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Abstract. In this paper, we determine the optimal complementarity strategy of a firm under a Cox-Ingersoll-Ross (CIR) stochastic framework with a non-zero drift. The firm’s objective function ismaximized using percent deviations from symmetric equilibrium of its own and aggregate consumerprice index (CPI) as state variables, while the complementarity strategy due to random monetary shockserves as the control variable. Extending the driftless Calvo model, we employ a mean field approachto derive a closed-form solution for the optimal strategy. Our findings indicate that higher volatilityleads to a reduction in the firm’s optimal complementarity strategy. To validate our theoreticalresults, we apply the model to four major consumer goods firms such as Nestle, Westrock, Dover, andPalmolive. Empirical observations reveal that, in practice, the decline in complementarity strategyis significantly more pronounced than predicted by the theoretical model, highlighting the impact ofmarket uncertainty.

1. Introduction
While significant progress has been made in both theoretical and empirical studies of generalequilibrium models with sticky prices, the need for analytical simplicity often results in overlookingthe interdependence of firms’ pricing decisions. These interactions, however, are crucial as they canamplify the non-neutral effects of nominal shocks, a concept highlighted by [16] and [18], and havestrong empirical relevance. Most contemporary general equilibrium studies address these issueseither through numerical methods, as in [18], [16], and [17], by simplifying the treatment of timingadjustments, as in [48], or by excluding idiosyncratic shocks altogether, as in [5]. In this paper,we develop an analytical framework to explore a general equilibrium where aggregate dynamicsshape individual decisions and are, in turn, influenced by them. Our results offer a deeper insightinto sticky-price equilibria within a state-dependent framework that incorporates both idiosyn-cratic shocks and strategic complementarities in pricing behavior. This approach provides a robustfoundation for applications across various areas of macroeconomic research [2].Analyzing strategic complementarities within a comprehensive equilibrium framework introducessignificant challenges: individual decisions depend on aggregate conditions, which themselves are
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Eur. J. Stat. 10.28924/ada/stat.5.9 2shaped by those decisions. This interdependence creates a fixed-point problem, particularly inmodels with abrupt transitions, where optimal choices are nonlinear and evolve over time. Wang etal. (2022) [48] explores this complexity by providing analytical solutions for a dynamic oligopolymodel, achieving tractability by assuming exogenous timing of firm price adjustments, similar tothe Calvo framework [4]. Our approach aligns with the goals of [5] and [48] in pursuing analyticaltractability. However, it diverges by examining a setting where firm-level decisions are endoge-nously determined by prevailing conditions and where idiosyncratic shocks play a significant rolein shaping firm behavior.Our treatment of strategic complementarities builds on the foundational work of [5], where afirm’s profit function depends on both its own markup and the average markup across firms. Akey distinction in our approach is the inclusion of idiosyncratic shocks, a feature absent in theirframework. While Caplin and Leahy analyzed equilibrium under aggregate nominal shocks modeledas a drift-less Brownian motion, our focus shifts to studying the impulse response to a one-timeshock with a non-zero drift. This adaptation allows for greater flexibility in exploring a moregeneralized economic system [20,23].Our work is closely related to [16] and [18], both of which develop Dynamic Stochastic GeneralEquilibrium (DSGE) models with an input-output framework. These models incorporate the stickyprices of other industries into each industry’s costs, highlighting macro strategic complementarities.Like these studies, our analysis includes a frictionless labor market, firm-level idiosyncratic shocks,and menu costs associated with price adjustments. Notably, [18] account for random menu costs,a feature also present in our model, while [16] incorporate variable demand elasticity at the firmlevel, referred to as micro-strategic complementarities, which we also consider. We establish that,to a second-order approximation, the combined influence of micro and macro complementarities canbe summarized by a single parameter. While [16] and [18] rely on numerical methods to analyzethe effects of monetary shocks on aggregate output, our research provides analytical insights intothese dynamics.Our study shares relevance with the work of [48], who examine shock propagation in a sticky-price economy characterized by strategic complementarities. Their analytical solution is based onfirms following a time-dependent pricing rule similar to the Calvo framework. Several elements oftheir model align with ours, such as the role of factors like variable demand elasticity, diminishingreturns, and non-zero Frisch elasticity, which are summarized by a single parameter. However,key differences distinguish the two approaches. First, [48] analyze a dynamic oligopoly withoutidiosyncratic shocks, whereas our model focuses on oligopolistic competition with idiosyncraticshocks—a feature that improves consistency with observed price change distributions in empiricaldata. Second, their framework assumes exogenous timing of price adjustments, while ours allows
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Eur. J. Stat. 10.28924/ada/stat.5.9 3firms to endogenously determine both the timing and magnitude of their price changes. The ab-sence of idiosyncratic shocks and the simplification of exogenous timing in their model facilitateconnections to the New Keynesian Phillips curve and enable an exploration of the role of strategiccomplementarities.[3] adds to the mean field game (MFG) literature by examining an impulse control problem.However, his study focuses on a more straightforward scenario involving a decision-maker whoconsiders a single adjustment with a fixed adjustment target. Furthermore, his work primarilycenters on proving the existence and uniqueness of solutions, using a slightly different concept ofwhat constitutes a solution.

2. Preliminaries
2.1. Basic Calvo Model: This section explores an issue concerning strategic complementaritiesand pricing, as originally discussed by [4]. This particular scenario garners frequent attention instudies on sticky prices owing to its practical significance. The model offers a clear-cut frameworkfor elucidating the core elements of the analysis and for scrutinizing crucial outcomes such as theexistence, uniqueness, and non-monotonic characteristics of impulse response profiles, which alsobear relevance to the state-dependent problem [12].Let at time s , Z(s) be the consumer price index (CPI), Vi(s) be a consumer preference shockcorresponding to i th variety and the price set by a firm on consumer good of i th variety be Ẑ(s) suchthat z(s)≡ ẑ(s)/Vi(s). Define x̃(s) := z(s)−Ẑ(s)

Z(s) and X̃(s) := Z(s)−Ẑ(s)
Z(s) as percent deviation fromsymmetric equilibrium of a firm’s own and the aggregate price (CPI), respectively. The economycomprises a range of atomistic individual firms, each operating independently. Each firm operatesunder the assumption of a consistent fluctuation in markup averages, denoted by X̃(s) ∈ X for alltimes s ∈ [0, t], where X is a functional space taking the values from Rn. The firm has the abilityto adjust its pricing only at specific, randomly occurring times denoted by {ξi}, which follows aPoisson process characterized by a parameter θ. These instances of adjustment are referred to as

adjustment opportunities, and the state of the firm’s pricing at these times is termed the optimal
reset value. Following a price adjustment at time s, the difference in markup, x̃(s), jumps accordingto a Brownian motion without a drift component but with a variance of σ2. Additionally, the markupexperiences abrupt jumps immediately after a price adjustment at s = ξi , with each jump in markupdenoted by Ui . Therefore, the markup gap evolves as

X̃(s) = X̃(0) +σ [W(s)−W(0)] +
∑
ξi≤s

Ui , for all s ∈ [0, t], (1)
whereW is a d-dimensional standard Brownian motion. Furthermore, in the absence of any markupjump the continuous version of Equation (1) becomes,
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X̃(t) = X̃(0) +

∫ t

0

σ dW(s) +
∑
ξi≤s

Ui .

Throughout our analysis we use the following form of the SDE
dX̃(s) = µ[s,m(s), X̃(s)]ds+σ[s,m(s), X̃(s)]dW(s) +

∑
ξi≤s

Ui , (2)
where µ : [0, t]×X ×M 7→ Rn×n and σ : [0, t]×X ×M 7→ Rn×d are the drift and diffusion com-ponents, respectively, and m(s) ∈ M is the complementarity strategy of a firm due to randommonetary shock at time s , where an element of the adaptive control space M takes value from
Rn. Throughout the analysis we denote m(s) as adaptive control [19]. An unexpected shift inmonetary policy, known as a monetary shock, can lead to strategic complementarities among firmswhen their responses to the shock mutually reinforce each other. Such shocks, which may involveabrupt changes in the money supply or interest rates, affect key economic factors such as aggregatedemand and inflation. Strategic complementarities emerge when the optimal reaction of a firm tothe shock is positively influenced by the decisions of other firms.Monetary shocks create strategic complementarities among firms by(i). Pricing decisions: A positive monetary shock (i.e., lower interest rates or higher money sup-ply) increases aggregate demand. If one firm raises its prices in anticipation of higher demand orinflation, others may follow, reinforcing each other’s price-setting behavior. On the other hand, anegative monetary shock (e.g., higher interest rates or reduced money supply) lowers aggregatedemand. If one firm lowers prices to maintain competitiveness, others may feel pressured to dothe same, creating strategic complementarity in price adjustments. This type of environment isuseful in sticky price model where firms’ pricing decisions depend on expectations of other firms’price-setting behavior.(ii). Production and investment decisions: A monetary expansion reduces borrowing costs andincreases expected demand. If a firm increases production or invests in capacity, it signals higherconfidence in future demand, encouraging others to follow.(iii). Hiring and wage decisions: Under monetary expansion, if a firm hires more workers or raiseswages in response to an expected demand increase, others would implement the same strategy tocompete for labor or to prepare for higher future demand, while a firm cutting jobs or wages duringa monetary contraction may make it optimal for other firms to reduce costs similarly to remaincompetitive.(iv). Consumer expectations: A monetary shock influences consumer spending and saving behavior.Firms responding to these changes strategically may amplify each other’s actions by promptingfirms to increase advertising or launch new products, creating a positive feedback loop. Con-trarily, a monetary contraction leads to firms simultaneously scaling back operations or delaying
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Eur. J. Stat. 10.28924/ada/stat.5.9 5investments. The strategic complementarities via monetary shocks are based on conditions like, afirms must operate under a setting where their actions influence each other (e.g., oligopolistic mar-kets, input-output linkages), firms must form expectations about the monetary shock and its effectsbased on other firms’ behavior, and price and wage rigidities, coordination problems, or incompleteinformation make the complementarities more pronounced.
2.2. Probalistic Foundation: Let t > 0 be a fixed, finite time. Consider W(s), a d-dimensionalWiener process observed during a markup dynamics at time s ∈ [0, t]. This process is defined on acomplete probability space (Ω,F ,P), where Ω is the sample space, F is the σ-algebra, and P isa probability measure.
Definition 1. Let {Ft}t∈I be a collection of sub-σ-fields of F , where I is an ordered index set
satisfying the condition Fs ⊂ Ft for all s < t with s, t ∈ I . This collection, {Ft}t∈I , is referred to
as a markup filtration of the process generated due to strategic complementarities.

If we simply consider the markup dynamics {x̃}t∈I or simply x̃(t), then this implies that thechoice of markup filtration corresponding to a strategic complementarities due to monetary shock
Ft := F x̃t := σ

{
x̃(s)

∣∣∣∣s ≤ t; s, t ∈ I} ,
which is termed as canonical or natural markup filtration of x̃t∈I . In our case, the Wiener processis associated with the canonical markup filtration,

FWt := σ

{
W(s)

∣∣∣∣0≤ s ≤ t} , t ∈ [0,∞).

Definition 2. A set {(X̃(t),Ft}t∈I with filtration {Ft}t∈I and a family of Rn-valued markup
{X̃(t)}t∈I with X̃(t) being Ft-measurable is defined a stochastic process with markup filtration
{Ft}t∈I .

Definition 3. Let (Ω,F ,P) be a probability space with filtration {Ft}t∈I . A real valued adapted
stochastic markup process X̃(t) is a martingale with respect to {Ft}t∈I if E|X̃(t)| <∞ for all t
and for all s ≤ t we have E

{
X̃(t)|Fs

}
= X̃(s).

A martingale is a completely random process, characterized by the property that, based on itspast behavior, the expected value at any future point in time equals its current value. Note that,
E{X̃(t)}= E{X(0)} for all t ∈ [0,∞).
Lemma 1. (i). The Wiener process {W(t)}t∈[0,∞) is an FWt martingale.
(ii). The Process

{
W2(t)− t

}
t∈[0,∞)

is an FWt martingale.
(iii).

{
exp
[
σW(t)− 1

2σ
2t
]}
t∈[0,∞)

is an FWt martingale.

Proof. See in the Appendix. �
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Remark 1. Lemma 1 highlights the martingale properties of the Wiener process and its related
transformations. It shows that the Wiener process, its squared process adjusted for time, and a
specific exponential transformation all satisfy the martingale property under the natural filtration.

Lemma 2. Let the markup X̃(t) for all t ∈ [0,∞) be a super martingale. Then for a constant
non-negative monetary shock η, following inequality holds

ηP
[

inf
t
X̃(t)≤−η

]
≤ sup

t
E
{

max
(
−X̃(t),0

)}
,

for each η ≥ 0.

Proof. See in the Appendix. �

Proposition 3. Let
{
X̃(t)

}
t∈[0,∞)

be a martingale. Then for a constant non-negative monetary
shock we have

ηP

[
sup
t
|X̃(t)| ≤ −η

]
≤ sup

t
||X̃(t)||1.

Proof. Jensen’s inequality implies, if markup X̃(t) is a martingale, then B̃(t) =−|X̃(t)| is a negativemartingale such that ||B̃(t)||1 = ||X̃(t)||1 = E
{

max
(
−B̃(t),0

)}. Moreover,
[

inf
t
B̃(t)≤−η

]
≤
[

sup
t
|X̃(t)| ≥ η

]
.

The result follows by Lemma 2. �

Proposition 4. Consider two markups X̃ and X̂ defined on (Ω,F ,P) so that for some d ∈ (1,∞)

assume X̃ ∈ Ld . For any positive monetary shock if

ηP
[
(X̂ ≥ η)

]
≤
∫

(X̂≥η)

X̃dP,

then ||X̂||d ≤ d̃ ||X̃||d , such that 1/d + 1/d̃ = 1.

Proof. See in the Appendix. �

Proposition 5. For all t ∈ [0,∞) let markup X̃(t) be right continuous submartingale. Define
X̄(ω) := supt X̃(t,ω). Then for a given market shock η ∈ (1,∞], and X̄ ∈ Ld iff supt ||X̃(t)||d <
∞. Moreover, if (d̃)−1 = 1− d−1, and the market shock is positive and finite, then ||X̄||d ≤
d̃ supt ||X̃(t)||d .

Proof. See in the Appendix. �

Corollary 6. (Doob’s inequality) If d = d̃ = 2 is defined in continuous time interval (0, t), and
X̃(s)}s≥0 is a martingale, then

E

{
sup
s∈[0.t]

|X̃(s)|2
}
≤ 4E

{
|X̃(t)|2

}
.
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Eur. J. Stat. 10.28924/ada/stat.5.9 7In this paper we are considering a Cox-Ingersoll-Ross (CIR) version of the SDE expressed inEquation (2). The markup dynamics is represented as
dX̃(s) =

{
θ̃
[
u− X̃(s)

]
+m2(s)

}
ds+σ

√
X̃(s)W(s) +

∑
k:Tk≤s̃

J(k), (3)
where θ̃ is mean reversion rate constant, u is the long term mean of the markup dynamics, m(s)represent strategic complementarity due to monetary shock, σ is homoscedastic variance in [0, t],and J(k) is amount of markup jump right after a price change at time s∗ = Tk , for all s̃ ∈ [s∗, t].Similar to [2] we assume that the strategic complementarities due to monetary shock at workup the finite time horizon t . Moreover, for s < t , by Proposition 1 of [2] the period flow cost is
E
[
x̃(s) +βX̃(s)

]2, such that
E ≡

1

2

[
ρ′(1) +ρ(1)

(
ρ(1)−1

)]
> 0, and β =−

Ẑ

z∗
∂z∗

∂Ẑ
,

where ρ is the elasticity of demand with respect to the own price z . Proposition 1 from [2] es-tablishes that a firm’s dynamic profit maximization is equivalent to minimizing E[x̃(s) +βX̃(s)
]2.Our contribution is to introduce an additional adaptive control variable, m(s), which representsstrategic complementarities arising from monetary shocks. Notably, the degree of strategic inter-action between a firm’s own price and the aggregate price level is determined by the parameter

β. Static profit maximization occurs when x̃ =−βX̃ . If β < 0, the firm experiences strategic com-plementarities, while β > 0 indicates strategic substitutability. Consequently, if β 6= −1, the solestatic equilibrium is achieved at X̃(s) = 0.Additionally, in the absence of macroeconomic complementarity, i.e., when ∂X̃/∂Z(s) = 0,
β =−

ρ′

ρ(ρ−1) +ρ′
,

where β < 0 if ρ′ > 0. Economically, this implies that a positive ρ′ reduces demand elasticity as
Z increases, prompting the firm to raise its markup. Thus, when ρ′ > 0, a firm’s price and theaggregate price are strategic complements. Moreover, if ∂X̃/∂Z(s) = 0, the extent of strategiccomplementarities is limited by the condition β >−1. In contrast, if ∂X̃/∂Z(s)> 0, the condition
β <−1 holds.
Assumption 7. There exist deterministic constants K1 and K2 and another real valued markup κ
such that for two different complementarities m(s) and m(s), and for all ω ∈Ω following conditions
hold∣∣∣∣{θ̃ [u− X̃(s,ω)

]
+m2(s,ω)

}
−
{
θ̃
[
u− X̄(s,ω)

]
+m2(s,ω)

}∣∣∣∣+σ ∣∣∣∣√X̃(s,ω)−
√
X̄(s,ω)

∣∣∣∣
≤K1

∣∣X̃(s,ω)− X̄(s,ω)
∣∣+K2 |m(s,ω)−m(s,ω)| ,∣∣∣∣{θ̃ [u− X̃(s,ω)

]
+m2(s,ω)

}
−σ
√
X̃(s,ω)

∣∣∣∣≤ κ(t,ω) +K1

∣∣X̃(s,ω)
∣∣,
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with E
{∫ t

0

∣∣κ(s)|2ds
}
<∞, for all t ∈ [0,∞).

Remark 2. Existence and uniqueness of a strong solution of CIR is ensured by Assumption 7.
Under the first inequality of Assumption 7, an obvious selection of κ would be κ(t) =

∣∣θ̃u+m2
∣∣,

once it satisfies E
{∫ t

0

∣∣κ(s)|2ds
}
<∞.

Proposition 8. Under Assumption 7, Equation (11) has a unique solution.

Proof. See in the Appendix. �

Moreover, if all conditions of Assumption 7 are satisfied, the strong solution to the SDE de-scribed by Equation (11) exists over the continuous time interval [0, t]. Additionally, for any
F0-measurable random initial value x̃0 in Rn such that E{|x̃0|d

}
< ∞ for some d > 1, thereexists a unique strong solution X̃∗(s) beginning from x̃0 at time 0. Specifically, this means

X̃∗(0) = x̃0. The uniqueness is pathwise, implying that if X̃∗(s) and X̄∗(s) are two strong so-lutions, then P [X̃∗(s) = X̄∗(s) ∀ s ∈ [0, t]
]

= 1. Furthermore, this solution is square-integrable:for all t ∈ [0,∞), there exists a constant Kt such that
E

{
sup
s∈[0,t]

∣∣X̃∗(s)
∣∣d}≤Kt [1 +E

{
|x̃0|d

}]
.

Proposition 9. The SDE represented by the Equation (11) has a solution

X̃∗(s) = exp

{
exp
{
−θ̃s

}[
exp
{
θ̃s0

}
ln(X̃(s0)) +

∫ s

s0

exp
{
θ̃ξ
}{ θ̃u

X̃(ξ)
+
m2(ξ)

X̃(ξ)

}
dξ

+

∫ s

s0

exp
{
θ̃ξ
} σ√

X̃(ξ)
dW(ξ) +

∫ s

s0

exp
{
θ̃ξ
} 1

X̃(ξ)

∑
k:Tk≤ξ

J(k)dξ

]}
,

where the integrating factor is exp
{
θ̃s
}
/X̃(s).

Proof. See in the Appendix. �

In this case we consider the objective function of the firm as
J (x̃ ,m) = E

{∫ t

0

exp(−ρs)

[
ξ
[
X̃(s) +m(s) +φX̃(s)

]2
+c(m(s))

]
ds

∣∣∣∣F0

}
, (4)

where ρ is the discount factor, c(m(s)) is the cost associated with the complementarity strategyof a firm due to random monetary shock, and ξ and φ are constants. For (s, x̃) ∈ [0, t]×Rn, define
M(s, x̃) the subset of m’s in M such that

E
{∣∣∣∣ξ [X̃(s) +m(s) +φX̃(s)

]2
+c(m(s))

∣∣∣∣ds}<∞,
and assume that M(s, x̃) is non-empty. The objective is to over m the gain function J and theassociated value function is defined as
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v(s, x̃) = sup
m∈M(s,x̃)

J (x̃ ,m). (5)
2.3. Jump Diffusion: In this section we discuss about the jump diffusion in our context. The incor-poration of jump diffusion in Equation (11) for the state variable X̃(s), which represents the percentdeviation of aggregate prices (CPI) from the symmetric equilibrium, plays a fundamental role inmodeling the complex dynamics of an economy influenced by stochastic shocks and price adjust-ments. In this setup, the state variable X̃(s) captures the interplay between individual firm pricingdecisions and aggregate economic outcomes, bridging the micro and macroeconomic perspectives.The economy is modeled as comprising a continuum of atomistic firms, each independently adjust-ing their pricing strategies ẑ(s) based on individual preference shocks Vi(s), while simultaneouslyresponding to aggregate market conditions. The deviation X̃(s) encapsulates the dynamic behaviorof the overall pricing structure, influenced not only by continuous, smooth adjustments driven bymean-reverting forces and strategic complementarities but also by abrupt, discrete jumps resultingfrom external shocks.The jump diffusion component is particularly critical as it captures the non-continuous changesin markup averages, which arise from events such as monetary policy shifts, fiscal interventions,demand surges, supply disruptions, or other exogenous shocks to the economic environment. Thesejumps introduce a layer of realism to the model, as they reflect the sudden, large-scale adjust-ments that firms must make in response to unforeseen changes in market conditions. By modelingthese jumps, the SDE can account for the often unpredictable and nonlinear nature of economicadjustments, offering a more comprehensive understanding of how aggregate price levels evolveover time. Furthermore, the control variable m(s), representing a firm’s complementarity strategyin response to random monetary shocks, adds an adaptive dimension to the model, illustrating howfirms strategically align their pricing behavior with prevailing economic conditions [30, 31]. Thecombination of the diffusive component, which models gradual adjustments through mean reversionand volatility in pricing, and the jump component, which captures the stochastic, discrete shifts inmarkups, provides a robust framework for analyzing the dynamics of aggregate price deviation.This approach highlights the dual nature of price-setting behavior: a steady state-seeking ten-dency interspersed with large-scale, disruptive events. Importantly, the jump diffusion frameworkallows for a nuanced exploration of how individual firm-level decisions, when aggregated across adiverse economy, contribute to broader patterns of price instability, volatility, and recovery. Sucha model is invaluable for policymakers, as it offers insights into the transmission mechanisms ofmonetary policy, the impact of shocks on price stability, and the effectiveness of interventions aimedat restoring equilibrium in the face of economic disruptions. By capturing both the continuous anddiscontinuous elements of economic fluctuations, the jump diffusion extension of the CIR SDE pro-vides a powerful tool for studying the dynamic interplay between microeconomic decision-making
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Eur. J. Stat. 10.28924/ada/stat.5.9 10and macroeconomic outcomes, offering a rich perspective on the forces shaping aggregate pricemovements in a stochastic and shock-prone economic environment. We will anlyse some propertiesof jump diffusion.
Lemma 10. Let the jump diffusion of the SDE expressed by Equation (11) follows a Poisson process
with intensity ν, jump sizes J(k) with mean E[J(k)] = γ, and a finite time horizon [0, t]. The expected
contribution of the jumps to the aggregate price dynamics is given by:

E

 ∑
k:Tk≤t

J(k)

= E[N(t)] ·γ,

where N(t) is the number of jumps by time t , and E[N(t)] = νt .

Proof. See in the Appendix. �

Remark 3. Lemma 10 formalizes the expected contribution of these jumps, demonstrating that it
is determined by the expected number of jumps, E[N(t)], and the average jump size, γ = E[J(k)].
This result highlights the additive role of jumps in shaping aggregate price dynamics, showing how
their expected magnitude and frequency influence the trajectory of X̃(s).

Lemma 11. Under the same assumptions as Lemma 10, the variance of the total jump contribution
to X̃(t) is given by:

Var

 ∑
k:Tk≤t

J(k)

= νt(γ2 +σ2
J),

where γ = E[J(k)] and σ2
J = Var(J(k)) is the variance of the jump size.

Proof. See in the Appendix. �

Remark 4. Moreover, Lemma 11 provides further insight by quantifying the variance of the jump
contribution, which is determined by both the second moment of the jump size (γ2 +σ2

J) and the
intensity ν of the jump process. This variance is crucial for understanding the impact of jumps on
economic volatility, as it captures how stochastic fluctuations in jump size and frequency propagate
through the system. Together, these Lemmas provide a rigorous foundation for analyzing the dual
role of jumps: while their expected contribution shifts the aggregate price level, their variance
amplifies the uncertainty in the pricing environment.

Proposition 12. For SDE in Equation (11), the joint distribution of X̃(t) and the cumulative jump
process

∑
k:Tk≤t J(k) at time t converges to a bivariate Gaussian distribution in the limit as t→∞,

such that J(k) are i.i.d. with mean E[J(k)] = γ and variance Var(J(k)) = σ2
J , and the intensity ν

of the Poisson jump process satisfies νt →∞ as t →∞. In particular, the mean and covariance
structure of the joint distribution of

(
X̃(t),

∑
k:Tk≤t J(k)

)
are given by:
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E[X̃(t)]→ u, E

 ∑
k:Tk≤t

J(k)

→ νtγ,

and

Cov(X̃(t),
∑
k:Tk≤t

J(k))→ 0, Var(X̃(t))→
σ2

2θ̃
, Var

 ∑
k:Tk≤t

J(k)

→ νt ·
(
γ2 +σ2

J

)
.

Proof. See in the Appendix. �

The implication of the Proposition 12 is that, as time progresses, the dynamics of the statevariable and cumulative jump process stabilize and converge to a bivariate Gaussian distribution.This indicates that in the long run, the system’s behavior becomes predictable, with the statevariable approaching its long-term mean and the cumulative jumps growing linearly with time. Thevariance of both components reaches stable values, and they become independent, reflecting thedecoupling of continuous price dynamics from the discrete shocks. This convergence to Gaussianitysimplifies forecasting and analysis, allowing policymakers and economists to better understand andmanage long-term economic outcomes, especially in the presence of random shocks.
Proposition 13. (Lyapunov stability) The process X̃(s) is asymptotically stable at u as s →∞,
such that
(i). The jump sizes J(k) are i.i.d. with mean E[J(k)] = γ and variance Var(J(k)) = σ2

J .
(ii). The intensity ν of the Poisson jump process satisfies νt→∞ as s →∞.
(iii). The control function m2(s) is bounded over time.

Proof. See in the Appendix. �

Remark 5. Proposition 13 implies that the process X̃(s) is Lyapunov stable around the equilibrium
point u. That is, any small deviation of X̃(s) from u will decay over time, and the process will
remain close to u for all s . The mean reversion driven by the term −θ̃(X̃(s)−u) ensures stability,
and the fluctuations due to jump diffusion and random monetary shocks do not lead to instability
under the condition that the jump intensity ν is sufficiently large and the shocks remain bounded.

2.4. Meanfield Games: The mean-field game (MFG) approach provides a robust and versatileframework for analyzing strategic decision-making among a large population of agents, making itespecially valuable in economic models where aggregate outcomes emerge from individual behav-iors. In the context of studying firm-level pricing decisions under monetary shocks, where the statevariable represents the percentage deviation from the symmetric equilibrium of a firm’s aggregateprice (CPI), and the control variable captures strategic complementarities, the MFG framework isuniquely suited to unraveling the complexities of such interactions [28, 32]. The deviation fromequilibrium encapsulates the tension between firms’ pricing adjustments and the overall market
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Eur. J. Stat. 10.28924/ada/stat.5.9 12dynamics, reflecting how monetary shocks disrupt the expected balance of supply and demand.Firms, in this scenario, face the dual challenge of responding optimally to aggregate shocks whileaccounting for the actions of competing firms. The control variable, representing strategic comple-mentarities, signifies how a firm’s pricing behavior is influenced by expectations of others’ pricingadjustments, a phenomenon that becomes especially pronounced during periods of monetary insta-bility [39].The importance of this approach lies in its ability to model these interdependencies at boththe micro and macro levels. The MFG framework enables firms’ individual pricing decisions to beanalyzed within the broader context of collective market behavior, providing critical insights intohow monetary policy shocks ripple through the economy. Strategic complementarities play a pivotalrole here, as they amplify the coordination problem among firms. For instance, when a monetaryshock induces a firm to raise its prices, it can lead to a cascading effect where other firms areincentivized to follow suit to maintain their competitive positioning [27]. Conversely, under certainconditions, the same complementarities may mitigate the shock’s impact by fostering stabilization,as firms collectively align their strategies toward the equilibrium state. This delicate interplaybetween individual and collective decision-making is central to understanding the propagation ofshocks and their aggregate consequences.Moreover, the MFG framework offers a computationally feasible way to derive equilibria in suchsettings, particularly when dealing with a large number of agents. By focusing on the limit behaviorof the system as the number of agents approaches infinity, MFG models reduce the complexity ofanalyzing individual interactions while capturing the aggregate dynamics accurately [29]. This isparticularly important in the context of monetary shocks, where traditional models may struggleto account for the nonlinear and feedback-driven nature of strategic interactions among firms. Theequilibrium solutions provided by MFG models shed light on the steady-state behavior of prices,helping to explain how firms converge back to equilibrium—or fail to do so—following a shock.Additionally, this approach facilitates the exploration of welfare implications by quantifying thecosts of deviations from equilibrium and the effectiveness of policy interventions aimed at mitigatingsuch deviations [26].In practice, the MFG approach also serves as a valuable tool for policymakers seeking to designeffective monetary policies. By simulating different shock scenarios and observing the resultingprice dynamics, policymakers can identify strategies that minimize inflation volatility and ensuresmoother transitions back to equilibrium [22]. Furthermore, the framework can be extended toincorporate heterogeneity among firms, such as differences in production costs or market power,providing a more nuanced understanding of how shocks affect various segments of the economydifferently. This capability is critical for designing targeted interventions that address specificvulnerabilities while maintaining overall market stability [42]. The MFG approach’s ability to bridge
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Eur. J. Stat. 10.28924/ada/stat.5.9 13the micro-level behaviors of individual firms with macro-level economic outcomes underscores itsimportance in modern economic analysis, making it an indispensable tool for understanding andmanaging the intricate dynamics of aggregate price adjustments in response to monetary shocks.While the MFG approach provides a powerful framework for analyzing large-scale strategicinteractions, it is not without its limitations, particularly in the scenario where the state variablerepresents the percentage deviation from the symmetric equilibrium of a firm’s aggregate price (CPI)and the control variable reflects strategic complementarities due to monetary shocks. One signif-icant limitation of the MFG approach is its reliance on the assumption of a continuum of agents,which simplifies the complex interactions among firms but often overlooks critical heterogeneitiesin the market. Real-world firms vary widely in size, market power, and responsiveness to monetaryshocks, yet MFG models typically aggregate these variations into a homogeneous population. Thiscan lead to oversimplified conclusions about the aggregate dynamics and fail to capture importantdisparities in behavior and outcomes. For instance, smaller firms may react differently to mon-etary shocks compared to larger, more established firms with greater market influence, yet suchnuances are often lost in mean-field approximations. Additionally, the assumption that individualfirms are negligible in their impact on the overall system may not hold in markets dominated by afew key players, where the actions of a single firm can significantly influence aggregate outcomes.Moreover, this construction can be used in cancer research [7, 11,13–15,46,47]Another limitation lies in the treatment of information and expectations within the MFG frame-work. These models often assume that firms have perfect or near-perfect knowledge of the system’sdynamics and the strategies of other firms [24]. However, in practice, firms operate under conditionsof uncertainty and incomplete information, particularly during monetary shocks when the economicenvironment is highly volatile. Strategic complementarities further complicate this issue, as firmsmust form expectations not only about the shock itself but also about how other firms will adjusttheir prices in response. These interdependencies can lead to coordination failures or misalignedexpectations, phenomena that are difficult to model accurately within the standard MFG frame-work [41]. Furthermore, the assumption of a smooth and well-defined equilibrium may not holdin scenarios with strong strategic complementarities, where multiple equilibria or non-equilibriumdynamics, such as oscillations or chaotic behavior, can emerge. Such complexities are challengingto capture within the MFG framework, which typically focuses on identifying a single, steady-statesolution [43].The computational tractability of MFG models, often seen as a strength, can also become a lim-itation in this context. While MFG reduces the complexity of analyzing a large number of agentsby focusing on the limiting behavior as the population size tends to infinity, this simplification mayfail to capture critical dynamics in finite systems. For example, in real-world markets, the numberof firms is finite, and discrete interactions can produce outcomes that differ significantly from the
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Eur. J. Stat. 10.28924/ada/stat.5.9 14predictions of the mean-field limit [21, 44]. These discrepancies are particularly pronounced insituations where monetary shocks induce large deviations from equilibrium, pushing the systeminto regimes where the mean-field approximation no longer holds [32,46]. Additionally, the mathe-matical complexity of MFG models can pose challenges when incorporating realistic features suchas stochastic volatility, nonlinear demand functions, or firm-specific shocks, which are crucial foraccurately modeling aggregate price dynamics under monetary policy [45].Lastly, the policy implications derived from MFG models may be limited by their reliance onidealized assumptions. For example, while MFG models provide insights into how firms collectivelyadjust prices in response to monetary shocks, they often abstract away from institutional andregulatory factors that influence pricing behavior in practice [40]. Factors such as price rigidity,menu costs, or the role of government interventions in stabilizing markets are typically not includedin standard MFG formulations, yet they play a crucial role in shaping the real-world outcomes ofmonetary policy [36]. These omissions can lead to policy recommendations that are theoreticallysound but impractical or ineffective in real-world scenarios. Consequently, while the MFG approachis a valuable tool for understanding aggregate price dynamics and strategic complementarities, itslimitations highlight the need for complementary modeling approaches and empirical validation toensure that its insights are both accurate and actionable [25].
3. Computation of Optimal Strategic Complementarities

In this section, we will construct a stochastic Lagrangian based on the system consisting ofEquations (10) and (2). Before constructing a Feynman-type path integral control [21], we determinethe value of long-term mean u empirically. This u can be estimated by fitting the drift termwhich is θ̃[u− X̃(s)] +m2(s), where θ̃ is the mean-reversion speed. Moreover, if m2(s)→ 0, then
µ→ θ̃[u− X̃(s)].For discrete case, the average drift between successive time points can be used to estimate u.For each time-point i , we have that

µ≈
X̃(si+1)− X̃(si)

si+1− si
,

which implies
X̃(si+1)− X̃(si)

si+1− si
= θ̃(u− X̃(si)).

Rearranging the terms yield
u ≈ X̃(si) +

X̃(si+1)− X̃(si)

θ̃ (si+1− si)
.

Averaging the estimates from all consecutive time points results
û =

1

N−1

N−1∑
i=1

[
X̃(si) +

X̃(si+1)− X̃(si)

θ̃ (si+1− si)

]
,

https://doi.org/10.28924/ada/stat.5.9


Eur. J. Stat. 10.28924/ada/stat.5.9 15where N is the total number of observations. Now before formulating stochastic Lagrangian, definethe objective function in Equation (10) as
J (x̃ ,m) = E

{∫ t

0

exp(−ρs)Θ[s,m(s), X̃(s)]ds

∣∣∣∣F0

}
, (6)

such that Θ[s,m(s), X̃(s)] := ξ
[
X̃(s) +m(s) +φX̃(s)

]2
+ c(m(s)). By [10] the stochastic La-grangian becomes

L̃(s, x̃ ,λ,m) = E
{∫ t

0

{
exp(−ρs)Θ

[
s, X̃(s),m(s)

]
ds

}
ds

+

∫ t

0

[
x̃(s)− x̃0−

∫ s

0

[
µ[ν,m(ν), X̃(ν)]dν−σ[ν,m(ν), X̃(ν)]dWν

]]
dλ(s)

}
, (7)

where λ(s) is the time-dependent Lagrangian multiplier.
Theorem 14. For an atomistic firm, if {X̃(s), s ∈ [0, t]} is a markup dynamics then, the optimal
strategic complementarity due to monetary shock as a feedback Nash equilibrium

{
m∗(s, x̃) ∈M

}
would be the solution of the following equation

∂
∂m `(s,m,X̃)

[
∂2

∂(X̃)2 `(s,m,X̃)
]2

= 2 ∂
∂X̃
`(s,m,X̃) ∂2

∂X̃∂m
`(s,m,X̃), (8)

where for an Itô process h̃(s, X̃) ∈ [0, t]×R

`(s,m,X̃) = exp(−ρs)Θ[s,m(s), X̃(s)] + h̃(s, X̃)dλ(s)

+
[
∂h̃(s,X̃)
∂s dλ(s) + dλ(s)

ds h̃(s, X̃)
]

+ ∂h̃(s,X̃)

∂X̃
µ
[
s,m,X̃

]
dλ(s) + 1

2

[
σ
[
s,m,X̃

]]2 ∂2h̃(s,X̃)

∂(X̃)2 dλ(s). (9)
Proof. See in the Appendix. �

To demonstrate the preceding Theorem, we present a detailed example to identify an optimalstrategic complementarity due to monetary shock under this environment. Consider a firm has tomaximize the expected markup.Given our objective function and the SDE below
J (x̃ ,m) = E

{∫ t

0

exp(−ρs)

[
ξ
[
X̃(s) +m(s) +φX̃(s)

]2
+c(m(s))

]
ds

∣∣∣∣F0

}
, (10)

dX̃(s) =

{
θ̃
[
u− X̃(s)

]
+m2(s)

}
ds+σ

√
X̃(s)W(s) +

∑
k:Tk≤s̃

J(k), (11)
l(s,m,X̃) = exp(−ρs)

{
ξ
[
X̃(s) +m(s) +φX̃(s)

]2
+c(m(s))

}
+ exp

(
θ̃s

X̃(s)

)
dλ(s)

+
exp
{
θ̃s
}(
θ̃X̃(s)− X̃ ′(s)

)
X̃2(s)

dλ(s) +
dλ(s)

ds
exp

(
θ̃s

X̃(s)

)
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−exp

(
θ̃s

X̃2(s)

[
θ̃(u− X̃) +m2(s)

])
dλ(s)

+
σ

2X̃(s)
exp(θ̃s)

[
θ̃2X̃(s)− X̃ ′′(s)−2θ̃X̃ ′(s) +

2X̃ ′2(s)

X̃(s)

]
dλ(s), (12)

where X̃ ′ = dX̃(s)/ds and X̃ ′′ = d2X̃(s)/ds2. Now,
∂

∂m
l(s,m,X̃) = exp(−ρs)

{
2ξ
[
X̃(s) +m(s) +φX̃(s)

]
+
∂c(m(s))

∂m

}
,

∂2

∂X̃∂m
l(s,m,X̃) = 2exp(−ρs)ξ(1 +φ),

∂

∂X̃
l(s,m,X̃) = 2ξexp(−ρs)(1 +φ)

[
(1 +φ)X̃(s) +m(s)

]
−

θ̃s

X̃2(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)

−exp
(
θ̃s
) θ̃X̃2(s)−2X̃(s)X̃ ′(s)

X̃4(s)
dλ(s)

−
θ̃s

X̃2(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)

ds
−exp

(
θ̃s

X̃2(s)

[
θ̃(u− X̃) +m2(s)

])

×

[
−

2θ̃s

X̃3(s)

[
θ̃(u− X̃) +m2(s)

]
−

θ̃(s)

X̃2(s)
θ̃

]
dλ(s)

+ exp
(
θ̃s
){
−

σ

2X̃2(s)

[
θ̃2X̃(s)− X̃ ′′(s)−2θ̃X̃ ′(s) +

2X̃ ′2(s)

X̃(s)

]

+
σ

2X̃(s)

[
θ̃2−

2X̃ ′2(s)

X̃2(s)

]}
dλ(s).

∂2

∂X̃2
l(s,m,X̃) = 2ξ(1 +φ)2 exp(−ρs) + exp

(
θ̃s

X̃(s)

)
θ̃s

X̃3(s)
dλ(s)

+
exp
(
θ̃s
)

X̃8(s)

{[
−2θ̃X̃(s) + 2X̃ ′(s)

]
X̃4(s) +

[
θ̃X̃2(s)−2X̃(s)X̃ ′(s)

]
4X̃3(s)

}
dλ(s)

+
θ̃s

X̃3(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)

ds
+ exp

{
θ̃s

X̃2(s)

[
θ̃(u− X̃) +m2(s)

]}

×

{
2θ̃s

X̃3(s)

[
θ̃(u− X̃) +m2(s)

]
+

θ̃s

X̃2(s)
θ̃

}
dλ(s)

+ exp
(
θ̃s
){ σ

X̃3(s)

[
θ̃2X̃(s)− X̃ ′′(s)−2θ̃X̃ ′(s) +

2X̃ ′2(s)

X̃(s)

]

−
σ

2X̃2(s)

[
θ̃2−

2X̃
′2(s)

X̃2(s)

]}
dλ(s). (13)
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Eur. J. Stat. 10.28924/ada/stat.5.9 17Therefore, using the above values Equation (9) yields,
exp(−ρs)

{
2ξ
[
X̃(s) +m(s) +φX̃(s)

]
+
∂c(m(s))

∂m

}
×
[(

exp

{
θ̃s

X̃2(s)

[
θ̃(u− X̃) +m2(s)

]})

×

{
2θ̃s

X̃3(s)

[
θ̃(u− X̃) +m2(s)

]
+

θ̃s

X̃2(s)
θ̃

}
dλ(s) +D2

]2

= 2

{
4ξ2 exp(−2ρs)(1 +φ)2

[
(1 +φ)X̃(s) +m(s)

]
−exp

(
θ̃s

X̃2(s)

[
θ̃(u− X̃) +m2(s)

])

×

[
−

2θ̃s

X̃3(s)

[
θ̃(u− X̃) +m2(s)

]
−

θ̃2s

X̃2(s)

]
dλ(s) +D12exp(−ρs)ξ(1 +φ)

}
. (14)

According to Equation (14)
D1 =−

θ̃s

X̃2(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)−exp

(
θ̃s
) θ̃X̃2(s)−2X̃(s)X̃ ′(s)

X̃4(s)
dλ(s)

−
θ̃s

X̃2(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)

ds
+ exp

(
θ̃s
){
−

σ

2X̃2(s)

[
θ̃2X̃(s)− X̃ ′′(s)

−2θ̃X̃ ′(s) +
2X̃ ′2(s)

X̃(s)

]
+

σ

2X̃(s)

[
θ̃2−

2X̃ ′2(s)

X̃2(s)

]}
dλ(s),

and
D2 = 2ξ(1 +φ)2 exp(−ρs) + exp

(
θ̃s

X̃(s)

)
θ̃s

X̃3(s)
dλ(s)

+
exp
(
θ̃s
)

X̃8(s)

{[
−2θ̃X̃(s) + 2X̃ ′(s)

]
X̃4(s)

+
[
θ̃X̃2(s)−2X̃(s)X̃ ′(s)

]
4X̃3(s)

}
dλ(s) +

θ̃s

X̃3(s)
exp

(
θ̃s

X̃(s)

)
dλ(s)

ds

+ exp
(
θ̃s
){ σ

X̃3(s)

[
θ̃2X̃(s)− X̃ ′′(s)−2θ̃X̃ ′(s) +

2X̃ ′2(s)

X̃(s)

]

−
σ

2X̃2(s)

[
θ̃2−

2X̃
′2(s)

X̃2(s)

]}
dλ(s).

Given the complexity, the Equation (14) could lead to a high-degree polynomial in m(s). Deter-mining an explicit solution for m(s) might necessitate additional simplifications or assumptions tolower the polynomial’s degree. We assume that the influence of dλ(s) is negligible [i.e., dλ(s)→ 0],this would effectively remove all terms involving dλ(s) from the equation. Hence,
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exp(−ρs)

{
2ξ
[
X̃(s) +m(s) +φX̃(s)

]
+
dc(m(s))

dm

}
D2

2

= 2
(

2ξexp(−ρs)(1 +φ)
[
(1 +φ)X̃(s) +m(s)

]
+D1

)
2exp(−ρs)ξ (1 +φ).

Since c(m(s)) = c0m
2(s)/2, then dc(m(s))/dm = c0m(s), and furthermore, as D1,D2 are notdependent on m(s) ,

exp(−ρs)

{
2ξ
[
(1 +φ)X̃(s) +m(s)

]
+c0m(s)

}
D2

2

= 4exp(−ρs)ξ(1 +φ)

[
2ξexp(−ρs)(1 +φ)

[
(1 +φ)X̃(s) +m(s)

]
+D1

]
.

Both sides of the equation have a common factor of exp(−ρs). We can divide both sides by
exp(−ρs) to simplify.{

2ξ
[
(1 +φ)X̃(s) +m(s)

]
+c0m(s)

}
D2

2 = 4ξ(1 +φ)

{
2ξexp(−ρs)(1 +φ)

[
(1 +φ)X̃(s) +m(s)

]
+D1

}
.(15)After grouping the terms involving m(s) and the constants

D2
2

[
2ξ(1 +φ)X̃(s) + (2ξ+c0)m(s)

]
= 4ξ(1+φ)

[
2ξexp(−ρs)(1 +φ)2X̃(s) + 2ξ(1 +φ)m(s) +D1

]
.

Moving all terms involving m(s) to one side and constant terms to the other side, and subtract
D2

22ξ(1 +φ)X̃ from both sides:
D2

2(2ξ+c0)m(s) = 4ξ(1+φ)
[
2ξexp(−ρs)(1 +φ)2X̃(s) + 2ξ(1 +φ)m(s) +D1

]
−D2

22ξ(1+φ)X̃(s).

After collecting the terms involving m(s) on the left-hand side and the constant terms on theright-hand side yield
D2

2(2ξ+c0)m(s)−4ξ(1+ϕ)2ξ(1+φ)m(s) = 4ξ(1+φ)
[
2ξexp(−ρs)(1 +φ)2X̃(s) +D1

]
−D2

22ξ(1+φ)X̃(s).

Factoring m(s) out and dividing both sides by the coefficient of m(s) implies
m∗(s) =

ξ(1 +φ)

[
2ξexp(−ρs)(1 +φ)2X̃(s) +D1−D2

2X̃(s)

]
D2

2(2ξ+c0)−2ξ2(1 +φ)2
. (16)

4. Simulation Studies
In this section, we conduct a series of simulation studies to evaluate the performance of Equation(16) under varying conditions. To achieve this, we first introduce three distinct models, eachcharacterized by a unique set of parameters, specifically c0,ξ,φ, θ̃,σ, and ρ. These parameters
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Eur. J. Stat. 10.28924/ada/stat.5.9 19dictate the behavior of the system and influence the outcomes of our simulations. Once the modelsare established, we compute the values of m̃, which is derived as a logistic transformation of m∗,given by
m̃(s) :=

1

1 + exp
{
−m∗(s)

} (17)
This transformation ensures that the complementarity strategy adopted by a firm in responseto a monetary shock is confined within the unit interval [0,1], thereby maintaining interpretabilityand consistency within our framework. Given that the true data-generating process is explicitlydetermined by Equation (16), we have the flexibility to simulate arbitrarily large datasets for X̃and systematically analyze the behavior of m̃ under each of the three parameter settings. By doingso, we can assess the robustness and sensitivity of the model to different parameter variations,allowing us to infer the conditions under which the complementarity strategy remains stable orfluctuates significantly. The insights gained from these simulation studies will be instrumentalin understanding the theoretical and practical implications of Equation (16), particularly in thecontext of monetary shocks and firm responses. Through systematic comparisons across differentparameter regimes, we can identify key drivers of variation in m̃ and evaluate the extent to whichthe transformation effectively captures the underlying dynamics of the model. Throughout thesimulation of three model we choose X̃ = 0.87, since we want to observe the effect of higherpercent deviation of a firm from CPI on m̃. Furthermore, in Figure 1, m̃ takes the peak at X̃ = 0.87.Three models are as follows:(i). Model 1: All the parameter values are same:
m∗(s) =

0.0001(1 + 0.0001)

[
0.0002exp(−0.0001s)(1 + 0.0001)2X̃(s) +D1−D2

2X̃(s)

]
D2

2(0.0003)−2(0.0001)2(1.0001)2
, (18)

where m̃ is defined by Equation (17).(ii). Model 2:

m∗(s) =

0.01(1.01)

[
0.02exp(−0.01s)(1.01)2X̃(s) +D1−D2

2X̃(s)

]
D2

20.03−2(0.01)2(1.01)2
, (19)

where m̃ is defined by Equation (17).(iii). Model 3: All the parameters take distinct higher values:
m∗(s) =

1.2

[
2∗0.8∗ (1.5)2 exp(−ρs)X̃(s) +D1−D2

2X̃(s)

]
D2

2(2∗0.8 + 0.8)−2∗0.82(1.5)2
, (20)

where m̃ is defined by Equation (17).
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Table 1. m̃(s) test results on simulated datasets.

Model-1 Model-2 Model-3Predicted m̃(s) value 0.617 0.396 0.047
c0 0.0001 0.01 0.8
ξ 0.0001 0.01 0.8
φ 0.0001 0.01 0.5
θ̃ 0.001 0.4 0.7
σ 0.001 0.08 0.9
ρ 0.0001 0.01 0.8

To further investigate the relationship between parameter values and the complementarity strat-egy of firms, we systematically varied the parameter sets across the three models and analyzed theircorresponding effects on m̃(s). In Model 1, we intentionally selected smaller values for the param-eters c0,ξ,φ, θ̃,σ, and ρ to observe their impact on the logistic transformation m̃(s). The simulationresults indicate that the value of m̃(s) is the highest among the three models, suggesting that lowerparameter values yield a stronger complementarity response to monetary shocks. This outcome im-plies that smaller parameter values make firms more responsive to external shocks, possibly due toreduced inertia or lower adjustment costs. A similar trend was observed in Models 2 and 3, whereprogressively larger parameter values were assigned to simulate varying firm behaviors. As theparameter values increased from Model 1 to Model 3, the value of m̃(s) consistently decreased, re-inforcing the observation that m̃(s) exhibits a negative correlation with the parameter magnitudes.This negative correlation suggests that larger parameter values mitigate the firm’s propensity toadopt complementarity strategies, potentially reflecting higher adjustment costs, greater uncer-tainty, or stronger persistence in firm behavior. The consistent pattern observed across all threemodels highlights the sensitivity of the complementarity strategy to parameter variations, providinginsights into how firms’ strategic responses may be influenced by structural characteristics. Thesefindings underscore the importance of parameter selection in modeling firm behavior and suggestthat smaller parameter values can amplify the effects of monetary shocks on firm decisions, whereaslarger values may dampen the complementarity response.
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Figure 1. Relation ship between X̃ and adjusted complementarity strategy of afirm due to random monetary shock.
Figure 1 provides a comprehensive illustration of how the variable X̃ interacts with a firm’sadjusted complementarity strategy in response to a random monetary shock. The construction ofthis figure is based on specific parameter choices, ξ = 0.0001, φ= 0.0001, c0 = 0.00001, ρ= 0.5,

σ = 0.05, and θ̃ = 0.02, ensuring a controlled and precise simulation environment. To performthe simulation, we utilized 100 values of X̃ ranging from 0 to 1. The simulation reveals a crucialinsight; at X̃ = 0, the function m̃(s) assumes a value of 0.5. This indicates that when a firm doesnot exhibit any deviation from the aggregate CPI, its complementarity strategy remains neutral at
0.5. This neutrality comes from the firm’s balanced expectations about the effects of the monetary
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shock, assigning equal probabilities (ie 1/2) to potential outcomes. As X̃ increases, we observe agradual decline in m̃ until it reaches a minimum at X̃ = 0.77. This decreasing trend suggests that,within the interval [0,0.77], the firm exhibits risk-averse behavior, opting for a more conservativecomplementarity strategy as it perceives an increased risk in deviating from the aggregate CPI.However, beyond X̃ = 0.77, a stark shift occurs, m̃ begins to rise sharply. This inflection pointsignifies a transition in the firm’s stance; as X̃ surpasses 0.77, the firm increasingly diverges fromthe aggregate CPI, signaling a shift towards risk-loving behavior. The sharp upward movementin m̃ aligns with the firm’s growing willingness to take on risk as it perceives larger deviationsas more rewarding. This pattern aligns intuitively with our theoretical framework, given that m̃is derived from a logistic transformation of m∗(s), and the use of an exponential function witha positive coefficient inherently produces this characteristic curve. The interplay between riskattitudes and monetary shocks, as visualized in Figure 1, thus underscores the dynamic nature ofa firm’s strategic adjustments in response to uncertainty, reflecting both risk-averse and risk-lovingbehaviors at different levels of X̃ .
5. Data Analysis

In this section, we will dive into a comprehensive analysis of the dataset, with the aim of un-covering valuable information and identifying significant trends that can inform business strategiesand decision-making processes. Data analysis serves as a powerful tool in modern business andeconomic decision making, as it allows us to transform raw data into meaningful conclusions. By ap-plying various statistical, computational, and visualization techniques, we can explore the dataset,discern patterns, and forecast potential future developments that can have profound implicationsfor business operations and market strategies.The data set on hand encompasses key economic indicators and financial data that are critical forunderstanding broader economic conditions and assessing the performance of individual companies.It includes the CPI for 2022 and 2023, which is a key measure of inflation, alongside stock pricesfor Nestlé, Palmolive, Westrock Coffee, and Dover for the same two years. The CPI data provide asnapshot of the changes in the cost of living over time, reflecting the changes in average prices of abasket of goods and services consumed by households. This data set is essential for understandinginflationary pressures, which can directly affect business costs, consumer purchasing power, andoverall economic health. By analyzing the CPI, we can gain insight into how inflation has evolvedover the past two years, how it compares to historical trends, and how businesses can adapt theirstrategies to mitigate the effects of rising or falling prices.Together with the CPI data, the stock price data for the selected companies—Nestlé, Palmolive,Westrock Coffee, and Dover—will offer valuable insight into how these companies have performedin the market during the same time period. Stock prices reflect investor sentiment, corporateperformance, and market dynamics [33]. This analysis will utilize a combination of descriptive
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Eur. J. Stat. 10.28924/ada/stat.5.9 23statistics, time series analysis, and data visualizations to uncover trends and potential causes ofstock price fluctuations. Descriptive statistics will provide an overview of the central tendencies,variability, and distributions in the CPI and stock price data, while time-series analysis will helpus understand how the values have changed over time and identify any seasonality or long-termtrends.In addition to statistical techniques, data visualization will play a critical role in illustratingthese trends and relationships. Graphs such as line charts, boxplot , and qqplot will help in visuallyrepresenting the CPI trends over time, the stock price movements of the companies, and the potentialcorrelations between these variables. By presenting the data visually, we can more easily spotpatterns, outliers, and trends that may not be immediately apparent through raw numbers alone.Through this detailed analysis, our goal is to derive actionable insights that can drive businessdecisions. By understanding the relationship between inflation (as represented by CPI) and stockperformance, companies can adapt their strategies in real-time to navigate fluctuating economicconditions. For instance, companies facing inflationary pressures may consider adjusting theirproduct pricing, refining their marketing strategies, or reevaluating their supply chain managementpractices [35]. Furthermore, by examining the stock price performance, businesses can make moreinformed decisions about investments, mergers and acquisitions, and strategic growth plans.Ultimately, the insights gleaned from this analysis will enable business leaders and investorsto make more informed, data-driven decisions that enhance long-term success. By leveraging botheconomic and financial data, companies can position themselves more strategically in the market,responding proactively to economic trends and ensuring they remain competitive, resilient, andprofitable. This thorough analysis not only benefits companies directly but also provides a deeperunderstanding of the broader economic landscape, which is essential for shaping the future ofbusiness and economic policy .The CPI is a vital economic metric that tracks the average changes in the prices consumerspay for a specific collection of goods and services. This collection is designed to represent theusual spending habits of households and includes a wide array of items such as food, housing,transportation, clothing, healthcare, and education, among others. Each category in this basketof goods has a designated weight based on its significance to the average household’s expenses.For example, housing typically makes up a large portion of the CPI due to its prominence inhousehold budgets [37]. Its main role is to monitor price fluctuations, a process commonly referredto as inflation. When the CPI rises, it indicates that, on average, the prices of goods and serviceshave increased, leading to a reduction in the purchasing power of money. This phenomenon isreferred to as inflation. In contrast, when the CPI declines, it signifies a reduction in prices,known as deflation, which could suggest economic contraction or weakening demand for goods andservices [38]. Recognizing these shifts is crucial, as inflation or deflation can have profound effects
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Eur. J. Stat. 10.28924/ada/stat.5.9 24on a nation’s economy, influencing everything from consumer behavior to decisions about monetarypolicy.Additionally, the CPI is used to adjust income and expenditure data to account for inflation,thereby ensuring that economic figures remain accurate over time. This adjustment, often called acost-of-living adjustment, is crucial for maintaining the purchasing power of individuals as pricesrise. For example, many social security payments, wages, and pensions are regularly adjusted basedon changes in the CPI to ensure they keep pace with rising living costs. Similarly, businesses andpolicymakers rely on CPI data to understand how price shifts may affect production costs, consumerdemand, and overall economic growth.There are various versions of the CPI. The CPI-U (Consumer Price Index for All Urban Consumers)is the most widely used and includes a broad range of urban households. It tracks price changesfor a large segment of the population living in urban areas. Another version, the CPI-W (ConsumerPrice Index for Urban Wage Earners and Clerical Workers), focuses specifically on householdswhere at least half of the income comes from wages or clerical jobs. A variant known as the CoreCPI excludes volatile food and energy prices, providing a clearer view of long-term inflation trends,as food and energy prices can fluctuate significantly in the short term [34]. Economists, governmentagencies, and central banks like the Federal Reserve depend on the CPI to guide monetary policydecisions. For example, when inflation is high, a central bank may raise interest rates to curbborrowing and spending, helping to slow down the economy and bring prices under control. Onthe other hand, if inflation is low or there is a risk of deflation, central banks may lower interestrates to encourage spending and investment.While the CPI is an essential tool for understanding inflation, it does have its limitations. Onenotable drawback is that the basket of goods and services used to compute the CPI may notperfectly reflect the actual consumption patterns of every individual or household. For instance,the spending habits of retirees or low-income families may differ significantly from the averageurban consumer. Moreover, the CPI does not adjust for quality changes over time. If a product’squality improves, its price may rise, but this may not necessarily reflect inflation in the traditionalsense. Technological advancements and new products, which do not neatly fit into the CPI’s basket,can also influence consumer behavior and living standards in ways that the index does not fullycapture.Despite these limitations, the Consumer Price Index remains one of the most significant andwidely used economic indicators. It plays a key role in understanding inflation, adjusting wages andincome, and informing policy decisions that affect the broader economy. By providing a snapshotof price changes over time, the CPI helps inform not only policymakers but also businesses andconsumers, guiding decisions on spending, saving, and investing. The QQ plot reveals that amajority of the data points closely follow the theoretical quantile line, which strongly indicates

https://doi.org/10.28924/ada/stat.5.9


Eur. J. Stat. 10.28924/ada/stat.5.9 25that the CPI data adheres to a normal distribution. This graphical representation is a powerfultool for assessing the distribution of a dataset, and in this case, the alignment of the data pointswith the straight line suggests that the data does not deviate significantly from the expected normalpattern. In statistical analysis, a QQ plot is used to compare the quantiles of the sample data withthe quantiles of a theoretical distribution—in this case, the normal distribution. When the datapoints lie near or along the line, it demonstrates that the sample data approximates the normaldistribution well.Such an alignment has important implications for statistical analysis. A normal distribution isa common assumption in many statistical techniques, as it enables the use of various tools likeparametric tests, regression analysis, and the calculation of confidence intervals, all of which rely onthe data following a normal distribution. This means that, based on the QQ plot, we can confidentlyassume that the CPI data is normally distributed. As a result, we are in a favorable position toapply statistical methods that presuppose normality, which can help in making predictions, testinghypotheses, and deriving more precise conclusions about the behavior of inflation or price changesover time.The significance of confirming normality cannot be overstated, especially in economic analy-sis, where assumptions about data distribution guide critical decision-making processes. With theassumption of normality validated by the QQ plot, the CPI data can be subjected to a range ofparametric statistical methods. These methods are advantageous because they tend to be morepowerful and yield more accurate results when the data is normally distributed. Therefore, under-standing that the CPI data follows this distribution opens up a broader array of analysis techniquesthat can provide deeper insights into inflation trends, economic forecasting, and policy recommen-dations. Furthermore, confirming normality through visual tools like the QQ plot adds an extralayer of confidence to our interpretation of the data. statistical tests such as the Shapiro-Wilk testfor normality was used to confirm normality.
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Figure 2. Test for normality of CPI.
Observation from the data is that Palmolive exhibits the highest level of variability among thefour companies, as evidenced by its box plot (3), which is the largest in size compared to theothers. This suggests that the measured variable fluctuates more widely for Palmolive, indicatinggreater dispersion in its data points. The interquartile range (IQR), which measures the spreadof the middle 50% of the data by calculating the difference between the first quartile (Q1) andthe third quartile (Q3), is notably wider for Palmolive than for the other companies. A largerIQR signifies that Palmolive’s data distribution is more spread out, meaning there is a broaderrange of values between its lower and upper quartiles. This level of variation can have significantimplications, as it may reflect greater diversity in performance, inconsistent outcomes, or increasedsensitivity to external factors affecting the measured variable. In addition to exhibiting the highestvariability, Palmolive also has the highest median value among the four companies. The median,
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Eur. J. Stat. 10.28924/ada/stat.5.9 27which represents the middle value of the dataset when arranged in ascending order, serves as akey indicator of central tendency and provides a robust measure of typical performance, as it isnot as affected by extreme values as the mean. The fact that Palmolive’s median is higher thanthat of its competitors suggests that, on average, it outperforms the other companies in terms ofthe measured variable. This finding is particularly noteworthy, as it indicates that despite havinggreater variability, Palmolive still maintains a stronger central performance, making it a standout incomparison to the other companies. Such insights are valuable in understanding market positioningand competitive advantages, as they highlight both consistency and relative superiority in themeasured metric. By considering these factors, businesses can better assess how variations inperformance might impact strategic decision-making and identify potential areas for improvementor optimization.
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Figure 3. Box plot of four different firms.
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Eur. J. Stat. 10.28924/ada/stat.5.9 28The combination of a large box plot and a high median suggests that Palmolive has both highperformance and high variability. This could mean that while Palmolive performs well on average,there is significant fluctuation in its performance. Nestle has the second-largest box plot andmedian. This indicates that Nestle also has relatively high variability and strong performance,but not as high as Palmolive. Nestle’s performance is consistent and strong, though it exhibitsless variability compared to Palmolive. This suggests that Nestle is a stable performer but maynot reach the same peaks as Palmolive. WestRock has a smaller box plot and median comparedto Palmolive and Nestle. This indicates lower variability and moderate performance. WestRock’sperformance is more consistent and less variable than Palmolive and Nestle, but it also has a lowermedian value. This suggests that WestRock is a stable but less outstanding performer comparedto the top two companies.Dover has the smallest box plot and the lowest median among the four companies. This indicateslow variability and lower performance. Dover’s performance is the least variable and also the lowestamong the four companies. This suggests that Dover is a consistent but underperforming companycompared to the others [8]. Palmolive stands out as the top performer with the highest median andthe largest variability. This suggests that while Palmolive performs well on average, its performanceis less predictable. Nestle follows closely, with strong performance and moderate variability. Itis a stable and reliable performer. WestRock shows moderate performance with low variability,indicating consistency but not outstanding results. Dover has the lowest performance and the leastvariability, suggesting it is the least competitive among the four companies. Dover’s line reachesthe lowest peak among the four companies, indicating that it achieved the lowest maximum valueduring the observed time period.Dover may have underperformed relative to the other companies,either due to weaker performance, less growth, or more challenges in maintaining higher values,and its trend line is relatively flat,indicating Dover’s performance may be stable but consistentlylow.
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Figure 4. Line plot of four diffirent firms.

Westrock’s peak is higher than Dover’s but lower than Palmolive’s and Nestle’s, placing it in thesecond-lowest position and its performance is better than Dover’s but still lags behind Palmoliveand Nestle.Westrock may be experiencing periodic challenges or variability in its performancebecause of its periodic fluctuation.Palmolive’s peak is higher than both Dover and Westrock but lower than Nestle’s, placing it inthe second-highest position.Palmolive is performing better than Dover and Westrock, but is stilloutperformed by Nestle.The trend line of Palmolive rises steadily, indicating Palmolive is steadilyimproving and closing the gap with Nestle.
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Eur. J. Stat. 10.28924/ada/stat.5.9 30Nestle’s line reaches the highest peak among the four companies, indicating that it achieved thehighest maximum value during the observed time period. Nestle is the top performer among thefour companies, achieving the highest values at its peak before a sharp decline. Nestle may stillbe achieving high values but with some variability in performance. The line plot reveals a clearhierarchy in performance among the four companies, with Nestle leading, followed by Palmolive,Westrock, and Dover. The trends over time provide additional insights into how each company isperforming and where they may need to focus their efforts to improve or maintain their positions.In considering the stability and behavior of a system, Westrock provides an insightful frameworkthat can be interpreted through the lens of dynamic systems where equilibrium plays a centralrole. The primary feature of this system lies in its overall stability, where fluctuations, thoughpresent, are generally moderate and do not significantly disrupt the system’s core functions ordirection. This is not to say that the system is impervious to change or unaffected by randomdisturbances; rather, it maintains a level of resilience that allows it to absorb these variationswithout veering too far from its established state. Westrock’s system offers a compelling modelfor environments where stability and predictability are paramount but still acknowledges the ever-present influence of randomness. While the system is not immune to fluctuations, it demonstratesa natural resilience, remaining anchored in a stable pattern that allows it to continue functioningeffectively. The occasional, moderate fluctuations serve more as temporary disturbances, addinga layer of complexity but not undermining the overall order that governs the system’s trajectory.Thus, while fluctuations may momentarily cause ripples, the system ultimately retains its stability,making it highly adaptable to minor, random shifts without experiencing significant upheaval. Thiskind of stability is characteristic of well-managed environments that balance predictability withthe inevitable uncertainties of the external world. Palmolive, as a brand and a company, operateswithin an environment that is highly volatile and sensitive to fluctuations, particularly those drivenby external factors. This volatility manifests in the form of large, sudden shifts or "jumps" in itsmarket behavior, where the company’s performance can change dramatically in a short period oftime. The nature of these shifts is not only abrupt but also often unpredictable, making it difficultto forecast or mitigate the impact of such fluctuations. These sudden changes in the system can beattributed to a variety of external shocks that disrupt the status quo and provoke swift reactionsfrom investors, consumers, and industry players alike.One key factor contributing to this volatility is the sensitivity of the market to global economicevents. For instance, during times of financial crisis or economic downturns, the market can experi-ence steep declines as consumer spending drops, production costs rise, or general confidence in theeconomy falters. These external shocks may have cascading effects on companies like Palmolive,where fluctuations in raw material costs or shifts in consumer preferences can translate into suddenand drastic changes in stock prices, revenue projections, and even operational strategy. The sudden
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Eur. J. Stat. 10.28924/ada/stat.5.9 31drop in demand for discretionary products during an economic slowdown or a global recession couldcause Palmolive to face significant challenges, as the brand relies heavily on consumer behaviorpatterns that are often affected by economic conditions.Moreover, Palmolive’s exposure to geopolitical events or market sentiment shifts further amplifiesthe company’s inherent volatility. For example, a sudden change in trade policy, such as tariffs orsanctions, can disrupt the supply chain, affecting the availability and cost of materials. Similarly,an unanticipated regulatory change in one of the regions where Palmolive operates could lead toan immediate and dramatic shift in the company’s operations, requiring rapid adaptation to newrules or standards. These unpredictable events result in sudden “jumps,” wherein the market reactssharply, either positively or negatively, to news or rumors, creating instability in stock prices andpublic perception of the company.
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Figure 5. Stochastic plot of four differnt firms.
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Eur. J. Stat. 10.28924/ada/stat.5.9 32In addition to these external shocks, Palmolive is also vulnerable to shifts in consumer senti-ment, which can be influenced by anything from viral social media campaigns to broader changesin lifestyle preferences. For instance, if a trend emerges that encourages consumers to shift to-wards more sustainable or eco-friendly products, Palmolive might experience a sudden surge indemand—or conversely, if a controversy arises surrounding the brand or its practices, it could facea sharp and immediate decline in consumer trust. These kinds of sentiment-driven fluctuations areoften unpredictable, and the market can respond with extreme variations, sometimes amplifying thecompany’s perceived vulnerability.The degree of variation within Palmolive’s system is not simply moderate or minor but is insteadextreme, with significant swings occurring with little warning. The company’s stock may fluctuatedramatically, as investors attempt to gauge the impact of an event that could affect the broadermarket, forcing large-scale buying or selling decisions. This results in a heightened sense ofinstability, where the company’s future prospects appear far more uncertain than in more stablesystems. Unlike companies with more predictable growth patterns, Palmolive operates in a spacewhere the uncertainty is pronounced, and the future trajectory is often clouded by these externalshocks.These large fluctuations can be triggered by any number of unexpected events. A major newsevent, such as a natural disaster affecting one of Palmolive’s manufacturing locations, could instantlycause the company’s stock price to plummet as investors factor in potential disruptions to productionand distribution. Similarly, geopolitical tensions or an unforeseen political crisis could introduceuncertainty into the company’s international operations, forcing investors to react rapidly andsending shockwaves through the market. Because Palmolive operates in a global marketplace, theinterconnectedness of these events means that an incident in one part of the world can cause rippleeffects across the entire business, further intensifying the volatility.Such irregular and often dramatic fluctuations make Palmolive’s market environment a challeng-ing one for investors, who must constantly monitor both macroeconomic indicators and micro-levelconsumer behaviors in order to stay ahead of the curve. Unlike a stable system where gradualchanges over time are the norm, Palmolive’s system requires constant vigilance, as the risk of sud-den, pronounced fluctuations is always present. The company must remain agile and responsiveto the volatile nature of the market, preparing for the possibility of unexpected shifts that coulddramatically alter its trajectory at any given moment.In conclusion, Palmolive is situated in a highly volatile system characterized by frequent, largevariations in its market performance. This volatility arises from external shocks such as economiccrises, geopolitical tensions, and shifts in consumer sentiment. These unpredictable factors intro-duce instability into the system, leading to significant jumps in the company’s value and perfor-mance. The degree of variation is extreme, and the overall market environment for Palmolive is one
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Eur. J. Stat. 10.28924/ada/stat.5.9 33where the future is uncertain, requiring the company to remain adaptable and prepared for suddenand often unpredictable changes. For investors and stakeholders, this volatility presents both riskand opportunity, making it essential to closely monitor the broader forces at play in the globalmarketplace. Dover, as a company and system, operates in an environment that is characterized bya high degree of predictability and stability. Unlike markets that experience extreme fluctuationsor those that are heavily influenced by external disruptions, Dover follows a consistent, determin-istic trend over time. This means that the company’s trajectory can be anticipated with a highlevel of confidence, as it generally moves in a single direction without significant deviations. Suchpredictability allows for long-term planning and decision-making, as stakeholders can reasonablyexpect that the system will continue along a familiar path, barring any extraordinary circumstances.This stability is reflected in the system’s behavior, where fluctuations are not only minor butalmost negligible. Unlike industries where market dynamics lead to constant shifts in productdemand, regulatory changes, or consumer sentiment, Dover operates in a relatively calm and steadyenvironment. The factors that typically drive volatility in other sectors, such as external shocks orrapid technological innovations, have a much smaller impact on Dover’s operations. Instead, thecompany’s performance is shaped by more predictable, consistent forces—such as steady demandfor its products, ongoing improvements in operational efficiency, and a stable industry environment.As a result of this predictable, deterministic nature, the system experiences little noise. In marketterms, “noise” refers to the random fluctuations or unpredictable events that can obscure underlyingtrends. For Dover, such noise is virtually absent. The company’s steady progression can be likenedto a well-oiled machine where each component functions with precision and minimal disruption.Whether it’s production schedules, product development, or market growth, Dover’s performanceexhibits a sense of orderliness that reduces the likelihood of unexpected deviations. Investors,customers, and employees alike can rely on this steady state, as the company’s operations remainlargely unaffected by the usual volatility that can plague other industries.In a system like Dover’s, where there are minimal disruptions, there are also no significant jumps.These “jumps” refer to sudden, sharp changes that could drastically alter the company’s marketposition or operational strategy, often due to external factors like a crisis, a sudden shift in consumerpreferences, or a technological breakthrough. In Dover’s case, such abrupt shifts are uncommon.The company’s steady growth is typically the result of well-considered strategies and incrementalprogress, rather than drastic, sudden changes. As a consequence, there’s an inherent tranquility inthe company’s operations, and stakeholders can rely on the fact that, barring unforeseen factors,the company’s path forward is both clear and continuous.The absence of sharp, sudden shifts makes Dover’s system incredibly predictable. For investorsand decision-makers, this means that the company’s future is largely known, based on historicaltrends and well-understood market dynamics. In industries marked by volatility and uncertainty,
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Eur. J. Stat. 10.28924/ada/stat.5.9 34this stability is a significant advantage. Whether in terms of forecasting earnings, assessing marketshare, or projecting growth, Dover’s relatively stable trajectory ensures that these predictions canbe made with a high degree of certainty. Unlike companies in more volatile sectors, where thefuture is often clouded by unpredictable forces, Dover’s consistency in performance makes it areliable player in its industry.What’s more, Dover’s ability to follow a clear, deterministic pattern allows for long-term planningwithout the constant need for reactive adjustments. Companies in unpredictable environments mustoften pivot in response to sudden changes in market conditions or regulatory environments. How-ever, Dover’s predictable trajectory means that the company’s leadership can focus on maintainingand optimizing a proven strategy, refining processes and enhancing efficiencies with the confidencethat the broader market conditions will not disrupt their progress in the short term.The system is not subject to abrupt disruptions; instead, it follows a measured, calculated coursethat ensures both growth and sustainability. The market environment in which Dover operatesis conducive to this type of stability—there are few forces that can alter its operations in anysignificant way. Whether the company is expanding its product line, entering new markets, orinvesting in new technologies, these decisions are typically built upon a foundation of steadyprogress rather than reactive adaptations to market shifts.In sum, Dover’s system exemplifies stability and predictability in a way that few other companiescan replicate. With minimal fluctuations, little noise, and no significant jumps, it provides a clearand steady pattern that stakeholders can depend on. This consistency offers a sense of security andconfidence, as the company’s direction remains unmistakably clear. By avoiding sharp disruptionsand maintaining a steady path, Dover ensures that its growth is gradual and sustainable, makingit a reliable player in its industry over time. Its ability to maintain this kind of calm and order inan often unpredictable world is a testament to its strong foundation and long-term strategic vision,allowing it to thrive without the upheaval that typically marks more volatile systems. Nestlé, asa corporation, operates within a complex and often unpredictable environment where its behaviorcan appear erratic and subject to sudden, unforeseen shifts. Unlike systems that follow morestructured, deterministic paths, Nestlé’s performance is heavily influenced by a variety of factorsthat introduce a high degree of uncertainty and volatility into its operations. This unpredictabilityoften manifests in abrupt, irregular changes that do not adhere to any clear pattern or trajectory.The company’s market behavior, for instance, can shift dramatically in response to external events,making it difficult to anticipate its future direction with any degree of confidence.One of the primary characteristics of Nestlé’s environment is its vulnerability to large, unpre-dictable fluctuations. These fluctuations can vary in size and frequency, making the system difficultto predict and challenging for investors to assess. During periods of extreme market speculation
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Eur. J. Stat. 10.28924/ada/stat.5.9 35or when the economy is subjected to unexpected external shocks such as a financial crisis, a nat-ural disaster, or political instability- Nestlé’s performance can fluctuate widely. These shifts maynot follow a logical or smooth progression but instead appear as erratic movements that reflectthe broader unpredictability of the external environment. Just like the stock market during times ofheightened speculation, Nestlé can experience significant, sudden swings, which do not necessarilyalign with the company’s long-term strategy or performance indicators.What makes this system particularly chaotic is the lack of a consistent pattern in its fluctuations.While some industries or companies may exhibit relatively stable, smooth growth trajectories, Nestléoperates in an environment where fluctuations are large and unpredictable. The company couldexperience periods of relative calm, only to be followed by sharp, drastic changes that push thecompany’s stock prices or operational focus in completely new directions. These fluctuations mayvary from being relatively minor shifts to more significant upheavals that could drastically alterthe company’s trajectory. This inherent variability in fluctuation size and frequency suggests thatNestlé’s market behavior is driven by a wide array of dynamic and often uncontrollable factors,which makes it challenging to predict outcomes with accuracy.One of the most defining aspects of this erratic system is the way in which sudden, drasticshifts occur with little warning. These abrupt changes often serve as a signal that external forceshave interfered with the company’s internal mechanisms, knocking it off its predictable course. Forinstance, changes in government regulations, shifts in consumer behavior, supply chain disruptions,or even global geopolitical events can trigger sharp reactions within Nestlé’s operations, creating anenvironment where stability becomes fleeting, and the company’s future becomes highly uncertain.These “jumps” in the system can be quite drastic, representing significant changes in businessoperations, financial performance, or market strategy.
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Figure 6. Combined stochastic plot of four different firms.
This volatility is often the result of Nestlé’s dependence on external conditions, which are them-selves subject to rapid change. The global food industry, in particular, is vulnerable to a wide rangeof factors that can lead to instability, including shifts in commodity prices, changing consumer pref-erences, political unrest, and environmental factors such as climate change. These unpredictableforces can disrupt Nestlé’s carefully laid plans, causing the company to react suddenly and adaptto new conditions. Consequently, the company finds itself navigating through a landscape thatis rarely calm, where any number of unpredictable events could dramatically alter the company’sprospects at a moment’s notice.Furthermore, the lack of a predictable trend means that Nestlé’s performance may react abruptlyto any number of events, creating an environment that is hard to navigate for both investors and
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Eur. J. Stat. 10.28924/ada/stat.5.9 37company leaders. For example, a new competitor may emerge with a disruptive product, or a globalrecession could hit, triggering a rapid shift in consumer demand. On top of this, shifts in investorsentiment can create swings in Nestlé’s stock price, compounding the unpredictability and creatinga volatile financial landscape. The combination of internal and external factors contributes to asystem that is highly sensitive to change, where small triggers can lead to disproportionately largeconsequences.In such a chaotic system, it is difficult for any long-term predictions to hold much weight. Thesystem’s inherent volatility means that traditional forecasting models or trend analysis may be lesseffective, as the company’s performance can change in unexpected ways without any discerniblepattern to follow. Therefore, Nestlé’s management must be highly adaptable, responding quicklyto external events while attempting to mitigate risks as best as possible. Despite the challengesposed by this erratic behavior, the company must maintain flexibility, ready to pivot its operationsor adjust its market strategy in response to sudden shifts.In conclusion, Nestlé operates in a highly erratic and volatile system, where large, unpredictablefluctuations are the norm rather than the exception. The company’s performance is subject to abruptshifts that disrupt any clear or consistent trend, creating a chaotic and unpredictable environment.The system is frequently knocked off balance by external shocks, forcing the company to reactquickly to these changes. In such a landscape, stability becomes an elusive goal, and the abilityto navigate uncertainty and adapt to sudden shifts is crucial for Nestlé’s survival and growth. Theerratic nature of its operations makes it a dynamic but challenging system to manage, where theoutcome of any given scenario is highly uncertain and subject to a wide range of influencing factors.
Table 2. Estimated control values (m̃) for different companies and models based onsix parameters. The last row represents the overall m̃ values for each company andmodel.

Nestle Westrock Dover PalmoliveParameter Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
c0 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8

ξ 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8

φ 0.001 0.01 0.5 0.001 0.01 0.5 0.001 0.01 0.5 0.001 0.01 0.5

θ̃ 0.001 0.4 0.7 0.001 0.4 0.7 0.001 0.4 0.7 0.001 0.4 0.7

σ 0.001 0.08 0.9 0.001 0.08 0.9 0.001 0.08 0.9 0.001 0.08 0.9

ρ 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8 0.001 0.01 0.8

m̃ 0.883 0.236 0.199 0.999 0.940 0.323 0.988 0.298 0.278 0.999 0.342 0.052

Table 2 provides a comprehensive overview of the estimated values for the complementarity strat-egy of a firm due to random monetary shock (m̃) for four major companies—Nestle, Westrock, Dover,and Palmolive—across three different models. Each model is characterized by six key parameters:
c0, ξ, φ, θ̃, σ, and ρ. The structure of the table is designed to allow for a direct comparison be-tween the companies and their respective models, facilitating the evaluation of how each parameter
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Eur. J. Stat. 10.28924/ada/stat.5.9 38varies across different configurations. Each company has three columns corresponding to the threemodels, enabling a side-by-side examination of the estimated values under varying conditions.The values in table 2 indicate that certain parameters remain consistent across companies andmodels, such as c0, ξ, and ρ, all of which take the values 0.001, 0.01, and 0.8, respectively, for Model3 across all companies. However, parameters such as θ̃ and σ show more variation, particularly inModel 2 and Model 3, suggesting a stronger influence on the estimated complementarity strategy.The last row of the table provides the overall values of the m̃ for each company, summarizing thecombined effect of all parameters within each model.The overall values differ significantly across models and companies, highlighting potential dis-crepancies in model performance or differences in company-specific characteristics. For instance,while Nestle’s overall complementarity strategy values range from 0.199 to 0.883 across models,Westrock exhibits a higher value for Model 1 (0.999) but a substantially lower value for Model 3(0.323), indicating possible variations in parameter sensitivity or effectiveness across different mod-eling approaches. Similarly, Palmolive demonstrates the most substantial variation, with Model 3producing an exceptionally low complementarity strategy value of 0.052 compared to the higherestimates in the other models. This suggests that Palmolive’s response to different model conditionsmight be more sensitive or significantly different from the other companies.
6. Discussions

In this paper, we establish a robust framework for determining the optimal complementaritystrategy of a firm operating under a CIR stochastic process with a non-zero drift, providing anovel extension to existing models of firm decision-making under uncertainty. The core objective ofthe firm is to maximize its payoff function while accounting for percent deviations from symmetricequilibrium in both its own pricing strategy and the aggregate CPI, which are treated as the statevariables in our formulation. The firm’s response to random monetary shocks, which dictates itscomplementarity strategy, serves as the principal control variable in our optimization process.Unlike classical models that often assume a driftless stochastic environment, our approach inte-grates a non-zero drift component, thereby allowing for a more realistic representation of economicdynamics where inflationary trends or persistent shocks influence firm behavior over time. To trackthis problem, we extend the widely used an extended version of Calvo model by incorporatinga mean field approach, which enables us to derive a closed-form solution for the firm’s optimalcomplementarity strategy. This analytical framework not only enhances our understanding of firmbehavior in stochastic environments but also provides valuable insights into the role of marketvolatility in shaping strategic decision-making.Theoretical findings in this paper suggest that as volatility in the economic environment in-creases, firms tend to reduce their complementarity strategies, indicating a heightened preferencefor risk aversion and a more cautious approach to pricing adjustments in response to external
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Eur. J. Stat. 10.28924/ada/stat.5.9 39shocks. To test the validity of our theoretical predictions, we apply the model to four major con-sumer goods firms: Nestle, Westrock, Dover, and Palmolive. The empirical analysis, based on table2, reveals that the reduction in complementarity strategy due to increasing market volatility is farmore pronounced than what is predicted by the theoretical model. This deviation underscores thecomplex nature of real-world market uncertainty, suggesting that factors beyond those capturedin the CIR stochastic framework—such as behavioral biases, supply chain frictions, or competitivemarket pressures—may further exacerbate the decline in complementarity strategies. These find-ings have significant implications for firm strategy and economic policy, as they indicate that firmsfacing high levels of market volatility may adopt defensive pricing behaviors that further influenceaggregate economic stability. Furthermore, our study highlights the need for refining theoreticalmodels to better account for real-world deviations and underscores the importance of empiricalvalidation in economic modeling.The framework we examine plays a crucial role in advancing the study of equilibrium dynamics,serving as a foundation for further exploration in related literature. Notably, [1] leveraged theequilibrium characterization first introduced in [2] to analyze the impulse response of an econ-omy to shocks containing a transitory component, marking a departure from the conventional focuson one-time, permanent shocks that dominate much of the existing research. By incorporatingtransitory elements, their analysis offered a more nuanced perspective on how economic agents dy-namically adjust their decisions in response to short-lived disturbances, providing insights that areparticularly relevant for understanding real-world price-setting behavior and policy implications.Building on this foundational work, our study extends the framework further by exploring the roleof higher-order perturbations, a methodological innovation that allows for a deeper examinationof nonlinearities and complex interactions within the equilibrium structure. This extension is par-ticularly significant for the ongoing debate between time-dependent and state-dependent models,as it provides a rigorous way to differentiate their responses to shocks of varying magnitudes. Intraditional settings, small shocks tend to be absorbed more smoothly, with responses that may beadequately captured by linear approximations, whereas larger shocks can elicit nonlinear dynam-ics that fundamentally alter equilibrium behavior. Our approach seeks to systematically quantifythese differences, shedding light on the mechanisms that drive divergent responses in time- andstate-dependent models when subjected to varying shock sizes. By doing so, we aim to providea more comprehensive analytical framework that enhances the robustness of comparative studiesin macroeconomic modeling, particularly in areas where policymakers must navigate environmentscharacterized by both frequent small disturbances and occasional large shocks. The ability todistinguish between these different shock responses is essential for refining theoretical predic-tions, improving empirical validation, and ultimately designing more effective economic policiesthat account for the full range of equilibrium dynamics observed in real-world markets.
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Proof of Lemma 1. (i). As W(t)−W(s) is independent of FWs , ∀s ≤ t ,

E
{
W(t)−W(s)

∣∣∣∣FWs }= E{W(t)−W(s)}= 0.

Hence, E{W(t)
∣∣FWs }=W(s) almost surely.(ii). For the second case we have,

E
{
W2(t)−W2(s)

∣∣∣∣FWs }= E
{

[W(t)−W(s)]2−2W(s)[W(t)−W(s)]

∣∣∣∣FWs }
= E

{
[W(t)−W(s)]2

∣∣∣∣FWs }+ 2W(s)E
{

[W(t)−W(s)]

∣∣∣∣FWs } .
The second part of the above equation vanishes by (i). Furthermore, independence implies

E
{

[W(t)−W(s)]2

∣∣∣∣FWs }= E
{

[W(t)−W(s)]2
}

= t− s.

Therefore, E{W2(t)− t
∣∣∣∣FWs }=W2(s)− s .(iii). Consider Φ is standard normal variable with probability density function (pdf)

(2π)−1/2 exp(−x2/2). Hence,
E{exp(γΦ)}=

1√
2π

∫ ∞
−∞

exp(γx)exp

{
−

1

2
x2

}
dx = exp

{
−

1

2
γ2

}
,

for all γ ∈ R. Moreover, independence and stationarity implies
E
{

exp

[
σW(t)−

1

2
σ2t

]∣∣∣∣FWs }= exp

[
σW(s)−

1

2
σ2t

]
E
{

exp{σ[W(t)−W(s)]}
∣∣∣∣FWs }

= exp

[
σW(s)−

1

2
σ2t

]
E{exp{σ[W(t)−W(s)]}}

= exp

[
σW(s)−

1

2
σ2t

]
E{exp{σW(t− s)}}.

Clearly, σW(t − s)
i id∼ N

(
0,σ2(t− s)

). It comes from the notion that Φ
i id∼ N (0,1), the randomvariable sigmaW(t− s) follows the same law as σΦ

√
(t− s), and

E{exp{σW(t− s)}}= E{exp{σΦ
√

(t− s)}}= exp

{
1

2
σ2(t− s)

}
.

Finally,
E
{

exp

[
σW(t)−

1

2
σ2t

]∣∣∣∣FWs }= exp

{
σW(s)−

1

2
σ2s

}
almost surely for every s < t . This completes the proof �.
Proof of Lemma 2. Define A(ω) := inf{t : X̃(t,ω)≤−η}, and A(t) = A∨ t . Theorem 6.2.10 of [9]implies

E
{
X̃[A(t)]

}
≥ E{X̃(t)}.
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E{X̃(t)} ≤ −ηP

[
inf
s≤t

X̃(s)≤−η
]

+

∫
{infs≤t X̃(s)>−η}

X̃(t)dP,

and
ηP

[
inf
s≤t

X̃(s)≤−η
]
≤ E{−X̃(t)}+

∫
{infs≤t X̃(s)>−η}

X̃(t)dP

=−
∫
{infs≤t X̃(s)>−η}

X̃(t)dP ≤ E
{

max
(
−X̃(t),0

)}
.

Letting t→∞ we get our desired result. This completes the proof �.
Proof of Proposition 4. Define a survival function F (x̂∗) := P (X̂ > x̂∗). Now,

E
{
X̂d
}

=−
∫ ∞

0

(x̂∗)ddF (x̂∗)

=

∫ ∞
0

F (x̂∗)d
[
(x̂∗)d

]
− lim
k→∞

{
(x̂∗)dF (x̂∗)

}k
0
≤
∫ ∞

0

F (x̂∗)d
[
(x̂∗)d

]
≤
∫ ∞

0

(x̂∗)−1

{∫
(X̂≥η)

X̃dP

}
d
[
(x̂∗)d

]
= E

{
X̃

∫ X̂

0

(x̂∗)−1d
[
(x̂∗)d

]}
, by Fubini’s theorem,

=

[
d

d −1

]
E
{
X̃X̂d−1

}
≤ d̃ ||X̃||d ||X̂d−1||d̃ , by Hölder inequality.

Therefore, above condition yields
E
{
X̂d
}
≤ d̃ ||X̃||d

[
E
{
X̂dd̃−d̃

}]1/d̃
.

If X̂ is finite the result is trivial because of the fact that dd̃ − d̃ = d . Contrarily, if X̂ is not finite,then consider a separate markup such that
X̂k = X̂ ∧k, ∀k ∈ N.

This implies X̂k ∈ Ld , and X̂k satisfies the hypothesis of Proposition 4. Thus, ||X̂||d̃ ≤ d̃ ||X̃||d .Allowing k →∞ gives the desirable result. This completes the proof �.
Proof of Proposition 5. If η =∞, then the first part of the theorem is trivial because of the factthat supt ||X̃(t)||∞ =K <∞, for any finite number K. Hence, by above condition X̃(t)≤K almostsurely for all t ∈ [0,∞). Right-continuity is needed to guarantee that there exists a single setof measure zero outside which this inequality holds for all t . Furthermore, for all η ∈ (1,∞), if
X̄ ∈ Ld , then

sup
t
||X̃||d ≤ ||X̄||d <∞.
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It is well understood that X̃(t) is uniformly integrable. Thus Corollaries 3.18 and 3.19 of [6] yield
X̃∞(ω) = lim

t→∞
X̃(t,ω), a.s.

Fatou’s lemma implies
E
{

lim
t

[X̃(t)]d
}
≤ lim

t
infE

{
[X̃(t)]d

}
≤ sup

t
E
{

[X̃(t)]d
}
<∞.

Hence, X̃∞ ∈ Ld and ||X̃∞||d ≤ supt ||X̃(t)||d .Define X̄(t,ω) = sups≤t X̃(s,ω). Thus, {−X̃(t)}t∈[0,∞) is a supermartingale. Lemma 2 implies,for any positive monetary shock
ηP

[
inf
s≤t

(
−X̃(s)

)
≤−η

]
= ηP

[
X̄(t)≥ η

]
≤
∫

[X̄(t)≥η]
X̃(t)dP ≤

∫
[X̄≥η]

X̃(t)dP.

Allowing t→∞ yields
ηP
[
X̄ ≥ η

]
≤
∫

[X̄≥η]
X̃∞dP.

Finally, Proposition 4, with X̂ = X̄ , and X̃ = X̃∞ imply
||X̄||d ≤ d̃ ||X̃∞||d .

This completes the proof �.
Proof of Proposition 8. Consider the following Cox-Ingersoll-Ross SDE with a jump

dX̃(k)(s) =
{
θ̃
[
u− X̃(k)(s)

]
+m2(s)

}
ds+σ

√
X̃(k)(s)W(s) +

∑
k:Tk≤s̃

J(k), (21)
where θ̃ is mean reversion rate constant and u is the long term mean of the process. Let
X̃(k+1)(s) = X̃(0) +

∫ t

0

{
θ̃
[
u− X̃(k)(s)

]
+m2(s)

}
ds+

∫ t

0

σ

√
X̃(k)(s)dW(s) +

∑
k:Tk≤s̃

J(k), (22)
and

E
{∣∣∣X̃(k+1)(s)− X̃(k)(s)

∣∣∣2}≤ ((1 + z)3S2

∫ t

0

E

{∣∣∣X̃(k)(s)− X̃(k−1)(s)
∣∣∣2 ds} .

Then for k ≥ 1, s ≤ t we have
E
{∣∣∣X̃(1)(s)− X̃(0)(s)

∣∣∣2}≤ {2G2t2(1 +E|X̃(0)|2) + 2G2t(1 +E[|X̃(0)|2]})

≤ N1t, (23)
where the constant N(1) only depends on G,S,Z and E[|X̃(0)|2].Induction implies

E
{∣∣∣X̃(k+1)(s)− X̃(k)(s)

∣∣∣2}≤ N(k+1)
2 s(k+1)

(k+ 1)!
, k ≥ 0, and s ∈ [0, t], (24)
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for some suitable constant N2 depending only on G,S,Z and E[|X̃(0)|2] G is the Lipschitz constantthat prevents the process from growing excessively fast and ensures that the process behaves in acontrolled manner. Z is bounded in relation to the stability of the process, ensuring that the systemstays within the specified limits throughout its evolution. S is bounded by the diffusion coefficient.Now,
sup

0≤s≤t

∣∣∣X̃(k+1)(s)− X̃(K)(s)
∣∣∣≤ ∫ t

0

∣∣[θ̃(u− X̃k(s)) +m2(s)]− [θ̃(u− X̃k−1(s) +m2(s)]ds
∣∣

+ sup
0≤s≤t

∣∣∣∣∫ t

0

(
σ

√
X̃(k)(s)−σ

√
X̃k−1(s)

)
dW(s)

∣∣∣∣ (25)
By the Martingale inequality we obtain
P
[

sup
0≤s≤t

∣∣∣X̃(k+1)(s)− X̃(k)(s)
∣∣∣> 2−k

]
≤ P

[(∫ t

0

∣∣∣[θ̃(u− X̃(k)(s)) +m2(s)
]
−
[
θ̃(u− X̃(k−1)(s)) +m2(s)

]∣∣∣ds)2

> 2−2k−2

]
+P

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(
σ

√
X̃(k)(s)−σ

√
X̃(k−1)(s)

)
dW(s)

∣∣∣∣> 2−k−1

]
≤ 22k+2Z

∫ t

0

E
[∣∣∣[θ̃(u− X̃(k)(s)) +m2(s)

]
−
[
θ̃(u− X̃(k−1)(s)) +m2(s)

]∣∣∣2]ds
+ 2−2k−2S2(1 +Z)

∫ t

0

Nk+1
2 sk

k!
dt

≤
(4N2)k+1sk+1

(k+ 1)!
, if N2 ≥ S2(1 +Z) (26)

Equation (33) impliesTherefore ,by the Borel-Cantelli lemma
p

(
sup

0≤s≤t

∣∣∣X̃(k+1)(s)− X̃(k)(s)
∣∣∣> 2−k for infinitely many k)= 0, (27)

Thus, for a.s. ω there exists k0 = k0(ω) such that
sup

0≤s≤t

∣∣∣X̃(k+1)(s)− X̃(k)(s)
∣∣∣> 2−k , (28)

for k ≥ k0 Hence, the sequence
X̃(n)(s)(ω) = X̃(0)(s)(ω) +

n−1∑
k=0

(
X̃(k+1)(s)(ω)− X̃(k)(s)(ω)

) is uniformly convergent in [0,T ], for a.s. ω.
(29)

ω is an element of the sample space which represents all possible outcomes in the probabilityspace.
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Eur. J. Stat. 10.28924/ada/stat.5.9 44Let the limit be denoted by Yt = Yt(ω). Then Yt is s continuous for almost all ω since Y (n)is s-continuous for all n. Moreover, Y (·) is FZ(s)-measurable for all s , since Y (n)(·) has thisproperty for all n. Furthermore , observe that for m > n ≥ 0, we have by (7)
E
[
|X̃(m)(s)− X̃(n)(s)|2

]1/2
= ‖X̃(m)(s)− X̃(n)(s)‖L2(P )

=

∥∥∥∥∥m−1∑
k=n

(
X̃(k+1)(s)− X̃(k)(s)

)∥∥∥∥∥
L2(P )

≤
m−1∑
k=n

∥∥∥X̃(k+1)(s)− X̃(k)(s)
∥∥∥
L2(P )

≤ ‖
∞∑
k=n

[
(N2t)

(k+1)

(k+ 1)!

]1/2

→ 0 as n→∞. (30)
The sequence {X̃(n)(s)} converges to a limit, denoted X̃(s), in L2(P ). A subsequence of X̃(n)(ω)will then converge in ω pointwise to X̃(s)(ω) for almost every ω, which implies that X̃(s) = Y (s)almost surely.Now we show that Y (s) satisfies (2). For all n we have ,

X̃n+1(s) = Y (0) +

∫ t

0

θ̃
[
(u− X̃n(s)) +m2(s)

]
ds+

∫ t

0

σ

√
X̃n(s)dWs (31)

Now, X̃n+1(s)→ Y (s) as n →∞, uniformly in t ∈ [0,T ] for a.s. ω.. By (13) and theFatou lemma, we have
E
[∫ t

0

|Y (s)− X̃n(s)|2 dt
]
≤ limsup

m→∞
E
[∫ t

0

|X̃m(s)− X̃n(s)|2 dt
]
→ 0 (32)

as n→∞.It follows by the Itô isometry that ∫ t
0 σ

√
X̃n(s)dWs →

∫ t
0 σ

√
X̃n(s)dWs . Finally, by theHölder inequality that ∫ t0 θ̃ [(u− X̃n(s)) +m2(s)

]
ds →

∫ t
0 θ̃
[
(u−Y n(s)) +m2(s)

]
ds in L2(p) .Therefore, taking the limit of (14) as n→∞, we obtain

dX̃(k)(s) =
{
θ̃
[
u− X̃(k)(s)

]
+m2(s)

}
ds+σ

√
X̃(k)(s)W(s) +

∑
k:Tk≤s̃

J(k). (33)
This completes the proof. �
Proof of Proposition 9. We consider the Cox-Ingersoll-Ross (CIR) stochastic differential equation:

dX̃(s) =

{
θ̃
[
u− X̃(s)

]
+m2(s)

}
ds+σ

√
X̃(s)dW(s) +

∑
k:Tk≤s

J(k).

Here, θ̃ > 0 is the mean-reversion rate, u > 0 is the long-term mean, m(s) accounts for strategiccomplementarity, σ > 0 is the diffusion coefficient, and J(k) represents jumps at times Tk . The goalis to solve this SDE using an integrating factor that depends on both the state variable X̃(s) andtime s .
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dX̃(s) = θ̃u ds− θ̃X̃(s)ds+m2(s)ds+σ

√
X̃(s)dW(s) +

∑
k:Tk≤s

J(k).

Rearranging, we write:
dX̃(s) + θ̃X̃(s)ds =

(
θ̃u+m2(s)

)
ds+σ

√
X̃(s)dW(s) +

∑
k:Tk≤s

J(k).

To simplify the solution, we introduce the integrating factor:
I(s, X̃(s)) = e θ̃s ·

1

X̃(s)
.

Multiplying through by I(s, X̃(s)), the equation becomes:
e θ̃s

1

X̃(s)
dX̃(s) + θ̃e θ̃s ds = e θ̃s

θ̃u

X̃(s)
ds+e θ̃s

m2(s)

X̃(s)
ds+e θ̃s

σ√
X̃(s)

dW(s) +e θ̃s
1

X̃(s)

∑
k:Tk≤s

J(k).

Using the fact that 1
X̃(s)

dX̃(s) = d ln(X̃(s)), the left-hand side simplifies to:
e θ̃sd ln(X̃(s)) + θ̃e θ̃s ds =

d

ds

(
e θ̃s ln(X̃(s))

)
.

Thus, the equation reduces to:
d

ds

(
e θ̃s ln(X̃(s))

)
= e θ̃s

{
θ̃u

X̃(s)
+
m2(s)

X̃(s)

}
+e θ̃s

σ√
X̃(s)

dW(s) +e θ̃s
1

X̃(s)

∑
k:Tk≤s

J(k).

Integrating both sides with respect to s over the interval [s0, s], we obtain:
e θ̃s ln(X̃(s))−e θ̃s0 ln(X̃(s0)) =

∫ s

s0

e θ̃ξ
{
θ̃u

X̃(ξ)
+
m2(ξ)

X̃(ξ)

}
dξ

+

∫ s

s0

e θ̃ξ
σ√
X̃(ξ)

dW(ξ) +

∫ s

s0

e θ̃ξ
1

X̃(ξ)

∑
k:Tk≤ξ

J(k)dξ.

Rearranging terms and taking the exponential of both sides yields the explicit solution for X̃(s):
X̃∗(s) = exp

{
exp
{
−θ̃s

}[
exp
{
θ̃s0

}
ln(X̃(s0)) +

∫ s

s0

exp
{
θ̃ξ
}{ θ̃u

X̃(ξ)
+
m2(ξ)

X̃(ξ)

}
dξ

+

∫ s

s0

exp
{
θ̃ξ
} σ√

X̃(ξ)
dW(ξ) +

∫ s

s0

exp
{
θ̃ξ
} 1

X̃(ξ)

∑
k:Tk≤ξ

J(k)dξ

]}
,

This provides the general form of the solution, where the specific evaluation depends on thestructure of m2(s), J(k), and the initial condition X̃(s0). This completes the proof. �
Proof of Lemma 10. The jump diffusion to X̃(t) is ∑k:Tk≤t J(k), where Tk denotes the times ofjumps and J(k) are the corresponding jump sizes. Since the jumps are driven by a Poisson process
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Eur. J. Stat. 10.28924/ada/stat.5.9 46with intensity ν, the number of jumps N(t) over the interval [0, t] follows a Poisson distributionwith mean E[N(t)] = νt .Taking the expectation yields
E

 ∑
k:Tk≤t

J(k)

= E
[
N(t) ·E[J(k)]

]
.

Since J(k) are assumed to be independent and identically distributed with mean γ and independentof N(t), we have,
E

 ∑
k:Tk≤t

J(k)

= E[N(t)] ·γ.

Substituting E[N(t)] = νt , yields
E

 ∑
k:Tk≤t

J(k)

= νtγ.

This completes the proof. �
Proof of Lemma 11. The variance of this sum can be computed using the law of total variance,

Var ∑
k:Tk≤t

J(k)

= E[N(t)] ·Var(J(k)) + Var[N(t)] · (E[J(k)])2.

For the Poisson process, N(t)
i id∼ Poisson(νt), so E[N(t)] = νt and Var[N(t)] = νt . Substitutingthese into the equation

Var ∑
k:Tk≤t

J(k)

= (νt) ·σ2
J + (νt)γ2.

Rearranging the terms yields
Var ∑

k:Tk≤t
J(k)

= νt(γ2 +σ2
J).

This complete the proof. �
Proof of Proposition 12. We begin by considering the state variable X̃(s), which follows a jump-diffusion model governed by the following SDE

dX̃(s) =
[
θ̃(u− X̃(s)) +m2(s)

]
ds+σ

√
X̃(s)dW (s) +

∑
k:Tk≤s

J(k),

where θ̃ is the rate at which the process reverts to the mean, u, and m(s) represents the effectof a monetary shock. The term ∑
k:Tk≤s J(k) describes the jumps at specific times Tk , and J(k)represents the size of the jump at time Tk . The jump sizes J(k) are modeled using a Lévy process
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σ2

2θ̃
. As time progresses, the state variable X̃(t) will tend toward this stationary distribution, giventhat the process remains stable.Next, we analyze the jump component, ∑k:Tk≤t J(k), which is governed by a Poisson processwith intensity ν. The expected total number of jumps at time t grows linearly with time, specifically,

E[N(t)] = νt . Since the jumps are independent, with each jump J(k) having a mean of λ and avariance of σ2
J , the expected total jump contribution at time t is

E

 ∑
k:Tk≤t

J(k)

= νtγ.

Similarly, the variance of the total jump diffusion is
Var ∑

k:Tk≤t
J(k)

= νt(γ2 +σ2
J).

As time progresses, the number of jumps increases proportionally with t , and consequently,the total jump contribution also increases with t , with both the expected value and the variancescaling linearly with t . To understand the joint behavior of X̃(t) and ∑k:Tk≤t J(k), we note that thediffusion component of X̃(t) tends to a stationary distribution with a mean of u and a variance of
σ2

2θ̃
. Since the jumps are independent of the continuous part of the process, the covariance between

X̃(t) and the jump process is zero. Therefore, the joint distribution of X̃(t) and ∑k:Tk≤t J(k) as
t→∞ will approach a bivariate normal distribution with the following properties:

E[X̃(t)] = u, E

 ∑
k:Tk≤t

J(k)

= νtγ,

Var(X̃(t)) =
σ2

2θ̃
, Var ∑

k:Tk≤t
J(k)

= νt(γ2 +σ2
J),

and the covariance between X̃(t) and ∑k:Tk≤t J(k) is zero.Since time approaches infinity, the joint distribution of X̃(t) and ∑k:Tk≤t J(k) converges to abivariate Gaussian distribution. This implies that, in the long term, the system’s state variableand the cumulative effect of jumps both follow normal distributions, and their joint distribution isindependent of the diffusion process. This completes the proof. �
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Proof of Proposition 13. Define a Lyapunov function V (X̃(s)) := (X̃(s)−u)2, such that
V (X̃(s)) =


0, if X̃(s) = u,

> 0, for all X̃(s) 6= u,

∞, if X̃(s)→∞.

Therefore, V (X̃(s)) is positive definite and radially unbounded, satisfying the standard condi-tions for Lyapunov stability analysis.Applying Itô Lemma to V (X̃(s)) = (X̃(s)−u)2 yields
dV (X̃(s)) = 2(X̃(s)−u)dX̃(s) +σ2ds.

Substituting the dynamics of X̃(s) yields
dV (X̃(s)) = 2(X̃(s)−u)

(
θ̃(u− X̃(s)) +m2(s)

)
ds+ 2(X̃(s)−u)σ

√
X̃(t)dW(s) + 2(X̃(s)−u)

∑
k:Tk≤t

J(k).

Taking the expectation of both sides, and noting that the expectations of the stochastic terms
dW(s) and ∑k:Tk≤t J(k) are zero (since E[dW(s)] = 0 and E[J(k)] = γ, the mean jump size),

E[dV (X̃(s))] = E
[
2(X̃(t)−u)

(
θ̃(u− X̃(s)) +m2(s)

)]
.We now analyze the expression inside the expectation. The first term, 2(X̃(s)−u)θ̃(u− X̃(s)),is of the form:

2(X̃(s)−u)θ̃(u− X̃(s)) =−2θ̃(X̃(s)−u)2.This term is always negative for X̃(s) 6= u, since θ̃ > 0 and the square of any non-zero quantityis positive. This term provides a restoring force that drives X̃(s) back toward u. The second term,
2(X̃(s)− u)m2(t), represents the contribution of the control variable. Since m2(s) is assumedto be bounded (i.e., |m2(t)| ≤ M , where M is a constant), this term does not destabilize theprocess but rather introduces a bounded fluctuation around the equilibrium. Finally, the jump term
2(X̃(t)−u)

∑
k:Tk≤t J(k) has zero mean, as E[J(k)] = γ, the expected jump size, and X̃(s)−u iscentered around u. Therefore,

E

2(X̃(t)−u)
∑
k:Tk≤t

J(k)

= 0.

Thus, the expected time derivative of the Lyapunov function is
E[dV (X̃(s))] =−2θ̃(X̃(s)−u)2 +O(m2(s)).

For Lyapunov stability, we require that E[dV (X̃(s))] is negative definite. This is ensured if
−2θ̃(X̃(s)−u)2 +O(m2(s))< 0 for all X̃(s) 6= u.
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Since θ̃ > 0 and m2(s) is bounded, the drift term ensures that X̃(s) is driven towards u, and thefluctuation from the jump diffusion does not prevent convergence to the equilibrium. Specifically,the presence of random shocks (modeled by m2(s) and the jumps) does not destabilize the systemas long as the intensity of the jumps is sufficiently large and the shocks remain bounded. Thiscompletes the proof. �
Proof of Theorem 14. The Euclidean action function of an atomistic firm is

A0,t(X̃) =

∫ t

0

Es
{

exp(−ρs)Θ[s,m(s), X̃]ds

+

[
x̃(s)− x̃0−µ(s,m,X̃)ds−σ(s,m,X̃)dB(s)

]
dλ(s)

}
,

where Es is the conditional expectation on markup dynamics X̃(s) at the beginning of time s . Forall ε > 0, and the penalizing constant Lε > 0 , define a transitional probability in infinitesimal timeinterval as
Ψs,s+ε(X̃) :=

1

Lε

∫
R

exp

{
−εAs,s+ε(X̃)

}
Ψs(X̃)dX̃(s), (34)

for ε ↓ 0, and Ψs(X̃) is the value of the transition probability at s and markup dynamics X̃(s) withinitial condition Ψ0(X̃) = Ψ0.For continuous time interval [s,τ ], such as τ = s+ε, the stochastic Lagrangian is defines as
As,τ (X̃) =

∫ τ

s

Es
{

exp(−ρν)Θ
[
ν,m(ν), X̃(ν)

]
dν

+

[
x̃(ν)− x̃0−µ

[
ν,m(ν), X̃(ν)

]
dν−σ

[
ν,m(ν), X̃(ν)

]
dB(ν)

]
dλ(ν)

}
, (35)

with the constant initial condition x̃(0) = x̃0. This conditional expectation holds when the function
m(ν) governing a firm’s markup dynamics is established at time ν, assuming the markup dynamics ofall other firms are predetermined. The evolution proceeds as the action function remains stationary.Consequently, the conditional expectation over time is solely influenced by the expectation at theinitial time point of the interval [s,τ ].By Fubini’s Theorem,
As,τ (X̃) = Es

{∫ τ

s

exp(−ρν)Θ
[
ν,m(ν), X̃(ν)

]
dν

+

[
x̃(ν)− x̃0−µ

[
ν,m(ν), X̃(ν)

]
dν−σ

[
ν,m(ν), X̃(ν)

]
dB(ν)

]
dλ(ν)

}
. (36)

By Itô’s Theorem, there exists a function h̃[ν,X̃(ν)] ∈ C2([0,∞)×R) such that Υ(ν) = h̃[ν,X̃(ν)],where Υ(ν) is an Itô process. Assuming
h̃[ν+ ∆ν,X̃(ν) + ∆X̃(ν)] = x̃(ν)− x̃0−µ

[
ν,m(ν), X̃(ν)

]
dν−σ

[
ν,m(ν), X̃(ν)

]
dB(ν),
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As,τ (X̃) = Es

{∫ τ

s

exp(−ρν)Θ
[
ν,m(ν), X̃(ν)

]
dν+ h̃

[
ν+ ∆ν,X̃(ν) + ∆X̃(ν)

]
dλ(ν)

}
. (37)

By Itô’s Lemma,
εAs,τ (X̃) = Es

{
εexp(−ρs)Θ

[
ν,m(ν), X̃(ν)

]
+εh̃[s, X̃(s)]dλ(s) +εh̃s [s, X̃(s)]dλ(s)

+εh̃X̃ [s, X̃(s)]µ
[
ν,m(ν), X̃(ν)

]
dλ(s)

+εh̃X̃ [s, X̃(s)]σ
[
ν,m(ν), X̃(ν)

]
dλ(s)dB(s)

+ 1
2ε(σ [s,x(s),u(s)])2 hX̃X̃ [s, X̃(s)]dλ(s) +o(ε)

}
, (38)

where h̃s = ∂
∂s h, hX̃ = ∂

∂X̃
h and hX̃X̃ = ∂2

∂(X̃)2 h, and we use the condition [dX̃(s)]2 ≈ ε with
dX̃(s)≈ εµ

[
s,m(s), X̃(s)

]
+σ

[
s,m(s), X̃(s)

]
dB(s).

We apply Itô’s Lemma along with a comparable approximation to estimate the integral. As εapproaches zero, dividing by ε and taking the conditional expectation results in
εAs,τ (X̃) = Es

{
εexp(−ρs)Θ

[
s,m(s), X̃(s)

]
+εh̃[s, X̃(s)]dλ(s) +εh̃s [s, X̃(s)]dλ(s)

+εh̃X̃ [s, X̃(s)]µ
[
s,m(s), X̃(s)

]
dλ(s)

+ 1
2εσ

2
[
s,m(s), X̃(s)

]
hX̃X̃ [s, X̃(s)]dλ(s) +o(1)

}
, (39)

since Es [dB(s)] = 0 and Es [o(ε)]/ε→ 0 for all ε ↓ 0. For ε ↓ 0, denote a transition probability at
s as Ψs(X̃). By Equation (34),

Ψs,τ (X̃) =
1

Liε

∫
R

exp

{
−ε
[

exp(−ρs)Θ
[
s,m(s), X̃(s)

]
+ h̃[s, X̃(s)]dλ(s)

+ h̃s [s, X̃(s)]dλ(s) +hX̃ [s, X̃(s)]µ
[
s,m(s), X̃(s)

]
dλ(s)

+ 1
2

(
σ
[
s,m(s), X̃(s)

])2
h̃X̃X̃ [s, X̃(s)]dλ(s)

]}
Ψs(X̃)dX̃(s) +o(ε1/2). (40)

Since ε ↓ 0, first-order Taylor series expansion on the left-hand side of Equation (40) gives
Ψs(X̃) +ε

∂Ψs(X̃)

∂s
+o(ε) =

1

Lε

∫
R

exp

{
−ε
[

exp(−ρs)Θ
[
s,m(s), X̃(s)

]
+ h̃[s, X̃(s)]dλ(s)

+ h̃s [s, X̃(s)]dλ(s) + h̃X̃ [s, X̃(s)]µ
[
s,m(s), X̃(s)

]
dλ(s)

+ 1
2

(
σ
[
s,m(s), X̃(s)

])2
h̃X̃X̃ [s, X̃(s)]dλ(s)

]}
Ψs(X̃)dX̃(s) +o(ε1/2). (41)

Now define X̃(s)− X̃(τ) := ξ̃ such that X̃(s) = X̃(τ) + ξ̃. For ξ̃ 6= 0, and for a positive number
η <∞ assume |ξ̃| ≤√ ηε

X̃(s)
such that for ε ↓ 0, ξ̃ attains smaller values and the markup dynamics
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0< X̃(s)≤ ηε/(ξ̃)2. Therefore,
Ψs(X̃) +ε

∂Ψs(X̃)

∂s
=

1

Lε

∫
R

[
Ψs(X̃) + ξ̃

∂Ψis(X̃)

∂X̃
+o(ε)

]
×exp

{
−ε
[

exp(−ρs)Θ
[
s,m(s), X̃

]
+ h̃[s, X̃(s)]dλ(s)

+hX̃ [s, X̃(s)]µ
[
s,m(s), X̃(s)

]
dλ(s)

+ 1
2

(
σ
[
s,m(s), X̃(s)

])2
hX̃X̃(s)[s, X̃(s)]dλ(s)

]}
dξ̃+o(ε1/2).

Before computing Gaussian integral of each term of the right-hand side of the above Equation,define a C2 function
`[s, ξ̃,λ(s),m(s)] = exp(−ρs)Θ

[
s,m(s), X̃(s) + ξ̃

]
+ h̃
[
s, X̃(s) + ξ̃

]
dλ(s) + h̃s

[
s, X̃(s) + ξ̃

]
dλ(s)

+ h̃X̃
[
s, X̃(s) + ξ̃

]
µ
[
s,m(s), X̃(s) + ξ̃

]
dλ(s)

+ 1
2σ

2
[
s,m(s), X̃(s) + ξ̃

]
hX̃X̃

[
s, X̃(s) + ξ̃

]
dλ(s) +o(1).

Therefore,
Ψs(X̃) +ε

∂Ψs(X̃)

∂s
= Ψs(X̃)

1

Lε

∫
R

exp
{
−ε`

[
s, ξ̃,λ(s),m(s)

]}
dξ̃

+
∂Ψs(X̃)

∂X̃

1

Lε

∫
R
ξ̃exp

{
−ε`

[
s, ξ̃,λ(s),m(s)

]}
dξ̃+o(ε1/2). (42)

After taking ε ↓ 0, ∆m ↓ 0 and a Taylor series expansion with respect to X̃ of `[s, ξ̃,λ(s),m(s)
]

yields,
`
[
s, ξ̃,λ(s),m(s)

]
= `[s, X̃(τ),λ(s),m(s)] + `X̃

[
s, X̃(τ),λ(s),m(s)

][
ξ̃− X̃(τ)

]
+ 1

2`X̃X̃
[
s, X̃(τ),λ(s),m(s)

][
ξ̃− X̃(τ)

]2
+o(ε).

Define Ỹ := ξ̃− X̃(τ) so that dξ̃ = dỸ . The first integral on the right-hand side of Equation (42)yields ∫
R

exp
{
−ε`

[
s, ξ̃,λ(s),m(s)

]
}dξ̃

= exp
{
−ε`[s, X̃(τ),λ(s),m(s)]

}∫
R

exp

{
−ε
[
`X̃ [s, X̃(τ),λ(s),m(s)]y + 1

2`X̃X̃ [s, X̃(τ),λ(s),m(s)]Ỹ 2

]}
dỸ . (43)

Assuming ã= 1
2`X̃X̃ [s, X̃(τ),λ(s),m(s)] and b̃= `X̃ [s, X̃(τ),λ(s),m(s)] the argument of the expo-nential function in Equation (43) becomes,

ãỸ 2 + b̃Ỹ = ã

[
(Ỹ )2 +

b̃

ã
Ỹ

]
≈ ã

(
Ỹ +

b̃

2ã

)2

−
(b̃)2

4(ã)2
, (44)
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exp

{
−ε`[s, X̃(τ),λ(s),m(s)]

}∫
R

exp
{
−ε[ã(Ỹ )2 + b̃Ỹ ]

}
dỸ

= exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}∫
R

exp

−
εã(Ỹ +

b̃

2ã

)2
dỸ

=

√
π

εã
exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}
, (45)

and
Ψs(X̃)

1

Lε

∫
R

exp
{
−ε`

[
s, ξ̃,λ(s),m(s)

]
}dξ̃

= Ψs(X̃)
1

Lε

√
π

εã
exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}
. (46)

Substituting ξ̃ = X̃(τ) + Ỹ into the second integrand of the right-hand side of Equation (42)yields ∫
R
ξ̃exp

[
−ε
{
`
[
s, ξ̃,λ(s),m(s)

]}]
dξ̃

= exp{−ε`[s, X̃(τ),λ(s),m(s)]}
∫
R

[X̃(τ) + Ỹ ]exp
[
−ε
[
ãỸ 2 + b̃Ỹ

]]
dỸ

= exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}[
X̃(τ)

√
π

εã

+

∫
R
Ỹ exp

−ε
ã(Ỹ +

b̃

2ã

)2
dỸ

]
. (47)

Substituting k = Ỹ + b̃/(2ã) in Equation (47) yields,
exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}[
X̃(τ)

√
π

εã
+

∫
R

(
k−

b̃

2ã

)
exp[−ãεk2]dk

]
= exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}[
X̃(τ)−

b̃

2ã

]√
π

εã
. (48)

Hence,
1

Lε

∂Ψs(X̃)

∂X̃

∫
R
ξ̃exp

[
−ε`

[
s, ξ̃,λ(s),m(s)

]]
dξ̃

=
1

Lε

∂Ψs(X̃)

∂X̃
exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}[
X̃(τ)−

b̃

2ã

]√
π

εã
. (49)
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Ψs(X̃) +ε

∂Ψs(X̃)

∂s

=
1

Lε

√
π

εã
Ψs(X̃)exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}

+
1

Lε

∂Ψs(X̃)

∂X̃

√
π

εã
exp

{
ε

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]}[
X̃(τ)−

b̃

2ã

]
+o(ε1/2). (50)

Since ` be in Schwartz space,the derivatives are rapidly falling. Moreover, assuming 0< |b̃| ≤ ηε,
0< |ã| ≤ 1

2

[
1− ξ̃−2

]−1 and X̃(s)− X̃(τ) = ξ̃ yields,
X̃(τ)−

b̃

2ã
= X̃(s)− ξ̃−

b̃

2ã
= X̃(s)−

b̃

2ã
, ∀ ξ̃ ↓ 0,

such that ∣∣∣∣X̃(s)−
b̃

2ã

∣∣∣∣=

∣∣∣∣ηεξ̃2
−ηε

[
1−

1

ξ̃2

]∣∣∣∣≤ ηε.
Therefore, the Wick rotated Schrödinger-type Equation for the atomistic firm is,

∂Ψs(X̃)

∂s
=

[
b̃2

4ã2
− `[s, X̃(τ),λ(s),m(s)]

]
Ψs(X̃). (51)

Differentiating Equation (51) with respect to m yields{
2`X̃
`X̃X̃

[
`X̃X̃`X̃m− `X̃`X̃X̃m

(`X̃X̃)2

]
− `m

}
Ψs(X̃) = 0, (52)

where `X̃ = ∂
∂X̃
`, `X̃X̃ = ∂2

∂(X̃)2 `, `X̃m = ∂2

∂X̃∂m
` and `X̃X̃m = ∂3

∂(X̃)2∂m
` = 0. Thus, optimal comple-mentarity strategy of a player due to random monetary shock in stochastic markup dynamics isrepresented as m∗(s, X̃) and is found by setting Equation (52) equal to zero. Hence, m∗(s, X̃) isthe solution of the following Equation

`u(`X̃X̃)2 = 2`X̃`X̃m. (53)
This completes the proof. �
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