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ABSTRACT. Clustering is a fundamental technique in unsupervised machine learning,
where selecting the optimal number of clusters (ONC) remains a critical challenge,
particularly for datasets with diverse characteristics. The Gap Statistic is a widely
adopted method for determining ONC in K-means clustering, yet its performance is
influenced by dataset size, feature complexity, and computational efficiency. This study
systematically evaluates the accuracy, execution time, and coefficient of determination
(R?) of the Gap Statistic across four distinct datasets sourced from GitHub: Well Log,
Time Series, Iris, and Hitters. These datasets vary in size, structure, and domain, providing
a comprehensive assessment of the method’s robustness. The Iris dataset exhibited the
highest accuracy (87.25%) with an R? of 0.95, demonstrating the Gap Statistic’s superior
clustering capability in well-structured datasets. The Time Series dataset followed
closely, achieving 68.47% accuracy and R? = 0.88, reflecting moderate reliability.
Conversely, the Well Log dataset attained only 57.98% accuracy (R*> = 0.66), while the
Hitters dataset performed the worst, with 48.41% accuracy and R? = 0.53, indicating poor
clustering effectiveness. Notably, datasets with higher ONC values (8 clusters in Well
Log and Hitters) exhibited prolonged execution times (2.45 sec and 2.41 sec, respectively),

highlighting computational inefficiencies.

1. Introduction
Cluster analysis serves as a fundamental exploration tool widely utilized across diverse

domains including biology, sociology, medicine, and business [1-5]. The main aim is to
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categorize a collection of data items, known as data points, into clusters based on their
similarities. This involves assessing the resemblance between various data points using a
designated distance measure. The fundamental concept revolves around aggregating points
with minimal distance into the same cluster, while points in separate clusters exhibit greater
distances from one another. Clustering techniques typically fall into three main categories:
Distance-based, Density-based, and Hierarchical [6-8]. K-means, developed by MacQueen,
is an unsupervised learning algorithm that is grounded in distance-based approaches [9]
Renowned for its widespread usage in cluster analysis, it offers a straightforward, recursive
approach to allocating data points into clusters based on predefined similarity metrics. One
of its key attributes is its linear time and space complexity. Furthermore, numerous variants
of k-means exist, known as disk-based variants, as they operate without necessitating the
presence of all data points in memory [10-12]. In the K-Means clustering algorithm, which
utilizes Euclidean distance to measure similarity, the k data objects that demonstrate the
highest separation from each other are deemed more representative than “k” data objects
randomly selected [13-15]. This algorithm aims to organize specified objects into clusters,
each representing a distinct class. By evaluating similarities among objects based on specific
criteria, it addresses the clustering problem by iteratively refining attributes through an
alternating fitting process. However, each iteration involves calculating distances, leading to
reduced algorithm efficiency and increased processing time. To mitigate this, a simplified
data structure is introduced to retain pertinent details across iterations, thereby optimizing
subsequent iterations. This approach eliminates the need to compute the distance of every
data point from each cluster center in every iteration, resulting in reduced algorithm runtime.
Determining the optimal number of clusters is crucial in k-means clustering, as this algorithm
requires the number of clusters to be predetermined. However, selecting the right number of
clusters can be challenging, as different datasets exhibit varying data features. This
complexity arises because the choice of clusters directly impacts the effectiveness and
interpretability of the clustering results [16, 17]. Different methods have been devised to
automatically determine the optimal number of clusters in k-means, with the Gap statistic
emerging as a key method in recent developments. The Gap statistic relies on comparing the
logarithm of the expected value of reference data with the logarithm of the original data.
However, the presence of a reference dataset poses challenges for the Gap statistic in

accurately selecting the optimal number of clusters for different datasets in k-means
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clustering. To address this challenge, current research examines the performance of the Gap
statistics in terms of accuracy and execution time using diverse datasets with varying features
and sizes. The main aim of this study is to assess the efficacy of the Gap Statistic. The
objectives are as follows:
1. Evaluate the performance of the Gap Statistic on large datasets to determine its
suitability for such data sizes.
2. Investigate whether the Gap Statistic performs better when applied to datasets with
varying numbers of features.
3. Analyze the performance of the Gap Statistic in terms of accuracy and execution time
across different types of data.
4. Propose strategies to address any challenges encountered in utilizing Gap Statistic
for optimal cluster selection in K-means clustering.

The findings reveal that Gap statistics may not be suitable for datasets with differing
features when determining the optimal number of clusters in k-means. The remaining paper
is organized as follows: Section Il delves into related research work. Section Il outlines the
fundamental concepts of k mean clustering algorithm and Gap statistic, both of which are
employed in the proposed approach. Section IV presents the results of the experimental
study validating the efficiency of the proposed approach. Lastly, Section V concludes the

paper by summarizing the proposed work.

2. Literature Review

A crucial challenge in cluster analysis involves determining the ideal number of clusters
that best fits the data under examination. Lu Xin-quo et al. [18] introduced a gene clustering
method based on the Most Similarity Tree (CMST) to effectively generate comprehensive
global clusters. This method tackles the challenge of distinguishing between various
combinations of similarity associations, including a parameter called A. Their research
findings demonstrate that CMST surpasses traditional clustering techniques like K-means
and SOM. They suggest utilizing Gap statistics to ascertain the optimal similarity measure
A and advocate for an adaptive gene clustering approach named OS-CMST (Optimal Self-
adaptive CMST). Unlike SOM and K-means, which require predefining the number of
clusters, the OS-CMST algorithm dynamically determines both the relevant similarity

measure threshold and the number of clusters. [19] focused on clustering multidimensional
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mass data using density-based techniques within the MapReduce framework. They highlight
the inadequacy of traditional clustering algorithms for efficiently handling modern, high-
speed multidimensional data processing needs. Additionally, these algorithms often overlook
the intrinsic multidimensional nature of the data. Consequently, their study introduces a
novel approach to large-scale multidimensional data clustering, incorporating density and
information entropy principles. Inspired by the DBSCAN clustering algorithm, their proposed
algorithm aims to address these shortcomings and enhance clustering effectiveness.
Introduced an enhanced gap statistics algorithm utilizing the area density statistics method.
Their algorithm effectively handles problematic data points. Through observation, it reduces
the computational complexity associated with iterative computations, leading to improved
computational speed and reduced processing time [20]. They introduced an innovative hybrid
clustering method named KHM-ABC, blending K-harmonic means with the ABC algorithm
to achieve optimal clustering outcomes. Their results illustrate that this hybrid approach
outperforms other algorithms in terms of cluster quality. KHM-ABC utilizes the artificial bee
colony algorithm to optimize the K-harmonic means clustering, ensuring globally optimal
solutions. Evaluation was conducted across diverse datasets including iris, wine, yeast, and
spam, with cluster quality assessed via silhouette index scores. Comparative analysis was
carried out against ABC, K-means, K-harmonic means, and PAM algorithms, demonstrating
the superior performance of KHM-ABC. The value of k was predetermined during
preprocessing, employing the gap statistics method and silhouette width method [21].
Unsupervised Machine Learning techniques were developed to uncover dataset structures
without prior information. Validating these structures posed a challenge, with various
validation indices proposed. However, few addressed time-dependent data. A new internal
index based on Gap Statistic was developed for time series datasets. Modifications included
distance measurement, medoid-based clustering, and phase space modeling using Dynamical
System tools. Results showed the index accurately clustered chaotic time series [22].
Galaxies in clusters merged over time, explaining the presence of multiple luminous galaxies.
Researchers measured the age of these systems using the luminosity gap, the difference in
brightness between the top two galaxies. They estimated this gap's distribution in clusters
based on dark matter halo mass. "Fossil' groups, where galaxies had merged significantly,
were identified. Predictions suggested that 1%-3% of massive clusters and 5%-40% of groups

were likely fossil systems. Comparing predictions with Sloan Digital Sky Survey C4 Catalog
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data, researchers found agreement, validating theoretical merger probabilities for cluster
scales [23] Archana Singh et al. [11] applied the k-means methodology with three distinct
distance metrics: Euclidean, Manhattan, and Minkowski. Through their comparative analysis,
the study determined that k-means achieves optimal performance specifically when
employing the Euclidean distance metric. [24] provides an in-depth examination of k-means
and its primary characteristics. Additionally, the research delves into addressing the
limitations of k-means and strategies for mitigation. Emphasized within the study is the
importance of accurately estimating the appropriate number of clusters, a critical aspect of
cluster analysis. Based on our previous research in big data clustering, the parallel K-Means
algorithm has demonstrated remarkable efficiency, requiring minimal time for cluster
construction, and boasting easy implementation. However, a drawback of this algorithm is
its fixed number of clusters. Unlike traditional K-Means where cluster centers are determined
based on data chunks in mappers, resulting in varying clusters across different runs for the
same dataset, our work addresses this limitation. Our key contribution lies in automating the
determination of the number of clusters formed by this algorithm, achieved through gap
statistics evaluation criteria. Applying data mining clustering techniques in Big Data
environments is challenging due to the vast volume of data and the complexity of clustering
algorithms, which entail significant processing costs [25]. In clustering, objects are grouped
based on similarities. K-means, a popular method, struggled to determine the optimal number
of clusters (k). Despite attempts to solve this, it remained unresolved. A study introduced a
technique enhancing the gap statistic method for selecting k, showing superior performance
on diverse datasets. The method's adaptability to various clustering algorithms was noted,
promising broader applicability beyond k-means [26]. Limited research addresses
determining the number of unknown targets in open-world scenarios within generalized
evidence theory (GET), leading to accuracy issues and complex implementations. To
overcome this, a novel method combining Isolation Forest and Gap statistic with K-means
for bidirectional analysis is proposed. This method completes the defective frame of
discernment (FOD) by summing base and novel clusters, ensuring FOD integrity even with
highly correlated sample features. Simulation experiments demonstrate its effectiveness and
broad applicability [27, 28]. In the field of image watermarking, k-means clustering, and
genetic algorithms were established techniques. While k-means clustering allocated pixels

into clusters, it did not always achieve optimal results. Genetic algorithms, however, were
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known for producing optimal watermarking solutions [29]. Introduced the Hybrid Capuchin
Search Algorithm (HCSA) to enhance K-means clustering by overcoming local optima traps
and initialization sensitivity. HCSA outperformed K-means and eight other meta-heuristics-
based methods across 16 datasets [30]. In signal processing, $k$-means clustering had
encountered challenges with non-spherical clusters. Self-Weighted Euler $k$-means
(SWEKM) was introduced to integrate clustering and feature selection, and it outperformed
existing methods on UCI datasets [31]. The paper modified K-means using fuzzy membership,
gap statistics, and data density for better clustering in time-of-use tariff partitioning, showing
improved performance [32]. The study addressed K-means' difficulty with non-spherical
clusters by proposing NDP-K means, which efficiently identified arbitrary-shaped clusters
using natural density peaks and graph distance, showing superior performance [33]
Proposed: DBSCAN and k-means combo detects/reduces high-density regions. Applied in
fusion plasma simulation, showcasing adaptive reduction based on data density [34] This
letter emphasized the challenge of choosing the optimal k in k-means clustering and
suggested alternatives to the "elbow method", urging educators and researchers to reconsider

its use [35].

3. Methodology

3.1 K-mean Clustering Algorithm

K-means clustering is a frequently utilized unsupervised machine learning algorithm
designed to divide a dataset into a fixed number of clusters, labeled as k. Its goal is to group
data points into clusters based on their similarities, where each cluster is identified by its
centroid. The process begins with setting initial centroids for the clusters, serving as
reference points. Subsequently, the data points are grouped into their respective clusters
based on proximity to these predetermined centroids [36-38]. This assignment involves

multiple sequential steps as outlined below.


https://doi.org/10.28924/ada/stat.5.8

Eur. J. Stat. 5 (2025) 10.28924/ada/stat.5.8 /i

Select Number of Clusters (K)

Initialize Cluster Centers Randomly

Assign Data Points to the Nearest Cluster

/

Recalculate Cluster Centroids

l 0

Update Cluster Assignments

Output Final Clusters

Fig. 1. Flow chart of k-mean clustering algorithm
The process begins with setting initial centroids for the clusters, serving as reference
points. Subsequently, the data points are grouped into their respective clusters based on

proximity to these predetermined centroids shown in Fig.1. This assignment involves multiple

sequential steps as outlined below.

Algorithm: Pseudocode for K-Means Clustering
1. Start
2. Select the number of clusters (K)
3. Initialize K cluster centers randomly
4. Repeat until convergence:
a. Assign each data point to the nearest cluster centre
b. Compute new centroids by taking the mean of all data points assigned to each cluster
c. Update cluster assignments based on new centroids
d. Check for convergence:
- If centroids do not change, stop
- Otherwise, repeat steps a to ¢
5. Output final clusters
6. End

This pseudocode follows the iterative approach of K-Means clustering, ensuring that cluster centroids are
updated until no further changes occur.
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The iteration persists through steps 2 and 5 until stability is reached. Stability is
achieved when the centroids exhibit minimal to no further change or after a specific number
of iterations. Consequently, the outcome comprises clusters along with their individual
centroids, signifying the arrangement of similar data points. This iterative method aims to
reduce the total variance within clusters or the squared distances of data points to their
respective centroids, ensuring the formation of coherent and distinct clusters. In the above
step 2 we assigned the data point by using Eq. (1).

C; = arg.min; |l x; — p; II? (1)

Where (;: cluster to which data points. x;  p;: centroid of clusters. || x; — u; 1%
Euclidean distance

Updating cluster centroid by applying the formula as in Eq. (2).

1
METe ). X 2)
XicCj

Where ingcj X;: summation of all data points in clusters j

The process will be iterative, and convergence will be achieved when the assignments
and centroid stop changing or if a stopping criterion is reached.

3.2 Gap Statistic

The gap statistics, devised by Tibshirani, Walther, and Hastie in 2001, is a method utilized
in cluster analysis to assess the ideal number of clusters present in a dataset. Its aim is to
gauge the disparity between the dispersion within clusters and the expected dispersion
derived from a null reference distribution [20, 39]. The K-means algorithm is used to
determine the suitable number of clusters within a provided dataset by evaluating the sum
of distances from each object to the cluster mean, termed dispersion. To compute the gap
statistic, the algorithm generates several sample datasets from the original data and
computes the mean dispersion of these samples. Each gap represents a logarithmic contrast
between the mean dispersion of the reference datasets and that of the original dataset.

Maximizing the gap involves selecting the minimum value of k [40].
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Optional Visualization Finalize Clustering

Fig.2. Gap Statistic

Pseudocode for calculation of Gap statistic Fig.2

Algorithm: Gap Statistic for Optimal Cluster Selection
1. Start
2. Data Preprocessing
3. Select a range of k values (number of clusters)
4. Repeat for each k:
a. Apply clustering algorithm (e.g., K-Means)
b. Compute within-cluster dispersion (Wk)
c. Generate reference datasets (randomly distributed points)
d. Compute within-cluster dispersion for reference datasets (Wk”)
e. Calculate the Gap Statistic:
Gap(k) = E[log(Wk™)] - log (WK)
5. Determine the optimal k:
a. If the Gap Statistic criterion is met, proceed
b. Otherwise, adjust k and repeat
6. If visualization is required, generate plots (e.g., Gap Statistic curve)
7. Finalize clustering using the optimal k
8. End
This pseudocode follows the iterative process of selecting the optimal number of clusters using the Gap Statistic
method, ensuring the best clustering structure.
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The Gap Statistic is a clustering validation technique used to determine the optimal
number of clusters (ONC) by comparing the within-cluster dispersion of observed data to

that of a reference (random) dataset. The mathematical formulation of the Gap Statistic is

given by:
Gap(k) = Ep{log (W)} — log (Wi) (3)
B
1
Gap() =5 ) logWp — log (W) (4
b=1
Where:

k is the number of clusters being evaluated. Wk is the total within-cluster variation for k
clusters. Wk * is the total within-cluster variation for a reference set of clusters. W;2: Within-
cluster dispersion for the b-th reference dataset (randomly generated) and B: Number of
bootstrapped reference datasets used for comparison. The optimal number of clusters is
typically chosen as the value of k that maximizes the gap statistic. The proposed model
consists of three main phases, depicted in Figure 3. The initial phase, referred to as the
partitioning phase, focuses on directly handling large-scale data. Here, the data is divided
into multiple chunks based on the available hardware resources. Upon completion of this
phase, the extensive dataset is transformed into smaller datasets ready to be transferred to
the mapper phase. In the mapper phase, which constitutes the second stage, these data
chunks are received and distributed across a group of mappers. The primary task during this
phase is to execute the k-means algorithm on each mapper. Consequently, the data chunks
are clustered locally using the optimal number of clusters determined by the proposed
optimized k-means algorithm. Finally, in the third phase, known as the reducer phase, local
key-value pairs produced by each mapper are gathered and merged to form a global cluster
center. Further elaboration on each phase will be provided in subsequent sections.

3.1 Partitioning Data

The large input dataset is divided among the mappers. Each map function receives input
data chunks in the form of data points.

3.2 Optimized K-Means Clustering Approach

The K-means algorithm is used on each data chunk with varying cluster numbers, from 2
up to the maximum allowed. Gap Statistics clustering evaluation is employed to identify the
optimal number of clusters for each dataset. Initially, distances are calculated as the total

sum of Euclidean distances between pairs of data points within each cluster k.
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3.3 Accuracy
The key metric for evaluation is accuracy, which gauges the proximity of a result to the
true value and evaluates the performance of the proposed approach. Greater accuracy

denotes superior clustering performance. It is defined as:
A B TP+ TN
CCWracY =TP+TN +FP +FN (5)

e True Positive (TP): Gap Statistic correctly identifies the optimal number of clusters
(ONC).

o True Negative (TN): Correctly rejects non-optimal cluster numbers.

o False Positive (FP): Incorrectly suggests a non-optimal ONC (over/under-
segmentation).

o False Negative (FN): Fails to detect the correct ONC.

The accuracy formula measures how well the Gap Statistic aligns with expected clustering
results, with higher accuracy indicating better ONC selection and lower accuracy suggesting
potential misclassification of clusters.

3.4 Time Taken

The second measure is the duration of execution, recorded in seconds. This time can vary
across different machines due to varying configurations.
3.5 Speedup:

This metric represents the comparative performance of two methods addressing the same
problem. It reflects the increase in execution speed between two similar tasks performed
using different approaches. Speedup is utilized to evaluate the performance of the proposed
approach,

Speedup = E (6)
Ty
where Tc denotes the execution time of the current method, and Tp represents the

execution time of the classical k-means.

4. Data Analysis
In this study, four extensive datasets were examined, sourced from the UCI repository, with
their statistical characteristics outlined as follows:

4.1 Dataset
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Different datasets, including well log, time series, iris, and hitters’ data, are utilized to

assess the performance of the Gap Statistic in selecting the optimal number of clusters in

K-means. Each dataset is comprehensively explained in detail below table 1.
Well Log Data:

The Delta-T (DT) measurements indicate an average travel time of 75.46
microseconds per foot, with a standard deviation of 8.96. The distribution is slightly
right-skewed (skewness = 0.50) and exhibits fewer extreme values (kurtosis = -0.09).
The range of DT values spans from 54.40 to 108.98 microseconds per foot.

Gamma Ray (GR) readings show an average of 44.72 API units, with a wider
variability as indicated by a higher standard deviation of 26.60. The distribution is
right skewed with a longer tail (skewness = 1.08) and demonstrates more extreme
values (kurtosis = 0.72). The range of GR values extends from 11.68 to 130.67 API

units.

Time Series Data:

Temperature data reveals a mean temperature of 8.33°C, with a standard deviation of
4.68. The distribution is right-skewed (skewness = 0.81) and displays fewer extreme
values (kurtosis = -1.22). Temperature ranges from 4.21 to 15.83°C.

Humidity levels have a mean of 70.14%, with a standard deviation of 14.08. The
distribution is heavily right-skewed (skewness = 2.14) and very leptokurtic (kurtosis
= 11.79), indicating a concentration of values around the mean. Humidity ranges from
30% to 150.7%.

Wind speed data exhibits a mean of 1.32 meters per second and a high standard
deviation of 5.95, indicating significant variability. The distribution is heavily right-
skewed (skewness = 6.89) and extremely leptokurtic (kurtosis = 51.40). Wind speed
ranges from 0.07 to 50.08 meters per second.

General diffuse radiation has a mean of 164.63, with a wide standard deviation of
197.44. The distribution is right-skewed (skewness = 0.61) and exhibits fewer extreme

values (kurtosis = -1.37). General diffuse radiation ranges from 0.03 to 498.8.

Iris Dataset:

Sepal length has a mean of 5.84 cm and a standard deviation of 0.83, with a slight
right skew (skewness = 0.31) and a platykurtic distribution (kurtosis = -0.55). Sepal
length ranges from 4.3 to 7.9 cm.
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Sepal width has a mean of 3.05 cm and a standard deviation of 0.43, with a slightly
right-skewed distribution (skewness = 0.33) and slightly leptokurtic (kurtosis = 0.29).
Sepal width ranges from 2 to 4.4 cm.

Petal length shows a mean of 3.76 cm and a standard deviation of 1.76, with a left-
skewed distribution (skewness = -0.27) and platykurtic (kurtosis = -1.40). Petal

length ranges from 1 to 6.9 cm.

Hitters Dataset:

The Hitters Dataset (abbreviated as "Hitters") contains baseball player performance
metrics, including AB (At-Bats), H (Hits), HR (Home Runs), R (Runs), RBI (Runs
Batted In), and BB (Walks). It offers insights into player batting abilities and
contributions to team success.

At-bats have a mean of 380.93, with a standard deviation of 153.41. The distribution
is slightly left-skewed (skewness = -0.08) and platykurtic (kurtosis = -0.89). At-bats
range from 16 to 687.

Hits have a mean of 101.02, with a standard deviation of 46.45. The distribution is
slightly right-skewed (skewness = 0.29) and platykurtic (kurtosis = -0.50). Hits range
from 1 to 238.

Home runs have a mean of 10.77, with a standard deviation of 8.71. The distribution
is right-skewed (skewness = 0.90) and mesokurtic (kurtosis = 0.04). Home runs range
from O to 40.

Runs have a mean of 50.91, with a standard deviation of 26.02. The distribution is
slightly right-skewed (skewness = 0.42) and platykurtic (kurtosis = -0.52). Runs
range from O to 130.

RBIs have a mean of 48.03, with a standard deviation of 26.17. The distribution is
right-skewed (skewness = 0.61) and platykurtic (kurtosis = -0.30). RBls range from
0 to 121.

Walks have a mean of 38.74, with a standard deviation of 21.64. The distribution is
right-skewed (skewness = 0.62) and platykurtic (kurtosis = -0.26). Walks range from
0 to 105.
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Table 1. Statistical Summary of dataset

Dataset Mean S.D Skewness  Kurtosis  Minimum Maximum Total
Well DT 75455  8.955 0.498 -0.09 54.402 108.97
Log GR 44720  26.600 1.082 0.721 11.6842 13066 2435
Temperature 83250 4.680 0.805 -1.21 4212 15.83
Humidity 70.1449 14.08 2138 11.79 30 150.7
Time WindSpeed 1.3201 5.945 6.89 51.40 0.073 50.08
Series | CeperalDiffuse 16463 1974 0608 137 0.033 4088 190
Sepallength 58433 0.828 0.31 -0.55 43 79
Iris SepalWidth 3.054 0.433 0.33 0.29 2 44 150
PetallLength 3.758 1.76 -0.274 -1.40 1 6.9
AtBat 380.92 15345 -0.07 -0.88 16 687
Hits 101.02  46.45 0.291 -0.50 1 238
Hitters | HmRun 10770  8.709 0.904 0.03 0 40
Runs 50.90 26.0 0.41 -0.51 0 130 322
RBI 48.02 26.16 0.60 -0.30 0 121
Walks 38.74 21.63 0.620 -0.25 0 105

4.2 Optimal number of clusters in k means
In K-means clustering, the gap statistic is a widely used method for determining the optimal
number of clusters. In the plot below, the curve exhibiting a peak indicates the optimal number

of clusters, as determined by this criterion.
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Fig.2 Selection ONC by using GS

In Fig 2(a), the optimal number of clusters (ONC) for the Well Log dataset is determined to
be 8, as identified using the Gap Statistic method. Fig 2(b) illustrates the ONC for the Time
Series dataset, which is found to be 5, indicating a more compact clustering structure
compared to the Well Log dataset. Moving to Fig 2(c), the Iris dataset exhibits an ONC of 6,
suggesting a well-defined clustering pattern that aligns with the inherent structure of the
dataset. Finally, Fig 2(d) demonstrates that the ONC for the Hitters dataset is 8, like the
Well Log dataset. This suggests that a higher number of clusters is necessary to capture the
variations within the dataset. These Fig collectively highlight the variability in the optimal
number of clusters across different datasets, emphasizing the importance of selecting an
appropriate clustering validation method based on dataset characteristics.

4.3 K-mean clustering

K-means clustering is a commonly adopted unsupervised machine learning algorithm utilized
to partition a dataset into 'K' separate, non-overlapping clusters. Its goal is to group similar
data points together while ensuring dissimilar points remain separate. Here's a breakdown of

its operation:
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Fig. 3 k means clustering for different datasets

After employing the gap statistics to select the optimal number of clusters (ONC), k-means
clustering was conducted as depicted in Fig 2. Figure 3 illustrates the results of k-means
clustering across various datasets: (a) well log data, (b) time series data, (c) iris data, and (d)
Hitter's dataset. Each graph provides a clear representation of the k-means clustering
outcomes for the respective datasets.

4.4 Precision and computational efficacy

The accuracy and precision refer to the ability of the Gap Statistic method to reliably identify
the optimal number of clusters in various datasets. This involves assessing how well the

identified number of clusters aligns with the true underlying structure of the data.
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Computational efficiency pertains to the speed and resource requirements of the Gap Statistic
algorithm in determining the ONC. By applying the Gap Statistic method to different
datasets, such as well log data, time series data, iris data, and the Hitters dataset, we can
evaluate its effectiveness across a range of data types and structures. The analysis involves
comparing the resulting clustering solutions to established benchmarks or ground truth labels,
where available, to assess the accuracy of the identified ONC. Additionally, precision refers
to the consistency and reproducibility of the ONC selection across multiple runs or iterations
of the clustering algorithm. Overall, evaluating the accuracy and precision of the Gap Statistic
method across diverse datasets provides insights into its robustness and reliability in practical

applications of clustering analysis.

Execution Times of Gap Statistic
Accuracy of Gap Statistic 21.45s
87.25%
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Fig 3. Accuracy and execution time for selection the ONC

Fig 3(a) illustrates the process of selecting the optimal number of clusters (ONC) using the
Gap Statistic method across various datasets including well log, time series, iris, and Hitter's
data. In Fig 3(b), the corresponding execution times for applying the Gap Statistic in k-means
clustering on the mentioned datasets are depicted.

4.5 Coefficient of determination (R-Square)

The coefficient of determination (R2) is used in k-means clustering to assess the quality of
clustering solutions and select the optimal number of clusters (ONC). It measures the
proportion of variance in the data explained by the clustering. A higher R2 value indicates
better separation between clusters, helping to identify the point at which additional clusters

do not significantly improve the explanation of variance, thus suggesting the ONC
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In Fig 4 above, the coefficient of determination is depicted across various datasets, including

well log, time series, iris, and Hitters. This measure assesses the strength of relationships

between variables. A higher R-squared value indicates better performance, suggesting a

stronger association between variables.

4.6 Summary of results

The given table 2 presents the results of clustering different datasets using the Gap

Statistic to determine the Optimal Number of Clusters (ONC). The key performance metrics

include Accuracy (%), Execution Time (sec), and the Coefficient of Determination (R?). Let's

interpret the results:

Well Log Dataset: ONC = 8, meaning the Gap Statistic identified 8 as the optimal
number of clusters. Accuracy = 57.98%, which indicates moderate clustering
performance. Execution Time = 2.45 sec, suggesting a relatively higher computational
cost. R* = 0.66, implying a moderate level of explained variance in the data.

Time Series Dataset: ONC = 5, meaning the optimal number of clusters determined
is 5. Accuracy = 68.47%, showing a relatively better clustering performance compared
to the Well Log dataset.Execution Time = 1.77 sec, making it computationally
efficient. R* = 0.88, which is high and indicates a strong fit of the clustering model
to the data.

Iris Dataset: ONC = 6, meaning the Gap Statistic found 6 clusters optimal instead

of the standard 3 clusters. Accuracy = 87.25%, which is the highest accuracy among
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all datasets, suggesting effective clustering. Execution Time = 1.98 sec, indicating
reasonable computational efficiency. R* = 0.95, which is the highest, showing a strong
relationship between the clustering structure and the dataset characteristics.

e Hitters Dataset: ONC = 8, meaning 8 clusters were found optimal. Accuracy =
48.41%, which is the lowest among all datasets, indicating clustering challenges.
Execution Time = 2.41 sec, suggesting a higher computational cost. R* = 0.53, which

is relatively low, implying weaker clustering performance

Dataset ONC Accuracy (%) Execution Coefficient of
Times/sec determination

Well log 8 57.98 2.45 0.66

Time series 5 68.47 1.77 0.88

Iris 6 87.25 1.98 0.95

Hitters 8 48.41 241 0.53

Table 2. Summary of all the results for selection the ONC
Iris dataset performed the best in terms of accuracy (87.25%) and model fit (R?* = 0.95),
suggesting that the Gap Statistic effectively identified meaningful clusters. Time Series
dataset also showed strong clustering performance with relatively high accuracy (68.47%)
and an R? of 0.88, making it an effective dataset for clustering. Well Log and Hitters datasets
performed the worst, with lower accuracy (57.98% and 48.41%) and lower R* values (0.66 and

0.53), indicating that clustering might not be as effective for these datasets.

5. Conclusion

This study evaluates the performance of the Gap Statistic in determining the optimal
number of clusters across different datasets. The results indicate that the method performs
well on smaller and structured datasets but struggles with larger or diverse datasets. For
instance, the Iris dataset showed the best clustering performance with 87.25% accuracy and
an R? of 0.95, confirming the suitability of the Gap Statistic for well-structured datasets. In
contrast, the Hitters dataset performed the worst, with 48.41% accuracy and R* = 0.53,
suggesting poor clustering effectiveness. Additionally, execution time varied, with the Well
Log dataset taking 2.45 sec, reflecting increased computational costs for larger datasets. The
findings suggest that the Gap Statistic is more effective for smaller datasets with clear

structure but may be less reliable for complex datasets, where alternative clustering
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validation methods should be considered.
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