
i=1

It is similar to the AIC but imposes a stronger penalty on complex distributions. While both AIC
and BIC assess the fit and complexity of the distribution, the BIC is more stringent when it comes
to penalizing the inclusion of additional parameters. As with the AIC, a lower BIC value indicates
a better-fitting distribution.
We also consider four famous unit distributions as competitors, also defined with two parameters
a, B > 0: the beta, Kumaraswamy, UW and UG distributions, which are briefly described below.
The beta distribution is defined by the following pdf:
1
fu(x) = B(a,ﬁ)x
0, x ¢ (0,1),

11 —x)P~1 xe(0,1),

where B(a, b) = ]01 x?71(1—x)P~1dx is the standard beta function. The beta distribution is one of
the most commonly used unit distributions. See also the book [16], which gives a complete overview

of its theory and applications.


https://doi.org/10.28924/ada/stat.5.6

Eur. J. Stat.
The Kumaraswamy distribution is defined by the following pdf:
aBx® 11— x¥)P1 xe(0,1),
0, x ¢ (0,1).

fa(x) =

It can be presented as a more manageable functional alternative to the pdf of the beta distribution.
The details of this distribution can be found in [24].
The UW distribution is defined by the following pdf:

al a—1 ,—[—log(x)/B]*
) — | B 1og0ITTe T, X e (0.1),
0. x ¢ (0,1).

This is a slightly modified parameter version of [28], more closely related to the pdf implemented
in the function dweibull of R.

Finally, we recall that the UG distribution is defined by the pdf in Equation (5).

The remainder of this section is devoted to the concrete application of the NUG distribution in

fitting a real data set, and its fitting comparisons with the above competitors.

4.3. Real data analysis. We consider a data set derived from [11], described as the proportion of
income spent on food for 38 households in a large US city. It is freely available in the R package
betareg and can be retrieved precisely by the following commands involving a division operation:
FoodExpenditure$food / FoodExpenditure$income. This data set has also been used in [10]
for a similar purpose.

First, a summary of the data is given in Table 2.

Minimum | First quartile | Median | Mean | Third quartile | Maximum

0.1075 0.2269 0.2611 | 0.2897 0.3469 0.5612

TaBLE 2. Basic summary of the consided data

We also represent the frequency histogram of the data and the corresponding boxplot in Figure
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Histogram of the data Boxplot of the data
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Ficure 6. (a) Frequency histogram and (b) boxplot of the data

From this figure, we can see that the data are right skewed and have two values that can be
considered as outliers. Given its shape, the NUG distribution is a candidate for a two-parameter
unit distribution that can fit them.

After carrying out the ML estimation of the parameters of the unit distributions under consid-
eration and the calculation of their respective AIC and BIC, we summarize the results obtained in
Table 3.

~

Distribution & 6} AIC BIC
NUG 4543241 | 1578676 | -68.271292 | -64.996120
uw 4128786 | 1.424609 | -67.868722 | -64.593549
uG 13.26089 | 10.22977 | -67.12632 | -63.85115
beta 6.07164 | 14.82210 | -66.69289 | -63.41772
Kumaraswamy | 2.954554 | 26.965413 | -62.978199 | -59.703027

TaBLE 3. Parameter estimates, AIC, and BIC for five different two-parameter unit

distributions, including the NUG distribution

With the lowest AIC and BIC, the NUG distribution can be considered the best for fitting. It
is followed by the UW distribution, which is known to be particularly efficient for such fitting
exercises [28]. Furthermore, to highlight the significance of the results, we mention that the NUG
distribution can outperform certain three-parameter unit distributions. In particular, it is indicated
in [10, Table 2] that, for the same data set, the I-UDa distribution has an AIC of —67.337 and
the II-UDa distribution has an AIC of —67.400, both of which are greater than that of the NUG
distribution, i.e, AIC = —68.271292 (and also greater than that of the UW distribution, i.e.,
AlIC = —67.868722).
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We also note that, for the NUG distribution, the ML estimates of o and 3 are given by

~

& =4.543241, [ =1.578676.

As a result, the corresponding estimated pdf is
f(x) = 1.578676 4524 1575070 x 454324111 _ )4.543241—1 o~ 1.578676/x
[(4.543241)

for x € (0,1), with I'(4.543241) ~ 12.35455.

To visualize the efficiency of our approach, the curve of this estimated pdf is plotted over the

normalized histogram of the data in Figure 7.

© 7 —— estimated pdf of the NUG distribution i

FiGure 7. Curve of the estimated pdf of the NUG distribution over the normalized

histogram of the data

We can see that the red curve captures well the overall shape of the histogram, including the
two outliers. This simple but significant data analysis shows that the NUG distribution should be
considered among the notable two-parameter unit distributions. It clearly has potential for further
applications in various areas of statistics.

To ensure reproducibility, we conclude this section by noting that the main codes used for this

analysis are provided in the appendix.

5. CoNcCLUSION

This article shows that much remains to be done in the theory and practice of unit distribu-
tions, using simple transformations and the well-known lifetime distributions. This claim has been

illustrated by considering the NUG distribution, which is a new and simple two-parameter unit
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variant of the gamma distribution. We have compared it with the existing unit gamma distribution,
i.e., the UG distribution, to see how they complement each other. The theoretical properties of
the NUG have been examined in detail with formulas for the main functions, moments and vari-
ous stochastic properties. A random number generation process is presented and validated with
a numerical study, also supported graphically. The theory concludes with a brief presentation of
the NUG family of distributions. Statistical analysis on a famous real data set shows that the
NUG distribution fits better than four famous two-parameter unit distributions, namely the beta
distribution, the Kumaraswamy distribution, the unit Weibull distribution and, more importantly,
the existing unit gamma distribution.

The logical perspectives of this work include the points below.

e A more detailed study of the NUG family of distributions, together with applications of
some members of this family in data analysis.

e A possible regression model using the NUG distribution as the response variable in a
generalized regression framework, assessing its fit relative to traditional unit distributions
based on real-world proportional data.

e The extension of the NUG distribution to allow for more flexible structures, such as the
inclusion of shape parameters aiming to provide greater control over skewness and kurtosis.

e The investigation of potential copula models using the NUG distribution, exploring its
applicability in modeling dependence structures in multivariate data.

e The use of the NUG distribution in machine learning, particularly in probabilistic model-
ing, generative adversarial networks (GANs), and neural network-based density estimation

techniques.

All these aspects need to be further explored to improve the theoretical understanding and practical

applicability of the NUG distribution in statistical modeling and data analysis.
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APPENDIX

The main R codes for the real data analysis performed with the NUG distribution are given

below.

# Load the necessary library

library(betareg)

# Load the necessary data
data("FoodExpenditure")

# Define the transformed proportion data

datta <- FoodExpenditure$food / FoodExpenditure$income

# Define the NUG log-likelihood function
<- function(theta, datta) {
x <- datta
alpha <- thetal[1l]
beta <- thetal[2]
g <- (1/x°2) x dgamma(1/x - 1, shape = alpha, rate = beta)
S <- -sum(log(g))
return(S)

# Estimate parameters using numerical optimization
<- nlminb(start = c(0.5, 1), R, lower = c(0, 0),
upper = c(100, 100), datta = datta)

Define the pdf of the NUG distribution
g <- function(x, theta) {
alpha <- thetal[1l]
beta <- thetal[2]
h <- (1/x°2) * dgamma(l/x - 1, shape = alpha, rate = beta)
return (h)

# Plot histogram of the data and the estimated pdf of the NUG distribution

hist(datta, prob = TRUE, breaks = 12, main = "", xlab = "x",
ylab = "", ylim = c(0, 6), col = "#36b612", density = 20)
curve (g(x, c(d$par[1], d$par[2])), col = "red", lty = 1,

lwd = 2, add = TRUE)
legend ("top", legend = c("Estimated pdf of the NUG, ,distribution"),
col = c("red"), 1lwd = 2, 1ty = 1, cex = 0.8)
grid ()

# Compute the AIC and BIC
AIC <- 2 % d$objective + 2 * 2
BIC <- 2 * d$objective + 2 * log(length(datta))

# Output estimated parameters and model selection criteria
c(d$par[1], d$par[2], AIC, BIC)
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