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Kernel Smoothing for Bounded Copula Density Functions
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Abstract. Non-parametric estimation of copula density functions presents significant challenges.One issue is the unboundedness of certain copula density functions and their derivatives at thecorners of the unit square. Another is the boundary bias inherent in kernel density estimation. Thispaper presents a kernel-based method for estimating bounded copula density functions, addressingboundary bias through the mirror reflection technique. Optimal smoothing parameters are derivedvia Asymptotic Mean Integrated Squared Error (AMISE) minimization and cross-validation, withtheoretical guarantees of consistency and asymptotic normality. Two kernel smoothing strategies areproposed: the rule-of-thumb approach and least squares cross-validation (LSCV). Simulation studieshighlight the efficacy of the rule-of-thumb method in bandwidth selection for copulas with unboundedmarginal supports. The methodology is further validated through an application to the WisconsinBreast Cancer Diagnostic Dataset (WBCDD), where LSCV is used for bandwidth selection.

1. Introduction
The study of dependence between random variables is a mainstay of statistical analysis. It is acritical, yet challenging task in multivariate statistical modeling, as it requires specifying complexjoint distributions of random variables to fully capture their dependence structure. This complexitycan be overcome by using copula models, which disentangle the marginal distributions from thedependence structure of the joint distribution. A multivariate distribution can be fully characterizedby its marginal distributions and an associated copula, making copulas an indispensable tool forstatistical investigations (Darsow et al. (1992) [8]; Nelsen (2006) [20]). For further details oncopulas, see Joe (1997) [15], Nelsen (2006) [20], and Durante and Sempi (2015) [10]. In what follows,we focus on the bivariate case only for simplicity, the results being extendable to more than twodimensions.
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Eur. J. Stat. 10.28924/ada/stat.5.7 2Sklar’s theorem (Sklar, 1959 [27]) is central to the theoretical foundation of copulas. It statesthat if (X, Y ) is a pair of random variables with a joint distribution function H and continuousmarginal distribution functions F1 and F2, then there exists a unique copula C such that for all
x, y , H(x, y) = C(F1(x), F2(y)). The copula C fully describes the dependence structure between
X and Y .Formally, a function C : [0, 1]2 → [0, 1] is called bivariate copula if it satisfies the followingconditions:i. C(0, u) = C(u, 0) = 0, C(u, 1) = C(1, u) = u, ∀ u ∈ [0, 1];ii. C(u1, v1) + C(u2, v2)− C(u1, v2)− C(u2, v1) ≥ 0, ∀ [u1, u2]× [v1, v2] ⊂ [0, 1]2.If C is absolutely continuous (see Nelsen (2006) [20]), then it admits a joint density given by:

c(u, v) =
∂2C

∂u∂v
=

∂2C

∂v∂u
.

In this case, such a copula is said to possess a density. The primary objective of this paper is topropose an estimator for c , given an i.i.d. sample {(Xi , Yi)}ni=1 from the distribution function H, andanalyze its properties.Methods for estimating copulas and copula densities generally depend on the assumptions madeabout the joint distribution function H. Commonly used approaches include parametric methods(Iyengar et al., 2011 [14]), semiparametric methods (Chen and Fan, 2006 [5]), and nonparametricmethods (Chen and Huang, 2007 [6]; Wang et al., 2012 [32]). In fully parametric models, where boththe copula and the marginal distributions are explicitly specified, maximum likelihood estimation isthe method of choice. Semiparametric approaches, on the other hand, often specify a parametriccopula while estimating the marginals nonparametrically, providing greater flexibility.Striking a balance between accuracy and computational efficiency is essential in copula estimation.Trivedi and Zimmer (2005) [30] and Choros et al. (2010) [7] provided a discussion of these trade-offs.However, parametric methods can suffer significant underestimation when the marginal distributionsare unknown or misspecified, as noted by Charpentier et al. (2007) [4]. In such cases, non-parametricmethods emerge as a more robust and flexible alternative. For example, Behnen et al. (1985) [1]proposed using a rank-based estimator, which modifies kernel estimators for application to rank data,to estimate the copula density. Later, Gijbels and Mielniczuk (1990) [11] introduced a kernel-typeestimator for bivariate copula densities and demonstrated its consistency and asymptotic normalityunder various conditions related to bandwidth selection and kernel smoothness.These advancements underscore the effectiveness of nonparametric methods in capturing complexdependence structures without imposing restrictive assumptions on the copula or its marginals(Charpentier et al. (2007) [4]; Chen and Huang, 2007 [6]). Building on these techniques, this paperemploys a two-stage kernel density estimation procedure to estimate the copula density. In the firststage, the marginal distribution functions F1(X) and F2(Y ) are estimated nonparametrically using
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Eur. J. Stat. 10.28924/ada/stat.5.7 3empirical CDFs. These marginal estimates are then utilized in the second stage to construct aflexible, non-parametric estimate of the copula density. This approach provides a robust frameworkfor modeling dependence structures, particularly when the underlying distribution functions arecomplex or unknown.To formalize the methods, we introduce several notations that will be used throughout the paper.The squared L2 norm of a function g is defined as
R(g) ≡ ‖g‖22 =

∫ ∞
−∞

g(x)2 dx, (1.1)
where R(g) can be interpreted as a measure of the roughness of g. The square of the pth derivativeof g is denoted by g(p)(x)2. Moments of the kernel K are represented by µk , where

µk =

∫
skK(s) ds. (1.2)

A symmetric kernel function is characterized by the property k(u) = k(−u) for all u. In this case, allodd moments are equal to zero. Most nonparametric estimation techniques utilize symmetric kernels,and our discussion will focus on them. For a kernel K, we assume that µ0 = 1, µ1 = · · · = µp−1 = 0,and 0 < |µp| <∞ for some even p. These moment conditions play a pivotal role in determining thetheoretical properties of kernel-based estimators. Unless otherwise stated, integrals are taken overthe entire real line.The remainder of the paper is organized as follows. Section 2 introduces the proposed estimator.In Section 3, we examine the properties of the estimator, including its bias and asymptotic behavior.Section 4 discusses bandwidth selection procedures, detailing two main methods: the rule-of-thumbapproach and least squares cross-validation (LSCV). Section 5 presents a simulation study usingdata generated from the Frank copula to validate our methodology. Finally, the results are appliedto the Wisconsin Breast Cancer dataset in Section 6.
2. Estimating the Copula Density

Let {(Xi , Yi)}ni=1 be an i.i.d. sample from the joint distribution function H. To estimate thecopula density, we consider the transformed sample {(F̂1(Xi), F̂2(Yi))}ni=1, where F̂1 and F̂2 arethe empirical distribution functions of the marginal distributions. Using empirical estimators forthe margins has distinct advantages and trade-offs. On the one hand, this approach introduceszero bias into the copula density estimator and provides an exact representation of the data, unlikekernel-based margin estimators as discussed in Chen and Huang (2007) [6]. On the other hand,it results in higher variance, which may affect the overall accuracy of the estimator in the case ofsmall samples.
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Eur. J. Stat. 10.28924/ada/stat.5.7 4Based on the transformed sample, the natural kernel-type estimator of c(u, v) is (Wand andJones (1995) [31]; Silverman (2018) [26])
1

nh2n

n∑
i=1

K

(
u − F̂1(Xi)

hn
,
v − F̂2(Yi)

hn

)
, (2.1)

where K is a bivariate density function that is symmetric, unimodal at (0, 0), and has supporton [−1, 1]. The parameter hn represents a sequence of bandwidths that converges to zero as thesample size increases. Commonly used kernel functions include the uniform, Epanechnikov, biweight,triweight, and Gaussian kernels, each of which affects the smoothness and accuracy of the estimatedifferently. Detailed discussions on kernel density estimation can be found in Wand and Jones(1995) [31], Bowman et al. (1998) [2], and Silverman (2018) [26].However, the estimator (2.1) has a notable limitation. It is inconsistent at points on the boundaryof the unit square in which c has a jump, as noted by Gijbels and Mielniczuk (1990) [11]. This arisesbecause, near the boundary, the summands in (2.1) allocate a significant amount of mass outsidethe unit square, leading to an issue known as boundary bias. Three methods have been proposedto address this problem, all of which were initially developed in the context of univariate kerneldensity estimation on the unit line. The first approach employs mirror reflection techniques, asdiscussed by Deheuvels and Hominal (1979) [9], Schuster (1985) [25], and Behnen et al. (1985) [1].In two dimensions, this method reflects data points across all edges and corners of the unit square,generating an expanded dataset from which the kernel estimate is constructed. By redistributingthe kernel’s mass within the unit square, this approach mitigates boundary bias. The second methoduses a local linear variant of the kernel estimator, as introduced by Chen and Huang (2007) [6],to address the bias near boundaries. The third method involves employing kernels whose supportaligns with the support of the target density. These kernels adjust their shape based on the locationwhere the density is being estimated. They are known as boundary kernels and are exemplified bythe beta kernel, proposed by Charpentier et al. (2007) [4].In this work, we employ the mirror reflection technique, which yields the following estimate of
c(u, v). Denoting F̂1(Xi) and F̂2(Yi) by Ûi and V̂i , respectively, we define the estimator for c(u, v)as follows (Behnen et al. (1985) [1]):
Definition 2.1. Let c(u, v) be a copula density. The mirror-reflection kernel estimate of c with
smoothing parameter hn > 0 is defined by

ĉ(u, v) =


1
nh2n

n∑
i=1

9∑
l=1

K
(
u−Ûi l
hn

, v−V̂i lhn

)
, for 0 ≤ u, v ≤ 1,

0, otherwise,
(2.2)

where {(Ûi l , V̂i l), i = 1, . . . , n; l = 1, . . . , 9} = {(±Ûi ,±V̂i), (±Ûi , 2− V̂i), (2− Ûi ,±V̂i), (2− Ûi , 2−
V̂i), i = 1, . . . , n}.
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Eur. J. Stat. 10.28924/ada/stat.5.7 5The following conditions are assumed in the analysis
Assumptions 2.2. A1: H has continuous marginal distribution functions and the copula density

c has bounded derivatives up to the fourth order on [0, 1]2;
A2: K is a symmetric, bounded, sufficiently smooth continuous probability density supported on
[−1, 1];

A3: The bandwidths satisfy hn −→ 0 as n −→∞ and nh2n −→∞ as n −→∞.

Some widely applied copula densities, such as the Clayton, Gumbel, Gaussian, and Student’s
t copulas, as well as their first- and second-order partial derivatives, exhibit unboundedness atthe boundaries of the unit square. This behavior introduces complexities in the analysis of thesederivatives near the corners and edges of the unit square. To address this challenge in their workon copula estimation, Omelka et al. (2009) [21] used the “bandwidth shrinking” method whenapproaching the borders of [0, 1]2. This approach involves substituting the bandwidth hn with abandwidth function r(w)hn, where w = u or v , effectively “shrinking” the bandwidth towards zeroat the corners of the unit square.In this work, we focus on the estimation of copula densities that are bounded and possess boundedsecond-order partial derivatives, exemplified by families such as Ali-Mikhail-Haq, Frank, Plackett,Farlie-Gumbel-Morgenstern, among others.

3. Properties of the Estimator
In this section, we analyze the properties of the estimator defined in (2.2). For this purpose, weutilize the multiplicative kernel, which is specified as follows:

ĉ(u, v) =
1

n

n∑
i=1

9∑
l=1

Khn
(
u − Ûi l

)
Khn

(
v − V̂i l

)
, (3.1)

where Khn(x) = 1/hnK(x/hn). This kernel function will be employed consistently throughout theremainder of the paper.
3.1. Bias and variance. The following proposition establishes the expressions for the estimator’sbias and variance.
Proposition 3.1. Let c(u, v) be a copula density function that is twice-continuously differentiable
on [0, 1]2. Assume that the smoothing parameter hn → 0 and nh2n →∞ as n →∞. Then, for all
points (u, v) ∈ [0, 1]2, the bias and variance of the estimator ĉ(u, v), defined in (3.1), are given by:

Bias[ĉ(u, v)] =
µ2(K)h

2
n

2
[cuu(u, v) + cvv (u, v)] + o(h

2
n),

Var[ĉ(u, v)] =
R(K)2

nh2n
c(u, v) + o

(
1

nh2n

)
,
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where R(K) and µ2(K) are as defined in (1.1) and (1.2) respectively. Here, cuu and cvv denote
the second-order partial derivatives of c with respect to u and v , respectively.

Proof. i. The bias is given by
Bias[ĉ(u, v)] =

9∑
l=1

E
[
Khn(u − Û1l)Khn(v − V̂1l)

]
− c(u, v) (3.2)

To show that this bias is uniformly O(h2n), we utilize the Taylor expansion of c(u−hns, v−hnt).This expansion is justified by the assumption that c(u, v) has bounded first and second-orderderivatives on [0, 1]2.The simplest case occurs when (u, v) ∈ [hn, 1− hn]2. In this case, Equation (3.2) reducesto
Bias[ĉ(u, v)] = E

[
Khn(u − Û1)Khn(v − V̂1)

]
− c(u, v).

Substituting s = (u − x)/hn and t = (v − y)/hn and using Assumptions 2.2, we obtain
Bias[ĉ(u, v)] =

∫ 1
−1

∫ 1
−1
c(u − hns, v − hnt)K(s)K(t)dsdt − c(u, v)

=

∫ 1
−1

∫ 1
−1
{c(u, v)− hnscu(u, v)− hntcv (u, v) +

h2ns
2

2
cuu(u, v)+

h2nstcuv (u, v) +
h2nt
2

2
cvv (u, v)}K(s)K(t)dsdt + o(h2n)− c(u, v)

=
µ2(K)h

2
n

2
[cuu(u, v) + cvv (u, v)] + o(h

2
n)where µ2(K) denotes the second moment of K, and cu , cv , cuu , cuv , and cvv are the first-and second-order partial derivatives with respect to u and v .Regarding the remaining cases, we will show only for the case when (u, v) ∈ [1− hn, 1]2.The other cases may be handled in a similar way. Note that the Taylor expansion togetherwith Assumptions 2.2 imply that c(u, v) = c(1, 1) + (u − shn)cu(1, 1) + (v − thn)cv (1, 1) +

O(h2n) uniformly in (u, v) ∈ [1− 2hn, 1]2. Further routine algebra shows that (3.2) simplifiesto
Bias[ĉ(u, v)] = EKhn(u − U1)Khn(v − V1)

+ EKhn(u − U1)Khn(v + V1 − 2)

+ EKhn(u + U1 − 2)Khn(v − V1)

+ EKhn(u + U1 − 2)Khn(v + V1 − 2)− c(u, v)Let G(z) = ∫ z−∞K(t)dt and Tw,hn = G((w − 1)/h) for w = u or v . We compute
EKhn(u − U1)Khn(v − V1)

=

∫ ∫
Khn(u − x)Khn(v − y)c(x, y)dxdy
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=

∫ 1
v−1
hn

∫ 1
u−1
hn

c(u − shn, v − thn)K(s)K(t)dsdt

=

∫ 1
v−1
hn

∫ 1
u−1
hn

{c(1, 1) + ucu(1, 1)− shncu(1, 1)− cu(1, 1) + vcv (1, 1)− thncv (1, 1)− cv (1, 1)}

K(s)K(t)dsdt +O(h2n)

= c(1, 1) [1− Tv,hn ] [1− Tu,hn ] + ucu(1, 1) [1− Tv,hn ] [1− Tu,hn ]− cu(1, 1) [1− Tv,hn ]×

[1− Tu,hn ]− hncu(1, 1) [1− Tv,hn ]
∫ 1
u−1
hn

sK(s)ds + vcv (1, 1) [1− Tv,hn ] [1− Tu,hn ]−

cv (1, 1) [1− Tv,hn ] [1− Tu,hn ]− hncv (1, 1) [1− Tu,hn ]
∫ 1
v−1
hn

tK(t)dt +O(h2n). (3.3)
Similarly,

EKhn(u − U1)Khn(v + V1 − 2) =
∫ ∫

Khn(u − x)Khn(v + y − 2)c(x, y)dxdy

=

∫ v−1
hn

−1

∫ 1
u−1
hn

c(u − shn, 2 + thn − v)K(s)K(t)dsdt

= c(1, 1)[1− Tu,hn ]Tv,hn + ucu(1, 1)[1− Tu,hn ]Tv,hn − hncu(1, 1)
∫ 1
u−1
hn

sK(s)dsTv,hn−

cu(1, 1)[1− Tu,hn ]Tv,hn + cv (1, 1)[1− Tu,hn ]Tv,hn + hncv (1, 1)
∫ v−1

hn

−1
tK(t)dt[1− Tu,hn ]−

vcv (1, 1)[1− Tu,hn ]Tv,hn +O(h2n). (3.4)
Taking a similar approach as above gives

EKhn(u + U1 − 2)Khn(v − V1) =
∫ ∫

Khn(u + x − 2)Khn(v − y)c(x, y)dxdy

= c(1, 1)[1− Tv,hn ]Tu,hn − ucu(1, 1)[1− Tv,hn ]Tu,hn + hncu(1, 1)
∫ u−1

hn

−1
sK(s)ds[1− Tv,hn ]+

cu(1, 1)[1− Tv,hn ]Tu,hn − cv (1, 1)[1− Tv,hn ]Tu,hn − hncv (1, 1)
∫ 1
v−1
hn

tK(t)dtTu,hn+

vcv (1, 1)[1− Tv,hn ]Tu,hn +O(h2n). (3.5)
and

EKhn(u + U1 − 2)Khn(v + V1 − 2) =
∫ ∫

Khn(u + x − 2)Khn(v + y − 2)c(x, y)dxdy

= c(1, 1)Tv,hnTu,hn + cu(1, 1)Tv,hnTu,hn + hncu(1, 1)

∫ u−1
hn

−1
sK(s)dsTv,hn − ucu(1, 1)Tv,hnTu,hn+

cv (1, 1)Tv,hnTu,hn + hncv (1, 1) +

∫ v−1
hn

−1
tK(t)dtTu,hn − vcv (1, 1)Tv,hnTu,hn +O(h2n) (3.6)

Combining (3.3) with (3.4), (3.5) and (3.6) gives us
Bias[ĉ(u, v)] = c(1, 1) + (u − shn)cu(1, 1) + (v − thn)cv (1, 1) +O(h2n)− c(u, v) = O(h2n),
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Eur. J. Stat. 10.28924/ada/stat.5.7 8which was to be proved.ii. The prove for the variance relies on results on the asymptotic normality for the mirror-reflection estimator by Gijbels and Mielniczuk (1990) [11], Theorem 3.2.
�

3.2. Consistency and asymptotic normality of the estimator. Behnen et al. (1985) [1], in Theorem2.1, showed that the estimator (2.2) is a uniformly strongly consistent estimator of c(u, v). Theasymptotic normality of the estimator is established in Theorem 3.2 of Gijbels and Mielniczuk(1990) [11].
4. Bandwidth Selection

The estimation process is highly sensitive to the choice of smoothing parameters, hn. In thissection, we discuss three main methods for selecting bandwidth. Determining the “optimal” valuesfor these parameters requires a specific criterion function.The first method identifies the optimal bandwidth by minimizing the AMISE. The other twomethods involve cross-validation (CV) approaches aimed at minimizing the MISE, following theworks of Bowman (1984) [3], Scott and Terrell (1987) [24], and Terrell and Scott (1985) [29]. Inthe context of multivariate kernel estimation, these data-driven CV methods seek to estimate theIntegrated Squared Error (ISE) or MISE directly from the data, identifying the smoothing parameterthat minimizes the estimated ISE or MISE.Stone (1984) [28] demonstrated a significant theoretical finding that, when the underlyingmultivariate density and its one-dimensional marginals are bounded, the smoothing parametersselected using multivariate least-squares cross-validation (LSCV) are asymptotically optimal. Formore information on cross-validation methods, refer to Rudemo (1982) [22], Bowman (1984) [3],Scott and Terrell (1987) [24], and Terrell and Scott (1985) [29]. Higher-order plug-in algorithms formultivariate density estimation have been explored by Wand and Jones (1995) [31].
4.1. Rule-of-thumb approach. A common method for selecting bandwidth involves establishing arule-of-thumb based on a specific parametric family. Given that our interest lies in estimatingdensity over the entire unit square, our focus is on choosing a global bandwidth. Consequently, weadopt the strategy of minimizing the asymptotic mean integrated squared error (AMISE).The mean square error (MSE) for (u, v) ∈ [hn, 1− hn]2 is
MSE(ĉ(u, v)) = V ar(ĉ(u, v)) + Bias(ĉ(u, v))2

=
R(K)2

nh2n
c(u, v) + [

µ2(K)h
2
n

2
[cuu(u, v) + cvv (u, v)]]

2 + o((nh2n)
−1 + h4) (4.1)

The MISE is obtained by integrating (4.1) above using the integrability assumption on c(u, v).
MISE(ĉ(u, v))

https://doi.org/10.28924/ada/stat.5.7
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=(nh2n)
−1R(K)2

∫ 1
0

∫ 1
0

c(u, v) du dv +
h4nµ2(K)

2

4

∫ 1
0

∫ 1
0

[cuu(u, v) + cvv (u, v)]
2 du dv

+ o((nh2n)
−1 + h4)

=(nh2n)
−1R(K)2 +

h4nµ2(K)
2

4
β + o((nh2n)

−1 + h4), (4.2)
where β = ∫ 10 ∫ 10 [cuu(u, v) + cvv (u, v)]2 du dv . This leads to the asymptotic MISE

AMISE(hn) = (nh2n)−1R(K)2 + h4nµ2(K)24
β, (4.3)

with β as defined above. The optimal bandwidth that minimizes the MISE is therefore given by
h∗n =

[
2R(K)2

nµ2(K)2β

]1/6
. (4.4)

This expression still relies on the unknown copula density c(u, v). In practice, we select aparametric reference copula family and adjust the parameter to match the dependence strengthobserved in the data, for instance, by inverting Kendall’s tau to estimate the unknown parameter inFrank’s copula density. The optimal bandwidth h∗n is then determined numerically. It is importantto note that this approach is feasible only if R(K)2 and β are finite.
4.2. Cross-validation (CV). We now shift our focus to an alternative approach for estimatingbandwidth. Notably, h∗n, defined in (4.4), is obtained by minimizing the AMISE, where estimatesreplace the unknown curvature components of c . Alternatively, we may directly minimize theMISE using cross-validation approaches, as recommended by Scott and Terrell (1987) [24]. TheCV approach involves using the sample twice: once to compute the KDE and again to assess itsaccuracy in estimating c(u, v). To avoid dependence on the same data for both computation andevaluation, the CV approach partitions the sample in a cross-validatory manner, ensuring that thedata used to compute the KDE is excluded from its evaluation.
4.2.1. Least squares cross-validation (LSCV). Least squares cross-validation (LSCV) is a statisticaltechnique for evaluating a model’s predictive accuracy and optimizing model parameters by dividingdata into training and validation subsets. This method is particularly useful in selecting parametersthat prevent overfitting, ensuring the model generalizes well to new data. Rudemo (1982) [22]discussed LSCV for selecting smoothing parameters in density estimation, while Bowman (1984) [3]introduced foundational approaches to LSCV for bandwidth selection. Wand and Jones (1995)[31] provided an overview of LSCV for kernel smoothing, covering both theoretical and practicalapplications.

Second-stage smoothingIn the second stage of the estimation process, we employ the estimated marginal distributions toestimate the copula density c(u, v), where u = F (x) and v = G(y). Here, the Epanechnikov kernel,

https://doi.org/10.28924/ada/stat.5.7
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K(x) = 3/4(1 − x2)+, where the subscript “+” denotes the positive part. Our goodness-of-fitcriterion between c(u, v) and ĉ(u, v) is the usual ISE, defined as follows:
ISE = ∫ 1

0

∫ 1
0

[ĉ(u, v)− c(u, v)]2 du dv. (4.5)
The ISE measures the discrepancy between the true copula density and the estimated densityover the unit square. By taking the expectation of the ISE, we obtain the MISE, which representsthe average error in our estimation over repeated samples (see Rudemo (1982) [22] and Bowman(1984) [3]). The MISE serves as a criterion for selecting an optimal bandwidth by minimizing theestimation error. Replacing ĉ(u, v) with the generalized estimator ĉ(u, v ; hn) in (4.5) and expandingyields

ISE(ĉ(·; hn)) = R(ĉ(·; hn))− 2
∫ 1
0

∫ 1
0

ĉ(u, v ; hn)c(u, v) du dv +

∫ 1
0

∫ 1
0

c(u, v)2 du dv,

where
ĉ(u, v ; hn) =

1

n

n∑
i=1

9∑
l=1

Khn
(
u − Ûi l

)
Khn

(
v − V̂i l

)
is the multiplicative bivariate kernel estimator. Here, Ûi l and V̂i l are as given in Definition 2.1, and
R(g) is as defined in (1.1). The MISE is then given by
MISE(ĉ(·; hn)) = E [R(ĉ(·; hn))]− 2E

[∫ 1
0

∫ 1
0

ĉ(u, v ; hn)c(u, v) du dv

]
+ E

[∫ 1
0

∫ 1
0

c(u, v)2 du dv

]
.

Since the last term is independent of hn, minimizing MISE(ĉ(·; hn)) is equivalent to minimizing
E [R(ĉ(·; hn))]− 2E

[∫ 1
0

∫ 1
0

ĉ(u, v ; hn)c(u, v) du dv

]
. (4.6)

This quantity is unknown but can be estimated unbiasedly as (Bowman (1984) [3] and Wand andJones (1995) [31]):
LSCV(hn) := R(ĉ(·; hn))− 2

n

n∑
i=1

9∑
l=1

ĉ−i(Ui l , Vi l ; hn), (4.7)
where

ĉ−i(u, v ; hn) =
1

n − 1

n∑
j=1
j 6=i

9∑
l=1

Khn(u − Uj l)Khn(v − Vj l)

is the leave-one-out KDE, computed by excluding (Ui l , Vi l) from the sample.The first term in (4.7) is unbiased by design. The second term results from estimating ∫ ∫ ĉ(u, v)c(u, v) du dvusing a Monte Carlo approximation based on the sample {Ui l , Vi l | i = 1, . . . , n; l = 1, . . . , 9}, whosecopula has density c(u, v); specifically, this is achieved by replacing c(u, v) du dv = dC(u, v)with dCn(u, v), where Cn denotes the empirical copula. This can be expressed as∫ ∫
ĉ(u, v ; hn) du dv ≈

1

n

n∑
i=1

ĉ(Ui l , Vi l ; hn),
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Eur. J. Stat. 10.28924/ada/stat.5.7 11where, to reduce sample dependence, we substitute ĉ(Ui l , Vi l ; hn) with ĉ−i(Ui l , Vi l ; hn). In thismanner, we utilize the sample to estimate the integral involving ĉ(·; hn), while for each (Ui l , Vi l),the kernel density estimate is computed from the remaining observations.To demonstrate that (4.7) serves as an unbiased estimator of (4.6), observe that the expectationsof (4.6) and LSCV (hn) correspond term by term, since
Eĉ−i(ui , vi ; hn) = EKhn(ui − Uj)Khn(vi − Vj) = E

∫ 1
0

∫ 1
0

Khn(u − Uj)Khn(v − Vj)c(u, v) du dv

= Eĉ(u, v ; hn) du dv.

We refer to (4.7) as an unbiased cross-validation criterion because its expectation satisfies
E(LSCV(hn)) = MISE(ĉ(·; hn))− ∫ 1

0

∫ 1
0

c(u, v)2 du dv.

This expression shows that the expected value of LSCV directly approximates the MISE, corrected bythe integral term. In contrast, other theoretical expressions, such as AMISE, are only asymptoticallyunbiased, which means they approximate the MISE as n →∞ but are biased for finite sample sizes.The LSCV selector is then defined by
ĥLSCV := arg min

hn>0
LSCV(hn).

To obtain ĥLSCV, numerical optimization is necessary. However, this process can be complicated bythe LSCV function, which may contain multiple local minima, and its objective function can exhibitsignificant roughness, depending on n and c . Consequently, optimization algorithms may sometimesconverge to incorrect solutions. To avoid this, one can verify the solution by plotting LSCV(hn) overa range of hn values or by performing a search over a specified bandwidth grid. Hall (1983) [12] andStone (1984) [28] demonstrated that the LSCV procedure yields a consistent sequence of smoothingparameters and is, in a specific sense, asymptotically optimal.Analyzing the MISE in (4.2) requires understanding the kernel moments in (1.2), which is notimmediately evident in (4.7). For large n, the bandwidth becomes small enough that the probabilitymass outside the unit square tends to zero. Using this, Gijbels and Mielniczuk (1990) [11] derivedthe bias of the mirror reflection estimator (Theorem 3.2). Incorporating this concept, (4.7) can bereformulated as:
LSCV(h) = R(K)2

nh2
+

n∑
i=1

n∑
j=1
i 6=j

[
1

n2h4

∫ 1
0

K

(
u − Ûi
hn

)
K

(
u − Ûj
hn

)
du

∫ 1
0

K

(
v − V̂i
hn

)
K

(
v − V̂j
hn

)
dv

−
2

n(n − 1)h2K

(
Ûi − Ûj
hn

)
K

(
V̂i − V̂j
hn

)]
. (4.8)

An instructive exercise shows that for p even, the expectation of (4.8) equals (4.3) minus the constant
R(c(u, v)). Under the kernel properties in Assumptions 2.2, we define:

γ(τ1, τ2) =

∫ ∫
K(w1)K(w1 + τ1)K(w2)K(w2 + τ2) dw1 dw2 − 2K(τ1)K(τ2), (4.9)
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τi j,1 = (Ûi − Ûj)/hn and τi j,2 = (V̂i − V̂j)/hn, (4.10)

then (4.8) becomes (replacing n − 1 by n)
LSCV (hn) =

R(K)2

nh2n
+
2

n2h2n

∑∑
i<j

γ(τi j,1, τi j,2). (4.11)
The following theorem provides the mean of the function (4.11) for fixed hn.
Theorem 4.1. For the LSCV kernel criterion (4.11)

E[LSCV (hn)] = AMISE(hn)− R(c) +O(n−1). (4.12)
Proof. Recall that K is a symmetric function with support on [−1, 1]. Using this property, we define
γ+(τ1, τ2) and γ−(τ1, τ2) to represent γ(τ1, τ2) as given in (4.9), over the intervals [0, 2]2 and
[−2, 0]2, respectively. For 0 ≤ τ1, τ2 ≤ 2, γ+(τ1, τ2) is given by:

γ+(τ1, τ2) ≡
∫ 1−τ1
−1

∫ 1−τ2
−1

K(w1)K(w1 + τ1)K(w2)K(w2 + τ2) dw1 dw2 − 2K(τ1)K(τ2).(4.13)Similarly, for −2 ≤ τ1, τ2 ≤ 0, γ−(τ1, τ2) is defined analogously to (4.13), with the integrationlimits for both τ1 and τ2 replaced by −1− τ and 1. Since K is symmetric, it follows that γ is alsosymmetric.With these definitions in place, we can now evaluate:
E[γ(τi j,1, τi j,2)] =

∫ 1
0

∫ 1
0

c(u, v)

[ ∫ u

u−2hn

∫ v

v−2hn
γ+

(
u − u1
hn

,
v − v1
hn

)
c(u1, v1) du1 dv1+∫ u+2hn

u

∫ v+2hn

v

γ−

(
u − u1
hn

,
v − v1
hn

)
c(u1, v1) du1 dv1

]
du dv

= h2n

∫ 1
0

∫ 1
0

c(u, v)

[ ∫ 2
0

∫ 2
0

γ+(τ1, τ2){c(u − τ1hn, v − τ2hn)+

c(u + τ1hn, v + τ2hn)} dτ1 dτ2
]
du dv

= 2h2n

∫ 1
0

∫ 1
0

c(u, v)

[ ∫ 2
0

∫ 2
0

γ+(τ1, τ2)

(
c(u, v) +

∑
|κ|=2

h
|κ|
n τ

κ1
1 τ

κ2
2

κ1!κ2!

∂|κ|c(u, v)

∂uκ1∂vκ2
+

∑
|κ|=4

h
|κ|
n τ

κ1
1 τ

κ2
2

κ1!κ2!

∂|κ|c(u, v)

∂uκ1∂vκ2

)
dτ1 dτ2

]
du dv, (4.14)

where |κ| = κ1 + κ2 is the total order of differentiation. Now, for κ1 and κ2 even∫ 2
0

∫ 2
0

τκ11 τ
κ2
2 γ+(τ1, τ2) dτ1 dτ2 =

1

2

∫ 1
−1
K(w1)

∫ 1
−1
(s1 − w1)κ1K(s1) ds1 dw1×∫ 1

−1
K(w2)

∫ 1
−1
(s2 − w2)κ2K(s2) ds2 dw2 − µκ1µκ2 ,(4.15)
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Eur. J. Stat. 10.28924/ada/stat.5.7 13where we have used the substitution s1 = w1 + τ1 and s2 = w2 + τ2. The expression (4.15) equalsto −1/2, 0, µ22 and 3µ22 for {κ1, κ2} = {0, 0}, {0, 2}, {2, 2}, {0, 4}, respectively. Hence
E[γ(τi j,1, τi j,2)] =h

2
n

∫ 1
0

∫ 1
0

[
− c(u, v)2 +

µ22h
4
n

4

(
c(u, v)

∂4c(u, v)

∂u4
+ 2c(u, v)

∂4c(u, v)

∂u2∂v2
+

c(u, v)
∂4c(u, v)

∂v4

)]
du dv

= h2n

[
− R(c(u, v)) +

µ22h
4
n

4

∫ 1
0

∫ 1
0

[cuu(u, v) + cvv (u, v)]
2

]
, (4.16)

where we have used integration by parts. Thus (4.12) follows from (4.16), (4.11) and (4.2). �

The roughness of ĉ(u, v), represented by R(ĉ(·; hn)) in (4.7), when using the Epanechnikovkernel can be described in terms of the convolution of the kernel K with itself. Before presentingthis result, we first state the following lemma, which will be instrumental in the proof.
Lemma 4.2. Let K be a symmetric kernel. Then∫

K

(
u − Ui
h

)
K

(
u − Uj
h

)
du = h (K ∗K)

(
Ui − Uj
h

)
,

where K ∗K denotes the convolution of K with itself.

Proof. To prove Lemma 4.2, we start by applying the substitution u = hw , which implies du = h dw .Substituting this into the integral, we obtain:∫
K

(
u − Ui
h

)
K

(
u − Uj
h

)
du = h

∫
K

(
Ui
h
− w

)
K

(
w −

Uj
h

)
dw. (4.17)

The expression on the right side of equation (4.17) can be interpreted as a product of two shiftedkernels centered at Ui/h and Uj/h, respectively. For clarity, let us denote these shifted kernels as
KUi (w) = K (Ui/h − w) and KUj (w) = K

(
w − Uj/h

)
. Thus, we can rewrite equation (4.17)as:

h

∫
K

(
Ui
h
− w

)
K

(
w −

Uj
h

)
dw = h

∫
KUi (w)KUj (w) dw. (4.18)

Now, to further simplify the right side of (4.18), let us make the substitution w1 = w − Uj/h, sothat w = w1 + Uj/h and dw = dw1. Under this substitution KUj (w) = K(w1) and KUi (w) =

K
(
(Ui − Uj)/h − w1

)
. Thus, we can rewrite (4.18) as:

h

∫
K

(
Ui − Uj
h

− w1
)
K(w1) dw1 = h (K ∗K)

(
Ui − Uj
h

)
,

as required. �

For the Epanechnikov kernel, the convolution (K ∗ K)(x) = ∫ K(t)K(x − t) dt implies that
−1 ≤ t ≤ 1 and −1 ≤ x − t ≤ 1. These two inequalities imply that x − 1 ≤ t ≤ x + 1 and
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x ∈ [−2, 2]. Thus the integral of the convolution of the Epanechnikov kernel by itself can be brokeninto three cases based on x as

(K ∗K)(x) =



∫ x+1
−1

9
16(1− t

2)(1− (x − t)2)dt, −2 ≤ x ≤ −1,∫ 1
−1

9
16(1− t

2)(1− (x − t)2)dt, −1 ≤ x ≤ 1,∫ 1
x−1

9
16(1− t

2)(1− (x − t)2)dt, 1 ≤ x ≤ 2,

0, otherwise.
(4.19)

Proposition 4.3. Let K be a univariate kernel. The roughness of the estimator ĉ(u, v) given in(3.1), when using the Epanechnikov kernel, is of the form

R(ĉ) =
81

256n2h2n

n∑
i=1

n∑
j=1

9∑
l=1

9∑
m=1

(K ∗K)(ξi j lm) (K ∗K) (ζi j lm), (4.20)
where ξi j lm = (Ui l − Ujm)/hn, ζi j lm = (Vi l − Vjm)/hn, and (K ∗ K)(x) is the convolution of the
Epanechnikov kernel with itself.

Proof. Using Definition 2.1,
R(ĉ) =

1

n2

∫ ∫ ( n∑
i=1

9∑
l=1

Khn(u − Ui l)Khn(v − Vi l)

)2
du dv

=
1

n2

n∑
i=1

9∑
l=1

n∑
j=1

9∑
m=1

∫ ∫
Khn(u − Ui l)Khn(v − Vi l)Khn(u − Ujm)Khn(v − Vjm) du dv

(4.21)
Using the Epanechnikov kernel, then (4.21) can be written as
R(ĉ) =

81

256n2h4

n∑
i=1

9∑
l=1

n∑
j=1

9∑
m=1

∫ ∫ {(
1−

(
u − Ui l
hn

)2)(
1−

(
v − Vi l
hn

)2)(
1−

(
u − Ujm
hn

)2)
×

(
1−

(
v − Vjm
hn

)2)}
du dv

=
81

256n2h4n

n∑
i=1

9∑
l=1

n∑
j=1

9∑
m=1

∫ (
1−

(
u − Ui l
hn

)2)(
1−

(
u − Ujm
hn

)2)
du×

∫ (
1−

(
v − Vi l
hn

)2)(
1−

(
v − Vjm
hn

)2)
dv,

=
81

256n2h2n

n∑
i=1

n∑
j=1

9∑
l=1

9∑
m=1

(K ∗K)(ξi j lm) (K ∗K) (ζi j lm), (4.22)
where we have used Lemma 4.2 to arrive at the last line of (4.22), (K ∗K) is the convolution of theEpanechnikov kernel by itself defined in (4.19), and ξi j lm = (Ui l−Ujm)/hn , ζi j lm = (Vi l−Vjm)/hn . �
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Eur. J. Stat. 10.28924/ada/stat.5.7 154.2.2. Biased cross-validation (BCV). Unlike the LSCV, which relies solely on the MISE, the BiasedCross-Validation (BCV) approach is a hybrid that combines both plug-in and cross-validationtechniques. To introduce the bivariate case, we begin by examining the univariate BCV casesdiscussed in existing literature. The work by Scott and Terrell (1987) [24] proposed minimizing theAMISE:
AMISE(h) = R(K)

nh
+
h4µ2(K)

2

4
R
(
f ′′(x)

)
, (4.23)

where h represents the bandwidth for the univariate kernel K, R(K) and µ2(K) are as defined in(1.1) and (1.2), respectively, and f ′′(x) is the second derivative of the underlying univariate density.For more details on univariate kernel density estimation, see Scott and Terrell (1987) [24] and Wandand Jones (1995) [31]. The only unknown term in the AMISE expression in (4.23) is the secondderivative of the underlying density.Scott and Terrel (1987) [24] proposed an estimate of R(f ′′(x)) of the form R̂1(f
′′
) = R(f̂

′′
) −

R(K
′′
)/nh5, where f̂ ′′ is the second derivative of the univariate KDE, K. They gave the correspondingAMISE estimate as

BCV 1(h) =
R(K)

nh
+
h4µ2(K)

2

4
R̂1(f

′′
).

Hall and Marron (1987) [13] investigated the precision of estimators for the quantity R(f ′′(x))and derived an estimator using the identity
R(f

′′
) =

∫
f
′′
(x)2 dx =

∫
f (iv)(x)f (x) dx = E[f

′′
(x)],

while also discussing its implications for bandwidth selection. Utilizing this identity, they demon-strated that R̂2(f ′′) = 1
n

∑n
i=1 f̂

(iv)
−i (xi), leading to the criterion function

BCV 2(h) =
R(K)

nh
+
h4µ2(K)

2

4
R̂2(f

′′
).

In the univariate case, the estimator R̂2 has a higher variance than R̂1 (Sain et al., 1994 [23]).However, this increased variance is accompanied by a reduction in bias. Importantly, R̂2 offersgreater ease of extension to multivariate cases (Sain et al., 1994 [23]), making it an appealingchoice for our analysis due to its implementational simplicity and improved bias characteristics.Consider the AMISE given in (4.3). We can rewrite this as
AMISE(h) = R(K)2

nh2n
+
h4nµ2(K)

2

4

(∫ 1
0

∫ 1
0

cuu(u, v)
2 du dv

+

∫ 1
0

∫ 1
0

cvv (u, v)
2 du dv + 2

∫ 1
0

∫ 1
0

cu(u, v)cv (u, v) du dv

)
. (4.24)

where K,R(K) and µ2(K) are as used in (4.3) and β in (4.3) has been expanded to obtain thefactor in parenthesis in the second term.
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Using the bivariate form of R̂2, we can estimate the roughness of the first second-order partialderivative in the AMISE expression as follows:∫ 1
0

∫ 1
0

cuu(u, v)
2 du dv =

∂4c(u, v)

∂u4
c(u, v)du dv = E

[
∂4c(u, v)

∂u4

]
.

The second term in the AMISE expression can be dealt with similarly while the third is estimated as∫ 1
0

∫ 1
0

cuu(u, v)cvv (u, v) du dv =
∂4c(u, v)

∂u2 ∂v2
c(u, v)du dv = E

[
∂4c(u, v)

∂u2 ∂v2

]
These expressions can be estimated by

n−1
n∑
i=1

∂4ĉ−i(Ui , Vi)

∂u4
(4.25)

and
n−1

n∑
i=1

∂4ĉ−i(Ui , Vi)

∂u2 ∂v2
. (4.26)

Substituting (4.25) and (4.26) into (4.24) we obtain the BCV function. Typically, a kernel withcompact support, such as the Epanechnikov kernel, may not suffice for higher-order derivatives dueto discontinuities at the boundaries. A Gaussian kernel or other infinitely differentiable kernels aremore appropriate choices.
5. Simulation Study

One of the most insightful aspects of working with copulas is the ability to create exploratory plotsthat visually represent the dependence structure. In this section, we present visualizations of variousaspects of the true density and the mirror-reflection estimator, based on simulated data (n = 500)generated from a Frank copula with parameter θ = 5 (Kendall’s τ ≈ 0.46). All computations arecoded on R Studio software. Note that the Frank copula has a bounded density. The simplemirror-reflection estimator fails to capture the tail behavior of unbounded densities, such as thoseof the Gaussian copula or any copula exhibiting tail dependence.Figure 1(a) below shows the scatterplot of the original data generated from the Frank copulamodel. In Figure 1(b), the data is transformed using the inverse of the Gaussian cumulativedistribution function (CDF), which highlights lack of tail dependencies between the variables.
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(a) (b)
Figure 1. (a) Scatterplot of original data from the Frank copula sample and (b)scatterplot of the transformed sample.

To address the bandwidth selection problem, we considered various sample sizes and calculatedthe bandwidths that optimize the AMISE and minimize the LSCV(h) criterion, respectively. Table 1presents a comparison of the optimal bandwidths (bw), h∗n and ĥLSCV , along with the ISE fordifferent sample sizes. The rule-of-thumb selector has a convergence rate much faster than theLSCV selector.
n = 100 n = 200 n = 500 n = 1000

bw ISE bw ISE bw ISE bw ISE
h∗n 0.239 1.138 0.213 1.030 0.183 0.917 0.163 0.652
hLSCV 0.244 1.227 0.238 1.094 0.196 1.052 0.199 1.007

Table 1. Comparison of h∗n and ĥLSCV for different sample sizes (n) in terms ofbandwidth (bw) and ISE.
Marginal normal contour plots of the true density and the mirror-reflection estimator are shownin Figure 2. Figure 2 (a) provides the contour plots of the true density, while Figure 2 (b) displaysthe mirror-reflection estimator based on the simulated data. Bandwidths for the kernel densityestimates were selected on the bases of AMISE-optimality. Examining the contour plots in Figure 2,we conclude that the bandwidth selection rules are functioning appropriately for our finite samples.Using smaller bandwidths(resp., sample sizes) would result in wiggly estimates, which would makethe visualizations a little unpleasant.
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(a) (b)
Figure 2. (a) Contour plot of the true density; (b) Contour plot of the mirror reflectionestimates on simulated data (n=500) of a Frank copula. Bandwidths are selectedbased on the LSCV criterion.

Plot (a) in Figure 3 illustrates the mirror-reflection estimate of the density of the transformeddata. The perspective plots in (b) shows the estimated density based on the simulated data of theFrank copula. Figure 3 (b) reveals some deviation of the estimated density from the true density(see the true Frank copula density plot in Nagler 2014 [19]), mainly due to the undersmoothing inthe central region of the estimates. However, our bandwidth selection approach strikes a favorablebalance between bias and variance, resulting in plots that closely align with the true density evenwith smaller samples.

(a) (b)
Figure 3. (a) Mirror reflection estimate for the Frank copula transformed sample;(b) perspective plot for the true density of the Frank copula, and (c) perspective plotof the mirror-reflection kernel density estimate.
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In the practical application part of our study, we used the Wisconsin Breast Cancer DiagnosticDataset (WBCDD) for analysis. This data set was derived from the examination of cell nucleicharacteristics in 569 images obtained by Fine Needle Aspiration (FNA) of breast masses. Eachsample in the dataset is categorized as either ‘Benign’ or ‘Malignant’, corresponding to noncancerousand cancerous cases, respectively.The data set was compiled through the efforts of Dr. William Wolberg of Wisconsin Hospital,who provided the breast mass images, and William Nick Street from the Department of ComputerSciences, University of Wisconsin, who digitized the images in November 1995 (O. Mangasarianand W. Wolberg [17]). It contains 569 instances with 30 numeric features, in addition to an IDcolumn and a class label. Among these samples, 357 are benign, while 212 are malignant. Notably,the data set does not have any missing values.For this particular study, we chose two variables: the mean radius (column 2) and the meanconcavity (column 8). The first step involved empirical estimation of the marginal distributions of thesevariables. This was achieved by computing their empirical cumulative distribution functions (ECDFs),

F̂1 and F̂2, based on the observed data. Specifically, for an observation (Xi , Yi), the transformedvalues were calculated as (Ûi , V̂i), where Ûi = F̂1(Xi), V̂i = F̂2(Yi). This transformation effectivelymaps the data to the unit square [0, 1]2 while preserving the dependence structure between thevariables. Once the data was transformed to uniform margins, a scatter plot was created to visualizethe relationships between the variables in their new scale. This visualization offered insights intothe structure of dependence present in the dataset, even before any further transformations.Figure 4 (a) shows a scatter plot of the data for the two variables: mean radius (column 2) andmean concavity (column 8) from the Wisconsin Cancer dataset, after transformation using theirmarginal empirical distribution functions. Figure 4 (b) displays a scatter plot of the same data aftertransformation to the standard normal distribution. The scatter plot in (b) shows that the data haveneither lower nor upper tail dependence.
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(a) (b)
Figure 4. (a) Scatter plot of data after transformation by its marginal empiricaldistribution function; (b) scatter plot of the transformed data with standard normalmargins.

The dependence structure of the WBCDD was then depicted using a contour plot. Figure 5 (a)shows contour plot of the copula density combined with standard normal margins, (b) the kerneldensity estimate for transformed sample (with standard normal margins), (c) a surface or perspectiveplot of the copula density. The bandwidths were selected on the basis of the optimality of the LSCVcriterion.

(a) (b) (c)
Figure 5. Exploratory visualizations of the WBCDD data and copula density: (a)Contour plot of the copula density combined with standard normal margins; (b)kernel density estimate for transformed sample (with standard normal margins); and(c) surface plot of the copula density.
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Figure 6. LSCV curve for the mirror-reflection estimator applied to the WBCDD,showing the optimal smoothing parameter hLSCV = 0.031.
In Figure 6, we provided a plot of the LSCV curve for our mirror-reflection estimator for theWBCDD. The optimal LSCV smoothing parameter was found to be hLSCV = 0.031.

7. Conclusion
Methods for copula density estimation have been explored in the literature but remain insufficientlyinvestigated, primarily due to the challenge of unbounded copula densities and their derivatives atthe boundaries of [0, 1]2.In this study, we focused on estimating copula densities that are bounded within the unit square.This assumption facilitated a straightforward derivation of the asymptotic bias using Taylor expansiontechniques. We introduced two kernel smoothing methods and demonstrated that the rule-of-thumbapproach provides superior bandwidth selection, particularly in cases where the margins haveunbounded support.We also proved a theorem establishing that the LSCV kernel criterion has an asymptoticexpectation equal to the AMISE minus the roughness of the copula density. Simulation resultsshowed that AMISE-optimal bandwidth selection is preferable in scenarios where the margins haveunbounded support, even when the kernel used for estimation is bounded. Finally, for any copula tobe applied to real-world data, it is essential to ensure that the data’s distribution aligns with thetheoretical properties of the chosen copula.
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