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Abstract. Geographically Weighted Poisson Regression (GWPR) is an extension of the standardPoisson regression model designed to handle spatial count data by accounting for local associationsamong variables. However, the GWPR model faces several challenges that can affect its accuracyand reliability—one of the most critical being bandwidth selection. An inappropriate bandwidth mayeither overfit the model to noise or produce unrealistically low estimates. Specifically, a small band-width may capture excessive local variability, while a large bandwidth could smooth over meaningfullocal patterns. Meta-heuristic algorithms are optimization techniques designed to find approximatesolutions to complex problems by efficiently exploring the solution space. The application of meta-heuristic algorithms for bandwidth selection in the GWPR model is relatively novel, as it introduces anoptimization-based approach to this critical task. In this paper, the Firefly Algorithm (FA), a nature-inspired meta-heuristic method, is utilized to determine the optimal bandwidth value in the GWPRmodel. The FA algorithm searches for the bandwidth that minimizes prediction error, based on adefined objective function. Using cancer incidence data as a real-world case study, comparative anal-ysis demonstrated that the proposed FA-based method outperforms traditional approaches in terms ofpseudo-R2 and Deviance metrics. The results suggest that employing meta-heuristic optimization—specifically the Firefly Algorithm—for bandwidth selection in GWPR models is a promising andeffective strategy that enhances spatial modeling through the integration of advanced optimizationtechniques.

1. Introduction
Spatial data refers to observed phenomena that possess either an inherent or explicitly statedspatial reference. It includes both the content and entities of spatial information. Content datarepresents the actual observations tied to spatial locations, while change data refers to observationslinked to a single spatial entity that vary over time. Spatial data objects can take the form of points,lines, areas, or surfaces to which content data are associated. Geographical modeling is a powerful
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Eur. J. Stat. 10.28924/ada/stat.5.10 2analytical technique that provides deeper insights into spatial phenomena, particularly when therelationships between variables vary across different geographic locations [1, 2]. This approachenhances our understanding of how various processes or conditions change spatially. Among themost widely used tools in geographic modeling are spatial regression models, which are essential foranalyzing spatially structured data where traditional regression assumptions (like independence)are violated due to spatial autocorrelation [3, 4]. Spatial regression models are widely appliedin disciplines such as economics, urban and regional planning, environmental science, and publichealth [5–9]. The Geographically Weighted Regression (GWR) model is a spatial regression methodappropriate when the response variable follows a normal distribution [10]. However, in many real-world applications—especially in the social, economic, and epidemiological domains—data takethe form of counts, which are positive integers [11,12]. These types of data are often modeled usingthe Poisson distribution, which is well suited for handling count responses. The Poisson regressionmodel links the count response variable and explanatory variables to estimate the underlyingrelationships. To address spatial variation in count data, the Geographically Weighted PoissonRegression (GWPR) model extends the Poisson regression framework by incorporating spatiallyvarying coefficients, allowing it to capture local patterns more effectively [13, 14]. However, theperformance of the GWPR model can be significantly influenced by the choice of bandwidth, acritical parameter that determines the degree of spatial smoothing. Improper bandwidth selectionmay lead to overfitting or oversmoothing, thereby reducing model accuracy and reliability. Inthis study, we propose the application of a nature-inspired meta-heuristic algorithm—the FireflyAlgorithm (FA)—to optimize the bandwidth selection in the GWPR model. The FA is employed tosearch for the bandwidth value that minimizes prediction error, offering an efficient and adaptivesolution to this challenging task. Through real-world cancer incidence data, we demonstrate thatthe FA-based bandwidth optimization method achieves superior predictive performance comparedto traditional methods. These findings highlight the potential of combining advanced optimizationtechniques with spatial statistical modeling to improve the accuracy and applicability of spatialregression models.
2. The Description of GWPR Model

Count data are used frequently in many types of research fields from Epidemiology, social andeconomic investigations [15, 16]. The following type of data is positive integers. Poisson distributionis a familiar distribution that used in modeling such type of data. This permits the examination ofPoisson regression (PR) model aimed at modeling the counts as the response variable and possiblythe explanation variable.Let yi follows a Poisson distribution with ωi , then
f (yi) =

e−ωiωi
yi

yi !
, yi = 0, 1, . . . ; i = 1, 2, . . . , n. (1)
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Eur. J. Stat. 10.28924/ada/stat.5.10 3In a PR model, ln(ωi) = xTi fi with xi = (xi1, ..., xip)T and fi is a (p + 1) × 1 vector of unknownregression coefficients. According to this, the PR model can be as:
yi = exp(xTi fi)

= exp(β0 + β1xi1 + β2xi2 + ...+ βpxip)
(2)

Using the maximum likelihood (ML) method for parameter estimation, the log-likelihood functionis
`(fi) =

n∑
i=1

{
yix

T
i fi− exp(xTi fi)− ln yi !

}
. (3)

The ML estimator of PR model coefficients, fîPR is
fîPR = (XT ẐX)−1XT Ẑv̂, (4)

where Ẑ = diag(ω̂i) and v̂ is a vector where ith element equals to v̂i = ln(ω̂i) + ((yi − ω̂i)/ω̂i).In practice, the relationships between variables might vary geographically. Unlike global regres-sion (PR model), where the regression coefficients that arise in PR are fixed over space. GWPRmodel enables local variations in the estimation of coefficients [15–18]. In other words, the coeffi-cients are estimated locally at spatial references data points using GWPR model. The GWR modelis defined as [19,20]
yi ,spatial = exp(xTi fi(ri , qi))

= exp(β0(ri , qi) + β1(ri , qi)xi1 + β2(ri , qi)xi2 + ...+ βp(ri , qi)xip)
(5)

where βj(ri , qi), j = 1, 2, ..., p is the coefficients which are varying conditionals on the locationand (ri , qi)is the two-dimensional coordinates of the ith point in the geographical location. Thus,the spatial heterogeneity is handled by GWPR model in a way that permits by parameters to belocation dependent, thus enables estimation of localized effects.Based on locally weighted likelihood method which is maximizing the geographically weightedlog-likelihood function, the estimated coefficient, fîGWPR, at location i, can be obtained as
fîGWPR = (XTW(ri , qi)X)−1XTW(ri , qi)y, (6)

where W(ri , qi)is an n × nspatial weight matrix. Spatial weights are quantitative measures asso-ciated with observations to derive them based on the distance from the focal observation. Theydefine how the observations within a close working range impact the auto regression characteristicsof the prediction for the particular position. In GWPR model, these weights are obtained througha kernel function which describes the relative position between the data points. Several kernelfunctions available for weighting and were adopted for use in developing the GWPR model suchas Gaussian, bi-square, box-car, tri-cube, exponential among them [21–24].
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In general, Geographically Weighted Poisson Regression (GWPR) involves estimating a localregression equation at each spatial intersection, with support from observations at neighboringlocations. Empirical evidence suggests that observations closer to the target intersection contributemore significantly to parameter estimation than those farther away. This influence decreasesinversely with increasing distance. To capture the smoothed geographical variation in parameterestimates, the GWPR model employs a distance-based weighting scheme using a spatial kernelfunction [25].The bandwidth of the kernel defines the extent to which weights are assigned. It can be specifiedin two ways: either fixed, based on a predefined distance, or adaptive, based on a specified numberof nearest neighbors. The selection of bandwidth plays a crucial role in determining the performanceof the GWPR model [26]. A small bandwidth, which includes only a few nearby observations, mayresult in unstable and noisy parameter estimates. Conversely, a large bandwidth may overly smooththe data, introducing bias and masking local variation [27].The bandwidth essentially determines the neighborhood size considered in the weighting processfor each observation. A smaller bandwidth is more sensitive to local changes, capturing fine-scalespatial heterogeneity. On the other hand, a larger bandwidth tends to generalize across space,potentially overlooking important local details. Adaptive bandwidth methods dynamically adjust thebandwidth based on the density of the data, offering a more nuanced and context-aware modelingapproach [28,29].Bandwidth selection can be approached in two ways:
(1) Fixed bandwidth, where a constant value is applied uniformly across all observations.(2) Adaptive bandwidth, where the bandwidth varies depending on data density, thus enablingthe model to better capture spatial non-stationarity.

Several commonly used kernel functions are summarized in Table 1, each assigning weightsto observations based on their Euclidean distance from the regression point being estimated. Inaddition to the choice of kernel function, determining an appropriate bandwidth value, which reflectsthe number of neighboring observations or spatial extent, is essential for the accuracy and reliabilityof GWPR modeling.The idea behind estimating the bandwidth value in GWPR model is to determine the optimalextent of spatial influence that neighboring observations have on the regression estimates for aspecific location. Bandwidth selection is crucial because it directly affects the model’s ability tocapture local variations in relationships between dependent and independent variables. Methodssuch as cross-validation (CV), generalized cross-validation (GCV), and information criteria likeAkaike information criterion (AIC) or corrected AIC (CAIC) can help identify the optimal bandwidth,
σ [29, 30].
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Eur. J. Stat. 10.28924/ada/stat.5.10 5Table 1. Kernel functions in GWPR model
Kernel Mathematical formGaussian wi j = exp

(
−12
(
di j
σ

)2)
Exponential wi j = exp

(
− |di j |σ

)
Bi-square wi j =

(
1−

(
di j
σ

)2)2
i f |di j | < σ,

0 otherwise.Tri-cube wi j =
(

1−
(
di j
σ

)3)3
i f |di j | < σ,

0 otherwise.

Box-car wi j =

{
1 i f |di j | < σ,

0 otherwise.

Meta-heuristic algorithm are the refined methods of optimization employed to find good solutionsto problems which are hard to solve conventionally. These algorithms are widely used where thesolution space is large, non-linear, or not very well defined [31–33]. These algorithms are plannedto come out of local optimal and aimed for global optima than local search hence more accuratethan local searches. Further, the nature of these algorithms is that they can give good solutionsat once especially in the search spaces of high dimensions, which can be hardly solved by thetraditional optimization processes [34–36].From this point, our proposed idea is to use meta-heuristic algorithms for estimating the band-width value in GWPR model which can offer a promising alternative to traditional methods. Throughthe application of these optimization techniques, our proposed idea is able to improve their probabil-ity of identifying optimal bandwidths that leads to accurate model representation and presentation.When the nature of spatial data analysis becomes more intricate, the implementation of complexoptimization solutions to support modeling may be essential. In this paper, firefly optimization (FA)algorithm[36], which is swarm-based metaheuristic algorithm inspired from the behaviors of belugawhales, is employed to tune the optimal bandwidth value in the GWPR model.
The main components of the FA algorithm are:1- Attractiveness-Based Movement: Fireflies are attracted to others with higher brightness(better fitness). The algorithm simulates this by moving less bright fireflies toward brighter onesin the search space. 2- Light Intensity, Attractiveness, and Randomness:
(1) Light Intensity (I): Represents the quality (fitness) of a solution. It decreases with distancedue to absorption and is directly linked to the objective function value.
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Eur. J. Stat. 10.28924/ada/stat.5.10 6(2) Attractiveness (β): Determines how strongly one firefly is attracted to another. It is highestat close distances and decreases exponentially as distance increases.(3) Randomization (α): Adds a stochastic component to each firefly’s movement to ensure ex-ploration and avoid local optima. The randomness can decrease over time for better con-vergence.The following are the parameter combinations for our suggested methodology.(1) The number of fireflies is 20 members and the number of iterations is tmax= 500.(2) Every member’s position is representing the bandwidth value of the kernel, σin Table 1and it chosen at random. The members’ starting positions are produced from a uniformdistribution in the interval [6, n]where nrepresents the number of samples in the real dataunder the study.(3) The definition of the fitness function is considered as the deviance criterion and it is definedas
fitness = minD

(
y ; ŷ

(
fîGWPR

))
= 2

n∑
i=1

[
yi log

(
yi

ŷ
(

fîGWPR
))− yi + ŷ

(
fîGWPR

)]
, (7)

(4) The best bandwidth value is obtaining after updating the positions according the FA algo-rithm until tmax is reached.
4. Evaluation Criteria

To compare and evaluate the performance of our proposed method, FA-GWPR, against otherapproaches, two model evaluation criteria were employed: pseudo-R2 and Deviance. These metricsare defined as follows, respectively,
pseudo− R2 = 1−

D
(
y , ŷ

(
fîGWPR

))
D
(
y , ŷ

(
fî0
)) (8)

Deviance = 2

n∑
i=1

[
yi log

(
yi

ŷ
(

fîGWPR
))− yi + ŷ

(
fîGWPR

)] (9)
where D (y , ŷ (fîGWPR)) is the deviance of the fitted GWPR model and D (y , ŷ (fî0)) is the de-viance of the Intercept-only model. The best value of the bandwidth would be the one with thehighest value of pseudo− R2and the lowest values of the Deviance.

5. Data description
A year frame data, 2022, were collected from the 18 Iraqi provinces. The datasets forthis study were obtained from Authority of Statistics and Geographic Information System, Iraq(https://cosit.gov.iq/ar/). The data included nine types of information in each individual provinces:cancer rate (average per (10000) persons), as count data, representing the response variable. Un-employment rate (X1), Urbanization rate (X2), PM2.5 (X3), NO2 (X4), SO2 (X5), O3 (X6), CO (X7),
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Eur. J. Stat. 10.28924/ada/stat.5.10 7and CH4 (X8). Variables X1 to X8 represent the explanatory variables. In Figure 1, the cancer rateof 18 Iraqi provinces is reported. The geographical pattern of the cancer rate suggests differencesbetween northern part and the southern part of the provinces.
6. Results and Discussion

First, the Kolmogorov Smirnov (KS) test was applied in this study to assess the goodness of fitof the response variable to the Poisson distribution. The test yielded a statistic of 7.486 with ap-value of 0.80128, indicating that the Poisson distribution is an appropriate and well-fitting modelfor the response variable, which in this case is the cancer rate. Table 2 presents the coefficients ofthe Poisson Regression (PR) model, which serves as the global model in this analysis. Accordingto the results, the variables Urbanization rate (X2), PM2.5 (X3), CO (X7), and CH4 (X8) had astatistically significant effect on the cancer rate. Specifically, the association between cancer rateand Urbanization rate (X2), PM2.5 (X3), and CH4 (X8) was positive, suggesting that increases inthese variables are associated with an increased likelihood of cancer incidence. Conversely, CO(X7) exhibited a negative association with the cancer rate, indicating that decreases in CO levelsare linked to increases in cancer rate. Meanwhile, variables such as Unemployment rate (X1), NO2(X4), SO2 (X5), and O3 (X6) were found to have no statistically significant association with thecancer rate.
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Figure 1. The spatial distribution of the cancer rate of 18 Iraqi provinces under study.
Second, to examine local variations in the relationship between the dependent variable and thepredictors across the 18 locations within the study area, a spatial heterogeneity test was performed.Specifically, the Breusch–Pagan (BP) test was used to determine whether the variance of residuals
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Eur. J. Stat. 10.28924/ada/stat.5.10 8Table 2. PR model estimation
parameter estimation Std. error t-value p-valueIntercept 2.4689 0.5641 4.376 0.0001X1 -0.0011 0.0083 -0.127 0.8989X2 0.0079 0.0021 3.847 0.0001X3 0.0080 0.0037 2.163 0.0001X4 -0.9336 4.0006 -0.233 0.8154X5 4.4307 3.7468 1.183 0.2370X6 5.2732 3.8420 1.373 0.1699X7 -0.9329 0.4526 -2.061 0.0001X8 0.6388 0.2813 2.270 0.0002

is homoscedastic (constant) or heteroscedastic (varies) across locations. The null hypothesis statesthat the variances are equal across all locations, while the alternative hypothesis suggests thatvariance differs in one or more locations. Rejection of the null hypothesis indicates the presenceof significant spatial heterogeneity. The results revealed a BP test statistic of 16.059 with a p-value of 0.00251, which is below the 0.05 threshold. This indicates significant spatial diversityamong the 18 locations in the study area. To account for and model this spatial heterogeneity,the Geographically Weighted Poisson Regression (GWPR) model, a local modeling approach, wasemployed to explore spatially varying relationships between cancer rate and the eight explanatoryvariables.Using the bi-square kernel weighting function, the GWPR model parameters were estimatedbased on four bandwidth selection methods: Cross-Validation (CV), Generalized Cross-Validation(GCV), Akaike Information Criterion (AIC), and our proposed optimization-based method, FA-GWPR. The results of these estimations are summarized in Tables 3 to 6, and are presentedusing five descriptive statistics: minimum (Min), first quartile (Q1), median (Med), third quartile(Q3), and maximum (Max) values. Additionally, Table 7 presents the evaluation criteria resultsalong with the corresponding optimal bandwidth values.We will first make two general observations from Tables 3 – 6 : (1) For the five statistics indicatorsof Min, Q1, Med, Q3, and Max, as to the direction (positive or negative correlation between cancerrate and each of the explanatory variables of FA-GWPR), the sign of the correlations with thecorresponding ones of AIC, CV, and GCV methods are the same. For example, the parameters ofPM2.5 (X3) in AIC, CV, and GCV are all positive. (2) The varying parameters of each significantvariables in AIC, CV, and GCV always fall into the range of corresponding counterparts in FA-GWPR.
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Eur. J. Stat. 10.28924/ada/stat.5.10 9Table 3. Summary of GWPR parameters for AIC method
parameter Min Q1 Med Q3 MaxIntercept 1.9957 2.3020 2.4390 3.3099 3.5212X1 -0.0001 0.0035 0.0052 0.0101 0.0105X2 0.0067 0.0069 0.0080 0.0087 0.0089X3 0.0061 0.0086 0.0157 0.0179 0.0181X4 -4.4812 -4.0111 -2.4221 -2.0230 -0.8564X5 -1.4767 -1.1745 1.0510570 5.6959049 7.1754X6 5.3699 5.9835 8.9095 10.2804 10.5664X7 -1.2604 -1.1007 -0.9852 -0.9464 -0.7524X8 -0.2115 -0.0846 0.4801 0.6683 0.8184Table 4. Summary of GWPR parameters for CV method
parameter Min Q1 Med Q3 MaxIntercept 1.5176 2.2307 2.6719 3.3554 3.5354X1 0.0017 0.0074 0.0087 0.0101 0.0105X2 0.0064 0.0069 0.0074 0.0088 0.0092X3 0.0042 0.0079 0.0171 0.0179 0.0183X4 -4.6813 -4.0229 -3.6008 -2.8366 -0.2338X5 -1.8386 -1.2337 0.4256 8.2163 10.0032X6 5.5287 7.3340 10.0703 10.2899 10.6670X7 -1.2929 -1.1032 -1.0252 -0.9752 -0.6934X8 -0.2192 0.1111 0.2694 0.6708 1.0107Table 5. Summary of GWPR parameters for GCV method
parameter Min Q1 Med Q3 MaxIntercept 1.4861 2.2081 2.9839 3.5412 3.8595X1 0.0026 0.0074 0.0087 0.0099 0.0126X2 0.0056 0.0065 0.0071 0.0088 0.0093X3 0.0040 0.0084 0.0174 0.0179 0.0194X4 -6.8642 -4.5407 -3.8301 -2.6757 -0.1301X5 -2.7364 -2.5067 -0.4729 8.2856 10.3894X6 5.1972 7.6457 9.5011 10.2436 10.7793X7 -1.3083 -1.0795 -0.9803 -0.9447 -0.8651X8 -0.3666 -0.2138 0.1067 0.6904 1.0251
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Eur. J. Stat. 10.28924/ada/stat.5.10 10Table 6. Summary of GWPR parameters for FA-GWPR method
parameter Min Q1 Med Q3 MaxIntercept 1.3951 2.1922 3.0453 3.5400 4.7471X1 0.0003 0.0070 0.0103 0.0117 0.0207X2 0.0038 0.0053 0.0063 0.0089 0.0095X3 0.0036 0.0093 0.0151 0.0201 0.0235X4 -7.1094 -5.3747 -4.0124 -2.4889 0.1521X5 -4.50461 -3.6698 -0.6544 8.2734 11.0500X6 4.77963 6.4165 10.4743 11.2640 15.6820X7 -1.34581 -1.1796 -1.0047 -0.9245 -0.7275X8 -0.71641 -0.2523 -0.0138 0.7044 1.0654

Regarding GWPR model performance, the results in Table 7 show that both deviance and pseudo-R2 obtained by our proposed method, FA-GWPR, is more accurate indicated that FA-GWPR hadthe highest pseudo-R2 and least Deviance compared with AIC, CV, and GCV methods. The Deviancein the FA-GWPR is reduced by 51.27%, 32.22%, and 19.08% respectively as compared to the AIC,CV, and GCV. The results indicate that the GWPR model using our proposed method, FA-GWPRproduces more accurate predictions for cancer rate in individual Iraqi provinces than those the AIC,CV, and GCV by capturing the spatial heterogeneity in the data.
Table 7. Summary of evaluation criteria and the best bandwidth for used methods

Methods pseudo-R2 Deviance best bandwidthAIC 0.9042 6.1676 18CV 0.934 4.3845 17GCV 0.9441 3.783 16FA-GWPR 0.9562 3.0882 15
In Figure 2, following the use of FA-GWPR to choose the bandwidth, the map result displayingthe spatial distribution of the predicted cancer rate in the GWPR model is provided. From figure2 it can be noticed that the distribution of the predicted cancer rate as similar to the distributionand the real cancer rate as shown Figure 1.The distributions of the parameters of the significant explanatory variables, Urbanization rate(X2), PM2.5 (X3), CO (X7), and CH4 (X8) over the 18 provinces of are shown in Figures 3 – 6.The parameters indicate fairly conspicuous trends in terms of spatial differentiation. The maps alsoshow that the four parameter estimates using AIC, CV, GCV, and FA-GWPR are not equal to theircorresponding location.
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Figure 2. The cancer rate prediction (a) AIC, (b) CV, (c) GCV, and (d) FA-GWPR.
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Figure 3. The significant Urbanization rate (X2) parameter estimates (a) AIC, (b)CV, (c) GCV, and (d) FA-GWPR.
7. Conclusion

The Geographically Weighted Poisson Regression (GWPR) model is a specialized statisticaltechnique designed for analyzing spatially varying count data, capturing the localized relationshipsbetween variables across different geographic locations. A critical factor in the accuracy andreliability of the GWPR model is the selection of the bandwidth. If chosen poorly, the model
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Figure 4. The significant PM2.5 (X3) parameter estimates (a) AIC, (b) CV, (c) GCV,and (d) FA-GWPR.
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Figure 5. The significant CO (X7) parameter estimates (a) AIC, (b) CV, (c) GCV,and (d) FA-GWPR.
may either overfit the data by capturing noise or underfit by missing essential spatial patterns.This study introduced the use of a meta-heuristic optimization algorithm, specifically the FireflyAlgorithm (FA), to determine the optimal bandwidth in the GWPR model. The proposed method,termed FA-GWPR, provides a promising alternative to traditional bandwidth selection techniquessuch as AIC, CV, and GCV. Through a real-world application focused on cancer rate estimation, the
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Figure 6. The significant CH4 (X8) parameter estimates (a) AIC, (b) CV, (c) GCV,and (d) FA-GWPR.
comparison and evaluation results demonstrated that FA-GWPR achieved superior performance interms of pseudo-R² and Deviance metrics. Furthermore, the parameter estimates for significantvariables obtained using AIC, CV, and GCV were consistently contained within the range of thoseestimated by FA-GWPR, highlighting the robustness and flexibility of the proposed method.
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