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Abstract. This study introduces the Generalized Unit Weibull (GUW) distribution, an extension of theUnit Weibull distribution achieved through transformation and the inclusion of additional parameters.We explore key theoretical properties of this novel distribution, including stochastic functions, quantilefunctions and measures, moments, and Rényi entropy. The model’s unknown parameters are estimatedusing the maximum likelihood method. To demonstrate its applicability, we compare the proposedmodel with existing alternatives using two real-world data sets, particularly in actuarial science andinsurance.
1. Introduction

Statistical distributions are extensively used in numerous fields, offering precious tools fordecision-making. They are used in life cycle analysis, system trustability, life expectation de-termination, insurance opinions, engineering, finance, economics, biology, extreme event threatassessment, drug, husbandry, actuarial modeling, demography, administration, sports, and accou-terments wisdom.Among the new statistical distributions proposed recently, those whose domain is bounded bythe interval (0, 1) are of particular interest because of their suitability for representing empiricaldata within this range, such as quotients, ratios, or percentages. This type of quantitative datais frequently encountered in various fields of study, such as hazard assessment, psychology, eco-nomics, medical applications, and engineering. Distributions whose probability density functionscan adopt specific shapes, such as increasing, decreasing, or bathtub, are particularly valuable for
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Eur. J. Stat. 10.28924/ada/stat.5.11 2modeling complex phenomena. Among the new distributions recently introduced are the follows:unit exponential distribution [1], unit upper truncated Weibull distribution [2], unit Gumbel type-IIdistribution [3], generalized unit half-logistic geometric distribution [4], unit inverse exponentiatedWeibull distribution [5], Unit modified Burr-III distribution [6], kumaraswamy unit-Gompertz dis-tribution [7], unit Muth distribution [8], Marshall–Olkin reduced Kies distribution [9], unit powerWeibull distribution [10], unit Xgamma Distribution [11], unit exponentiated Fréchet distribution [12],transmuted Marshall-Olkin extended Topp-Leone distribution [13], unit-exponentiated half-logisticdistribution [14], new modified kumaraswamy distribution [15], unit Burr XII [16], extension of J-shaped distribution [17], unit-Chen distribution [18], new regression model for bounded responsevariable [19], unit generalized log Burr XII distribution [20], unit-Rayleigh distribution [21], unit-Weibull distribution [22], new power Topp-leone distribution [23], power Topp–Leone exponentialnegative family of distributions [24], Topp-Leone Cauchy family of distributions [25], two-parameterfamily of distributions [26], Topp-Leone Cauchy Family of distributions, [27].In addition to these earlier findings, recent developments in statistical distributions have intro-duced promising new concepts. However, numerous statistical distributions are limited in adaptingto various data sets.Certainly, some datasets show distinct features such as high skewness, kurtosis, heavy tails,inverted J-shapes, multimodality, etc. Distribution generators offer the possibility of efficientlymanaging, and manipulating these dataset characteristics. We aim to develop a new distributionin this study by generalizing the Weibull distribution and making it unitary. This transformation ismotivated by the need for greater flexibility in modeling bounded data on the unit interval, particu-larly in fields such as reliability analysis, survival modeling, and proportions data. We demonstratethe high degree of adaptability of the distribution to real-world data using two applications: ma-terials engineering and finance. Weibull distribution is widely used because of its advantageousattributes, such as its probabilistic function’s mathematical simplicity and flexibility.The article’s remaining sections are organized as follows: Section (2) presents a description ofthe Generalized Unit Weibull (GUW) distribution. Section (3) addresses some noteworthy char-acteristics. Sections (4) and (5) provide the methodology for actuarial measures and distributionparameters estimation. Sections (6), (7), and (8) are devoted to the simulations, applications, andnew quantile regression model, in that order. Finally, the conclusion is made in the section (9)followed by the perspectives.2. Generalized Unit Weibull Distribution
We propose a new generalized distribution with support on the unit-interval (0, 1), which arisesfrom a certain transformation on the two-parameter Weibull distribution [28] with probability dis-tribution function (PDF):

h(t;λ, k) =
k

λ

(
t

λ

)k−1
e−(

t
λ)

k

, t > 0,
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Figure 1. CDF of the GUW distribution
and cumulative distribution function (CDF):

H(t;λ, k) = 1− e−(
t
λ)

k

.

Where the distribution’s shape parameter is k > 0, the scale parameter is λ > 0.Using the transformation y = t 1α (t = yα) and then the transformation x = y
y+β (y =

xβ
1−x ), wehave a new generalized distribution on (0, 1), that we call the GUW distribution. Its CDF by isexpressed as:

F (x ;α, β, λ, k) = 1− e
−

( βx
(1−x)

)α
λ

k
, x ∈ ]0; 1[ (1)

The hazard rate function (hrf) and related PDF are provided by:
f (x ;α, β, λ, k) =

αk

(λ)k
β

(1− x)2

(
βx

1− x

)αk−1
e

−

( βx
(1−x)

)α
λ

k
, (2)

and
hr f (x ;α, β, λ, k) =

αk

(λ)k
β

(1− x)2

(
βx

1− x

)αk−1
,

where α, β, λ, k > 0.Figures (1), (2), and (3) show the CDF, PDF, and hrf of the GUW distribution, respectively. Figure(1) illustrates the flexibility of the cumulative function across different parameter settings. Figure(2) shows that the PDF can take various shapes, including decreasing, reversed J, or asymmetric.Figure (3) highlights the wide range of possible hazard rate behaviors, such as increasing, de-creasing, or bell-shaped. This observation is consistent with prior findings in the literature. Thesecurvature characteristics are widely understood and important for developing universal statisticalmodels.
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Figure 2. PDF of the GUW distribution

Figure 3. hrf of the GUW distribution
3. Some Mathematical Features of the GUW Distribution

This part focuses on numerous relevant mathematical characteristics of the GUW distribution.
3.1. Series development of the density function f. Proposition 1:

The series development of f is provided by:
f (x ;σ) =

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn · U(x, σ), (3)
where

Tn =

(
k + 1

k

)(
i + j − 1

j

)(
αmk − 1

i

)(
1

λ

)mk (4)
×
[−1]m+αmk+i

m!
αmkβαmk , (5)
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U(x ;σ) = xk+j (6)

Proof:According to ( 1),
F (x ;α, β, λ, k) = 1− e

−

( βx
(1−x)

)α
λ

k
, x ∈ ]0; 1[

Considering G(x ;σ) = [(
βx
(1−x)

)α
λ

]k
F (x ;σ) = 1− e−[G(x,σ)]knowing that: ez =∑+∞m=0 zmm!So,

F (x ;σ) = 1−
+∞∑
m=0

[−G(x, σ)]m

m!

= 1−
+∞∑
m=0

[−1]m

m!
[G(x, σ)]m

Let’s develop [G(x ;σ)]m,
[G(x ;σ)]m =

( βx
(1−x)

)α
λ

mk

=

(
1

λ

)mk
βαmk

(
x

1− x

)αmk
,

F (x ;σ) = 1−
+∞∑
m=0

[−1]m

m!

(
1

λ

)mk (7)
× βαmk

(
x

1− x

)αmk (8)
By differentiating expression (7) with respect to x , we obtain the series expansion of f (x).

f (x ;σ) = −
+∞∑
m=0

[−1]m

m!

(
1

λ

)mk
βαmk

αmk

(1− x)2

×
(

x

1− x

)αmk−1
1

(1− x)2
=

∞∑
k=0

(
k + 1

k

)
xk ,
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x

1− x

)αmk−1
= (−1)αmk−1

αmk−1∑
i=0

∞∑
j=0

(
i + j − 1

j

)
×
(
αmk − 1

i

)
(−1)ix j

Finally the development in series of f (x) is given by:
f (x ;σ) =

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn · U(x, σ),

where
Tn =

(
k + 1

k

)(
i + j − 1

j

)(
αmk − 1

i

)(
1

λ

)mk
×
[−1]m+αmk+i

m!
· αmkβαmk ,

and
U(x ;σ) = xk+j ,

3.2. Rényi Entropy. Proposition 2:The Rényi entropy for the distribution is defined as:
ER(X) =

1

1− γ log

{
+∞∑
n=0

T
′
n · Iγ(x, σ)

}
,

where
T
′
n =
[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γαk (αk)γ ,

and
Iγ(x ;σ) =

∫
R

[
1

(1− x)2

]γ ( x

1− x

)γαk−γ+αnk
dx

Proof :
The Rényi entropy of X in the case of a continuous random variable is defined by:

ER(X) =
1

1− γ log
{∫
R
f (x, σ)γdx

}
, γ 6= 1, γ sup 1 (9)

Considering (2)
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(f (x ;σ))γ = (αk)γ
(
1

λ

)kγ
βγ
[

1

(1− x)2

]γ ( βx

1− x

)γαk−γ

× e
−γ

( βx
(1−x)

)α
λ

k
.

The terms: (αk)γ , ( 1λ)kλ, βλ being constant then their series developments remain unchanged.
e

−γ

( βx
(1−x)

)α
λ

k
=

+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk
βαnk

(
x

1− x

)αnk
So,

(f (x ;σ))γ =

+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk
βαnk (αk)γ

(
1

λ

)kγ
× βγ

[
1

(1− x)2

]γ ( βx

1− x

)γαk−γ ( x

1− x

)αnk
=

+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γ+γαk−γ

× (αk)γ
[

1

(1− x)2

]γ ( x

1− x

)γαk−γ+αnk

Thus, the series expansion of (f (x, σ))γ is:
(f (x ;σ))γ =

+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γαk (αk)γ

[
1

(1− x)2

]γ ( x

1− x

)γαk−γ+αnk
. (10)

Replacing (10) in (9) leads to:
ER(X) =

1

1− γ log

{∫
R

+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γαk (αk)γ

[
1

(1− x)2

]γ (
x

1− x

)γαk−γ+αnk
dx

}
.

Renyi’s Entropy finally is provided by:
ER(X) =

1

1− γ log

{
+∞∑
n=0

[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γαk (αk)γ

∫
R

[
1

(1− x)2

]γ (
x

1− x

)γαk−γ+αnk
dx

}
.

Let:
T
′
n =
[−γ]n

n!

(
1

λ

)nk+kγ
βαnk+γαk (αk)γ ,

Iγ(x ;σ) =

∫
R

[
1

(1− x)2

]γ ( x

1− x

)γαk−γ+αnk
dx
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ER(X) =

1

1− γ log

{
+∞∑
n=0

T
′
n · Iγ(x, σ)

}
3.3. Moments and associated measures. At this stage, we’ll look more closely at the momentsof the new distribution. Momentum is a crucial statistical concept that aids in understanding adistribution’s characteristics and movement as well as its form.

Proposition 3:The GUW distribution’s moment of order s can be calculated as:
Ms =

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn
s + j + k + 1

, (11)
where Tn is defined in (4).

Proof:

A variable’s moment of order s is determined as follows:
Ms = E(Xs).

So,
Ms =

∫ 1
0

x s × f (x)dxUsing the series development (3), we obtain:
Ms =

∫ 1
0

x s ×
∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnU(x, σ)dx

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

∫ 1
0

xk+j+sdx

Ms =

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn
s + j + k + 1

By setting s = 1, 2, 3, and 4, we successively obtain the first four moments of the GUWdistribution, namely the mean, variance, skewness, and kurtosis.Figure 4 shows the mean and variance, while Figure 5 presents the skewness and kurtosis ofthe GUW model, for different combinations of the parameters α, β, λ, and k .
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Figure 4. Mean and variance of the GUW model with λ = 1 and k = 0.09

Figure 5. Skewness and kurtosis of the GUW model with λ = 2 and k = 20
3.4. Moment Generating Function (MGF). The MGF is used to fully describe the distribution ofa random variable in terms of its moments.

Proposition 4:Let X be a random variable following the GUW distribution. Then its moment generating function
MX(t) can be expressed as:

MX(t) =

+∞∑
s=0

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

ts

s!

Tn
s + j + k + 1

Proof:

The moment-generating function is defined by:
MX(t) = E

(
eXt
)
.
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etx =

+∞∑
s=0

(tx)s

s!
.

We can write:
MX(t) = E

(
+∞∑
s=0

(tX)s

s!

)

=

+∞∑
s=0

E
(
(tX)s

s!

)

MX(t) =

+∞∑
s=0

ts

s!
E (Xs) (12)

The moment of order s of the distribution is represented by E (Xs):
Ms = E (Xs)

By replacing (11) in (12) we have:
MX(t) =

+∞∑
s=0

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

ts

s!

Tn
s + j + k + 1

,

3.5. Quantile function. Proposition 5:The quantile function associated with the GUW distribution is defined as follows:
Q(p;σ) =

(
λ
1
α [− ln(1− p)]

1
αk

)
[
β +

(
λ
1
α [− ln(1− p)]

1
αk

)] . (13)
Proof :
Let πt = Q(t;σ) ∀ y ∈ [0, 1] .
The quantile function is defined as πt , which is the solution to the following nonlinear equation:

t = F (x ;σ).

So,
1− t = e

−

( βx
(1−x)

)α
λ

k
.

Applying a log transformation to each member of the equation, we obtain:
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− ln(1− t) =

( βx
(1−x)

)α
λ

k (14)
Let’s raise each number in the equation (14) to the power (1/k)

λ [− ln(1− t)]
1
k =

(
βx

(1− x)

)α
. (15)

Let’s raise each number in the equation (15) to the power (1/α)
βx =

(
λ
1
α [− ln(1− t)]

1
αk

)
− x

(
λ
1
α [− ln(1− t)]

1
αk

)
.

Let’s arrange terms containing x in a single member
βx + x

(
λ
1
α [− ln(1− t)]

1
αk

)
=
(
λ
1
α [− ln(1− t)]

1
αk

)
,

[
β +

(
λ
1
α [− ln(1− t)]

1
αk

)]
x =

(
λ
1
α [− ln(1− t)]

1
αk

)
.

Knowing that α , λ, β are strictly greater than 0, then we have:
π =

(
λ
1
α [− ln(1− p)]

1
αk

)
[
β +

(
λ
1
α [− ln(1− p)]

1
αk

)] .
The UWG distribution’s 25%, 50%, and 75% quartiles may be found by adjusting p =0.25, p =0.5,and p =0.75, respectively, in equation (13).
Assume that p is evenly distributed (0, 1), in this case, the following random data sets of size ncan be generated by the QF using the GUW distribution:

πi =

(
λ
1
α [− ln(1− yi)]

1
αk

)
[
β +

(
λ
1
α [− ln(1− yi)]

1
αk

)] , i = 1, 2, ...., n
Graphs of Bowley and Moor skewness and kurtosis are shown in (6).

3.6. Survival function (suf). The GUW distribution is characterized by its survival function, whichis expressed as:
suf (x) = 1− F (x),

suf (x) = e

−

( βx
(1−x)

)α
λ

k
.
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(a) Plot of the Bowley’s coefficient ofskewness (b) Plot of the Moor’s coefficient ofkurtosis
Figure 6. Skewness (left) and Kurtosis (right) plots

Figure 7. suf of the GUW distribution
3.7. Hazard function (haf). The GUW distribution’s hazard function may be described as follows:

haf (x) =
f (x)

suf (x)
,

haf (x) =
αk

(λ)k
β

(1− x)2

(
βx

1− x

)αk−1
.

3.8. Cumulative hazard function (cf ). The GUW distribution is characterized by its cf , which isdefined as follows:
cf (x) = − log(suf (x)),
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Figure 8. haf of the GUW distribution

Figure 9. Cf of the GUW distribution
So, the cf of the GUW distribution is as follows:

cf (x) =

( βx
(1−x)

)α
λ

k .
3.9. Reserve hazard function (Rf). The GUW distribution is characterized by its Rf:

Rf (x) =
f (x)

F (x)
,

Let: A(x) = e−
( βx

(1−x)

)α
λ

k
.So,

Rf (x) =
αk

(λ)k
β

(1− x)2

(
βx

1− x

)αk−1 A(x)

1− A(x)
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Figure 10. Rf of the GUW distribution
3.10. Average absolute deviation (mad). The mean absolute deviation indicates how far, on aver-age, each piece of data in a set is from the mean of that set. If we consider a GUW distributionwith a mean of µ, the average absolute deviation is calculated as:

mad(µ) = E(|X − µ|) (16)
By using (16), we have:

mad(µ) = ∫ 1
0

|x − µ|f (x) dx

=

∫ µ

0

(−x + µ)f (x) dx +
∫ 1
µ

(x − µ)f (x) dx

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

[∫ µ

0

(−xk+j+1 + µxk+j) dx +
∫ 1
µ

(xk+j+1 − µxk+j) dx
]

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

(
1− 2µk+j+2

k + j + 2
+
2µk+j+2 − µ
k + j + 1

)
.

So, the average absolute deviation is expressed as:
mad(µ) = ∞∑

m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnMµ(σ),

where
Mµ(σ) =

1− 2µk+j+2

k + j + 2
+
2µk+j+2 − µ
k + j + 1

.

3.11. Median absolute deviation (MD). If we have a GUW distribution with a median of me , theMD may be stated as follows:
MD(me) = E(|X −me|), (17)

https://doi.org/10.28924/ada/stat.5.11
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MD(me) = ∫ 1

0

|x −me| × f (x) dx

=

∫ me

0

(−x +me)× f (x) dx +
∫ 1
me

(x −me)× f (x) dx

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

[∫ me

0

(−xk+j+1 +me · xk+j) dx +
∫ 1
me

(xk+j+1 −me · xk+j) dx
]

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Ti ,j,k,n ×
(
1− 2mek+j+2

k + j + 2
+
2mek+j+2 −me

k + j + 1

)
.

So, the MD is given by:
MD(me) = ∞∑

m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnMme(x, σ),

where
Mme(σ) =

1− 2mek+j+2

k + j + 2
+
2mek+j+2 −me

k + j + 1
.

4. Actuarial Measures
This section presents both the theoretical foundations and practical aspects of several essentialrisk measures, including the Value at Risk (VaR), the Tail Value at Risk (TVaR), the tail conditionalvariance (TV), and the tail variance risk (TVP), as applied to the new distribution.

4.0.1. VaR measure. The VaR of the GUW distribution is defined by:
VaRq =

(
λα [− ln(1− q)]

1
αk

)
[
β +

(
λα [− ln(1− q)]

1
αk

)] .
Proof. The VaR of a random variable is the quantile of its distribution function, denoted byVaRq , and can be expressed as follows:Then using (13), we have:

VaRq = Q(q).
So we have:

VaRq =
(
λα [− ln(1− q)]

1
αk

)
[
β +

(
λα [− ln(1− q)]

1
αk

)] .
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Figure 11. The VaR plot of the GUW distribution
4.0.2. TVaR measure. Proposition 6:The TVaR of the GUW distribution is described by:

TVaRq = 1

1− q

∞∑
m=0

∞∑
k=0

αnk−1∑
i=0

∞∑
j=0

TnIV(σ),
where IV(σ) = (1− VaRk+j+2q

k + j + 2

)
.

ProofTVaR is defined by:
TVaRq = 1

1− q

∫ 1
VaRq xf (x) dx.Knowing that f (x) is given by:

f (x, σ) =
αk

(λ)k
β

(1− x)2

(
βx

1− x

)αk−1
e

−

( βx
(1−x)

)α
λ

k

=

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnU(x, σ)

We have:
TVaRq =

1

1− q

∫ 1
VaRq xf (x) dx

=
1

1− q

∫ 1
VaRq x

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnU(x, σ)

=
1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

∫ 1
VaRq xk+j+1
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=
1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

(
1− VaRk+j+2q

k + j + 2

)
.

Hence,
TVaRq = 1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

(
1− VaRk+j+2q

k + j + 2

)
.

Figure 12. The TVaR plot of the GUW distribution
4.0.3. TV measure. Proposition 7:The GUW distribution TV is defined by:

TVq = 1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnIV’(σ)− (TVaRq)2,
where

IV’(σ) = (1− VaRk+j+3q

k + j + 3

)

Proof.The TV distribution may be characterized as:
TVq(X) = E(X2|X > VaRq)− (TVaRq)2

=
1

1− q

∫ 1
VaRq x2f (x) dx − (TVaRq)2

=
1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

Tn

https://doi.org/10.28924/ada/stat.5.11


Eur. J. Stat. 10.28924/ada/stat.5.11 18

×

(
1− VaRk+j+3q

k + j + 3

)
− (TVaRq)2

Figure 13. The TV plot of the GUW distribution
4.0.4. TVP measure. TVP is another key metric used in insurance and is obtained by:

TVPq = TVaRq + λTVq,
where

TVq = 1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnIV’(σ)− (TVaRq)2,
and

TVaRq = 1

1− q

∞∑
m=0

∞∑
k=0

αmk−1∑
i=0

∞∑
j=0

TnIV(σ)

Figure 14. The TVp plot of the GUW distribution
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Let x1, x2, . . . , xm be a random sample of size m from the variable X . Employing the PDFprovided in (2), the likelihood function may be expressed as follows:

`(α, β, λ, k) =

m∏
j=1

f (xj),

So, we have:
`(α̂, β̂, λ̂, k̂) =

m∑
j=1

ln (αk)− k
m∑
j=1

ln(λ)−
m∑
j=1

ln(β)− 2
m∑
j=1

ln(1− xj) + (αk − 1)
m∑
j=1

ln

(
βxj
1− xj

)

−
m∑
j=1

e
kα ln

(
βxj
(1−xj )

)(
1

λ

)k
The logarithmic likelihood function may be stated in the form of:

`(α̂, β̂, λ̂, k̂) = ln
[
L(α̂, β̂, λ̂, k̂))

]
,

We obtain:
`(α̂, β̂, λ̂, k̂) =

m∑
j=1

ln

 αk

(λ)k
β

(1− xj)2

(
βxj
1− xj

)αk−1
e

−


(

βxj
(1−xj )

)α
λ


k

=

m∑
j=1

ln (αk)− k
m∑
j=1

ln(λ)−
m∑
j=1

ln(β)− 2
m∑
j=1

ln(1− xj) + (αk − 1)
m∑
j=1

ln

(
βxj
1− xj

)

−
m∑
j=1

( βxj
(1−xj )

)α
λ

k

Introducing the maximum likelihood estimators α̂, β̂, λ̂, and k̂ .
We have:

`(α̂, β̂, λ̂, k̂) = max(α̂,β̂,λ̂,k̂)∈[0,+∞]4 l(α̂, β̂, λ̂, k̂)The first partial derivatives of l(α̂, β̂, λ̂, k̂) with regard to zero are provided as follows:
∂l

∂α
=
1

α
+ k

m∑
j=1

ln

(
βxj
1− xj

)
+

m∑
j=1

k ln

(
βxj
1− xj

)
e
kα ln

(
βxj
1−xj

)(
1

λ

)k
,

∂l

∂β
= −
1

β
+
(αk − 1)

β
−

m∑
j=1

αk(β)αk−1

( xj
(1−xj )

)α
λ

k ,

https://doi.org/10.28924/ada/stat.5.11


Eur. J. Stat. 10.28924/ada/stat.5.11 20

∂l

∂k
=
1

k
− ln(λ) + (α)

m∑
j=1

ln

(
βxj
1− xj

)
−

m∑
j=1

α ln

(
βxj
1− xj

)
e
kα ln

(
βxj
1−xj

)(
1

λ

)k
+

m∑
j=1

e
kα ln

(
βxj
(1−xj )

)
ln(λ)e−k ln(λ),

∂l

∂λ
= −

k

λ
+

m∑
j=1

e
kα ln

(
βxj
(1−xj )

)
kλ−k−1.

We first derived explicit formulas for the partial derivatives with respect to each parameter in thelog-likelihood of the model. The resulting system is analytically intractable due to the complexityand non-linearity of the equations. In such situations, numerical methods become essential. Thesemethods offer a practical and efficient approach for obtaining approximate solutions iteratively.
6. A New Quantile Regression Model

The concept of parametric quantile regression recently gained popularity due to its robustnessin modeling asymmetric data or data with extreme values. This type of regression is also effectivein dealing with asymmetric and high-tail response variables, which are defined on the interval(0,1). To implement these regressions, it is necessary to re-parameterize PDFs of the distributionin terms of quantiles, to obtain the quantile PDF (QPDF) [4, 29–32]. To formulate the quantileregression model of the GUW distribution, we begin by substituting the parameter β in terms ofthe quantile function of the GUW distribution. Then we substitute it in the expressions of the CDFand the PDF. Thus, after simplification, we obtain the cumulative distribution function (QCDF) andquantile probability density (QPDF) of the GUW distribution.Poses Q(p, σ) = µ
µ =

(
λ
1
α [− ln(1− p)]

1
αk

)
[
β +

(
λ
1
α [− ln(1− p)]

1
αk

)]
µβ + µ

(
λ
1
α [− ln(1− p)]

1
αk

)
=
(
λ
1
α [− ln(1− p)]

1
αk

)
µβ =

(
λ
1
α [− ln(1− p)]

1
αk

)
(1− µ)So,

β = G(p)

(
1− µ
µ

)
,where

G(p) =
(
λ
1
α [− ln(1− p)]

1
αk

)
QCDF and QPDF are, respectively, given by
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QF (y ;α, β, λ, µ, k, p) = 1− e

−


G(p)( 1−µµ )y

(1−y)

α
λ


k

, y ∈ ]0; 1[

Qf (y ;α, β, λ, k, µ, p) =
αk

(λ)k

G(p)
(
1−µ
µ

)
(1− y)2

G(p)(1−µµ ) y
1− y

αk−1 e−

G(p)( 1−µµ )y

(1−y)

α
λ


k

y ∈ ]0; 1[

Where µ ∈ (0, 1) and p ∈ (0, 1). Figures (15), (16), (17), and (18) show, respectively, the plotsof QCDFs and QPDFs for different quantiles and parameter values. QPDFs come in many shapes,including left- and right-tilted, decreasing, increasing, symmetrical, J-shaped, and bathtub-shaped.This shows that the regression model developed from this PDF is flexible enough to deal withshort-interval data with such properties.

(a) p=0.1 (b) p=0.25
Figure 15. QCDFs plots of GUW distribution for p = 0.10 and p = 0.25
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(a) p = 0.50 (b) p = 0.75
Figure 16. QCDFs plots of GUW distribution for p = 0.50 and p = 0.75

(a) p = 0.1 (b) p = 0.25
Figure 17. QPDFs plots of GUW distribution for p = 0.10 and p = 0.25

When we have random observations y1, y2, y3, ......., yn from the GUW distribution, and predic-tor variables x1, x2, x3, ......., xn, the GUW quantile regression is established by associating theconditional quantile of the dependent variable with the predictor variables through a suitable linkfunction, as follows:
g(µi) = x

T
i γIn this regression model, γ is the vector of coefficients for the independent variables, and xirepresents the vector of predictor variables for each observation i . The function g is the linkfunction used. For this study, the logit link function is preferred for its ease of interpretation of thecoefficients of the exogenous variables. Thus, the regression structure takes the following form:
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(a) p = 0.50 (b) p = 0.75
Figure 18. QPDFs plots of GUW distribution for p = 0.50 and p = 0.75

logit(µi) = log

(
µi
1− µi

)
= xTi γ

6.1. Estimation of regression parameters. To estimate the unidentified regression parameters us-ing the ML technique, we compute the logarithmic likelihood by replacing:
µi =

exp(xTi γ)

1 + exp(xTi γ)in the quantile PDF. The log-likelihood function is defined as:
`(α̂, β̂, λ̂, k̂ , p̂) =

n∑
i=1

ln(αk)− k
n∑
i=1

ln(λ) +

n∑
i=1

ln(G(p)) +

n∑
i=1

ln

(
1− µi
µi

) (18)
− 2

n∑
i=1

ln(1− yi) + (αk − 1)
n∑
i=1

ln(G(p)) + (αk − 1)
n∑
i=1

ln

(
1− µi
µi

)

+ (αk − 1)
n∑
i=1

ln(yi)− (αk − 1)
n∑
i=1

ln(1− yi)−


(
G(p)·

(
1−µi
µi

)
yi

(1−yi )

)α
λ


k

(19)
To obtain parameter estimates, we set the components of the score vector to zero while concur-rently solving the resultant system of equations. To fit the median regression, we set p=0.50 inequation (19) and maximize the log-likelihood function. The parameter standard error estimates arecomputed using the ML method’s large-sample characteristic. As per [33], the Fisher information
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I(η̂) = −

∂2`(η|y)
∂ηT ∂η

∣∣∣∣
η=η̂6.2. Regression modeling for educational data. In this section, we carry out an analysis of the realdata to compare the new regression with the Generalized Unit Half-Logistic Geometric (GUHLG)regression model. The data can be accessed via the link https://stats.oecd.org/index.aspx?

DataSetCode=BLI [32]. They include three variables: level of education (expressed as a percentageof the 35 OECD countries, y ), homicide rate (as a ratio, x1), and life satisfaction (measured by themean score of the Cantril scale, also known as the Self-Anchoring Striving Scale, x2).The regression model is formulated as follows:logit(µi) = γ0 + γ1x1 + γ2x2where µi represents the median for the GUW and GUHLG distributions. We calculate maximumlikelihood estimates (MLE), associated standard errors, and estimated log-likelihood values forall models, as shown in table (1). This reveals that only the coefficients γ0 and γ1 of the GUWmodel are significant at the 0.05 threshold, while for the GUHLG model, none of the coefficients issignificant. We also observe a negative relationship between the level of education (representedby percentage) and the country’s homicide rate, but a positive relationship between the level ofeducation and satisfaction with life. These results suggest that an increase in life satisfaction isassociated with an increase in the percentage of educational achievement, while an increase in thehomicide rate corresponds to a decrease in the percentage of educational achievement.
Table 1. The result for fitted regression models.

GUW GUHLG
Estimate Standard deviation p-value Estimate Standard deviation p-value

γ0 12.8942 6.3630 0.0427∗ -1.720182 4.454259 0.699
γ1 -2.3384 1.0181 0.0216∗ 0.010572 0.653999 0.987
γ2 0.2337 0.1547 0.1309 -0.001193 0.076603 0.988

7. Simulation study
In this section, we check whether the estimates obtained by the maximum likelihood method areconsistent for the GUW distribution. To do this, we carry out a simulation study using R software.We create a thousand independent samples of different sizes (100, 200, 300, 400, and 500) fromthe GUW distribution. For each sample, we compute the MLEs of the parameters of concern. Next,we evaluate two important statistical metrics that show how reliable and accurate the estimations
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Eur. J. Stat. 10.28924/ada/stat.5.11 25are: mean bias (Bias) and root mean square error (RMSE). The outcomes of this investigation areshown in table (2). This simulation technique improves our understanding of MSE performanceand consistency across multiple sample sizes for the GUW distribution.
Table 2. Values for mean, mean bias, and RMSE of simulations for GUW distribu-tion.

Sample size α = 0.5 β = 2 λ = 5 k = 0.8 α = 0.6 β = 1.5 λ = 3 k = 5

n Mean RMSE Bias Mean RMSE Bias100 0.3865726 0.3403587 0.003719803 0.5160878 0.09829673 -0.0007436222200 0.3871267 0.3338191 0.002655435 0.5160524 0.09050732 -0.0060478341
α 300 0.3875297 0.3378054 0.006666082 0.5161166 0.09409248 -0.0024559742400 0.3877250 0.3397468 0.007578518 0.5161333 0.09463990 -0.0026778599500 0.3875603 0.3411975 0.010500618 0.5161374 0.09624244 -0.0009811381

100 0.4703165 0.3581328 0.003394391 0.7537197 0.08557860 -0.0006667927200 0.4708478 0.3486794 -0.001702143 0.7536183 0.07560987 -0.0061186074
β 300 0.4711307 0.3545124 0.004974935 0.7536426 0.07831139 -0.0029596014400 0.4713905 0.3554896 0.006533760 0.7536522 0.07828130 -0.0030667419500 0.4712644 0.3582302 0.011011426 0.7536705 0.08027758 -0.0014813712

100 0.2917571 0.3026817 0.003763988 0.3319138 0.08227289 -0.0003214238200 0.2922474 0.3003471 0.004936670 0.3319190 0.07712006 -0.0041476335
λ 300 0.2927800 0.3025652 0.006881418 0.3319927 0.07986454 -0.0013732919400 0.2928630 0.3055884 0.006582468 0.3320070 0.08059554 -0.0016638122500 0.2926784 0.3062275 0.008259311 0.3320030 0.08181845 -0.0003755340

100 0.3932002 0.3125611 0.0031226059 0.4643264 0.1986186 -0.0006312249200 0.3936681 0.3055806 -0.0001105596 0.4644523 0.1885544 -0.0086263304300 0.3940392 0.3101794 0.0048216971 0.4646319 0.1952523 -0.0020652042
k 400 0.3942010 0.3120068 0.0052970049 0.4646903 0.1962480 -0.0024236803500 0.3940626 0.3139784 0.0085886883 0.4646540 0.1987249 0.0008041739

https://doi.org/10.28924/ada/stat.5.11


Eur. J. Stat. 10.28924/ada/stat.5.11 268. Data Handling
We will utilize two appropriate data sets and compare them to some competitive models to assessthe efficacy of the distribution in practical settings:(1) Exponentiated Topp-Leone distribution (ETPLD) [34]:

f (x ;α, β) = 2αβ(1− x) (x(2− x))α−1

(1− (xα(2− x)α))β−1

(2) Kumaraswamy distribution (KwD) [35]:
f (x ;α, β) = αβxα−1(1− xα)β−1

(3) Rayleigh distribution(RD) [36].:
f (x ;α) =

x

α2
exp

(
−
x2

2α2

)
The predicted values of the PDF parameters were calculated and visualized using R, Matlab onlineand Python under Spyder. Examination of the data allows us to check whether the distributionbehaves as expected in real-life circumstances.
8.1. Dataset I. Glass fiber strength is a measure of a glass fiber’s ability to resist breakage ordeformation under stress. This property is essential in many applications such as the manufactureof composite materials used in the aerospace, automotive, and construction industries.The National Physical Laboratory (NPL) is the UK’s national metrology laboratory. They carryout precise measurements in a variety of fields, including materials characterization. In this case,they measure the strength of glass fibers.Data on the strength of 1.5 cm glass fibers measured at the National Physical Laboratory inEngland represent important information for understanding and characterizing the mechanical prop-erties of glass fibers, with potential implications in various industrial and research fields. The dataare presented below (https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013) : 0.055, 0.093, 0.125, 0.136, 0.149, 0.152, 0.158, 0.161, 0.164, 0.168, 0.173, 0.181, 0.200,0.074, 0.104, 0.127, 0.139, 0.149, 0.153, 0.159,0.161, 0.166, 0.168, 0.176, 0.182, 0.201, 0.077, 0.111,0.128, 0.142,0.150, 0.154, 0.160, 0.162, 0.166, 0.169, 0.176, 0.184, 0.224, 0.081,0.113, 0.129, 0.148,0.150, 0.155, 0.161, 0.162, 0.166, 0.170, 0.177,0.184, 0.084, 0.124, 0.130, 0.148, 0.151, 0.155, 0.161,0.163, 0.167, 0.170, 0.178, 0.189. Table (3) shows the predicted values for dataset I, with initialvalues of α = 2, β = 6, λ = 8, and k = 5. The information criteria obtained by various models forthis dataset are summarized in table (4). In addition, the empirical PDFs for dataset I are visiblein the figure (19).
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Table 3. Predicted values for various models
Model α β λ k

UWG 2.042932 6.166541 7.907704 4.632182
ETPLD 1.857044 6.317736 - -
Kumaraswamy 1.656934 5.580659 - -
Rayleigh 1.597854 - - -

Table 4. Measures of selection for different models
Model AIC CAIC BIC HQIC

UWG -66.57406 -65.8844 -58.00152 -63.20243
ETPLD 82.25297 82.45297 86.53924 83.93878
Kumaraswamy -41.42698 -41.22698 -37.14071 -39.74117
Rayleigh 122.5984 122.6639 124.7415 123.4413

8.2. Dataset II. 58 observations, or monthly unemployment insurance measures, were made be-tween July 2008 and April 2013. The State of Maryland, USA’s Department of Labor, Licensingand Regulation, provided these statistics.Variable number 5, entitled “New.Claims.Filed...UCX”, represents the number of new claims filed.This variable, therefore, measures the monthly frequency with which new claims are filed byveterans for unemployment insurance benefits. It makes it possible to monitor unemployment trendsamong veterans and the evolution of unemployment insurance claims in this specific demographicgroup.Analysis of this variable can be crucial in understanding the financial support needs of veterans,and in assessing the effectiveness of unemployment insurance programs aimed at them. It can alsohelp identify seasonal, economic, or geographic trends that influence veterans’ claims. The data arepresented below ( [37]):0.129, 0.103, 0.129, 0.125, 0.103, 0.111, 0.149, 0.115, 0.131, 0.106, 0.102,0.138, 0.141, 0.140, 0.155, 0.149, 0.106, 0.132, 0.137, 0.118, 0.136, 0.157, 0.124, 0.177, 0.170,
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Figure 19. Visualization of PDFs for various models
0.203, 0.184, 0.173, 0.153, 0.153, 0.166, 0.145, 0.145, 0.148, 0.144, 0.164, 0.166, 0.178, 0.171,0.179, 0.166, 0.127, 0.207, 0.168, 0.192, 0.182, 0.193, 0.191, 0.195, 0.194, 0.156, 0.267, 0.180,0.145, 0.207, 0.159, 0.149, 0.172Table (5) shows the estimated values for dataset II, with initial values of α =8, β =2, λ =5, and
k =3. The information criteria obtained by various models for this dataset are listed in table (6).In addition, the figure (20) presents the empirical probability (PDFs) for dataset II.

Table 5. Predicted values for various models
Model α β λ k

UWG 7.902857 2.305981 4.927164 2.806308
ETPLD 7.651511 2.087676 - -
Kumaraswamy 7.652575 2.151124 - -
Rayleigh 7.613136 - - -
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Table 6. Measures of selection for various models
Model AIC CAIC BIC HQIC

UWG -57.56362 -56.8089 -49.32184 -54.35328
ETPLD 599.1901 599.4082 603.3109 600.7952
Kumaraswamy 1121.127 1121.345 1125.248 1122.732
Rayleigh 692.6526 692.724 694.713 693.4551

Figure 20. Visualization of PDFs for various models

After examining tables (3), (4), (5), (6), as well as figures (19) and (20), we can conclude thatthe GUW model proves to be more compatible with datasets I and II than competing models. Itsflexibility enables it to adapt to domains as varied as materials engineering and unemploymentinsurance data.
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In this study, we introduced and investigated the GUW distribution, a novel statistical modelderived as a generalization of the Weibull distribution. We derived several statistical properties ofthe GUW distribution, including order statistics, quantile , Rényi entropy, and moments. Parameterestimation was carried out using the maximum likelihood estimation method. In addition, wedeveloped key actuarial risk measures such as value at Risk, tail Value at Risk, tail conditionalvariance, and tail variance risk for the new distribution.The practical relevance of the GUW distribution was demonstrated through applications to real-world datasets from the banking and materials engineering sectors. Its performance was comparedagainst existing models, such as the ETPLD, KwD, and RD distributions. Furthermore, we proposeda quantile regression model based on the GUW quantile function. The results suggest that theGUW distribution can be a valuable tool for professionals in materials science and financial riskanalysis, particularly those involved in modeling and statistical decision-making.

10. Future work
We envisage several promising avenues of research. Firstly, we could extend this study byexploring other methods of validating customized distributions, such as specific statistical tests orcross-validation techniques. This would enable us to deepen our understanding of the performanceof these distributions in different contexts.In addition, we could seek to improve the flexibility and accuracy of the GUW distribution byintroducing additional parameters or exploring alternative distribution functions. This could enableus better to model complex phenomena or data with particular characteristics.Finally, we could explore applying the data simulation approach in specific fields such as health,the environment, or the social sciences. By adapting the proposed methodology to the needsand particularities of these fields, we could contribute to concrete problem-solving and informeddecision-making.By combining these approaches, we could extend the potential applications of this work andprovide valuable tools for research and practice in various fields.
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