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ABsTRACT. This study introduces the Generalized Unit Weibull (GUW) distribution, an extension of the
Unit Weibull distribution achieved through transformation and the inclusion of additional parameters.
We explore key theoretical properties of this novel distribution, including stochastic functions, quantile
functions and measures, moments, and Rényt entropy. The model's unknown parameters are estimated
using the maximum likelthood method. To demonstrate its applicability, we compare the proposed
model with existing alternatives using two real-world data sets, particularly in actuarial science and

insurance.

1. INTRODUCTION

Statistical distributions are extensively used in numerous fields, offering precious tools for
decision-making. They are used in life cycle analysis, system trustability, life expectation de-
termination, insurance opinions, engineering, finance, economics, biology, extreme event threat
assessment, drug, husbandry, actuarial modeling, demography, administration, sports, and accou-
terments wisdom.

Among the new statistical distributions proposed recently, those whose domain is bounded by
the interval (0, 1) are of particular interest because of their suitability for representing empirical
data within this range, such as quotients, ratios, or percentages. This type of quantitative data
is frequently encountered in various fields of study, such as hazard assessment, psychology, eco-
nomics, medical applications, and engineering. Distributions whose probability density functions
can adopt specific shapes, such as increasing, decreasing, or bathtub, are particularly valuable for
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modeling complex phenomena. Among the new distributions recently introduced are the follows:
unit exponential distribution [1], unit upper truncated Weibull distribution [2], unit Gumbel type-I|
distribution [3], generalized unit half-logistic geometric distribution [4], unit inverse exponentiated
Weibull distribution [5], Unit modified Burr-lll distribution [6], kumaraswamy unit-Gompertz dis-
tribution [7], unit Muth distribution [8], Marshall-Olkin reduced Kies distribution [9], unit power
Weibull distribution [10], unit Xgamma Distribution [11], unit exponentiated Fréchet distribution [12],
transmuted Marshall-Olkin extended Topp-Leone distribution [13], unit-exponentiated half-logistic
distribution [14], new modified kumaraswamy distribution [15], unit Burr XII [16], extension of J-
shaped distribution [17], unit-Chen distribution [18], new regression model for bounded response
variable [19], unit generalized log Burr XlI distribution [20], unit-Rayleigh distribution [21], unit-
Weibull distribution [22], new power Topp-leone distribution [23], power Topp—Leone exponential
negative family of distributions [24], Topp-Leone Cauchy family of distributions [25], two-parameter
family of distributions [26], Topp-Leone Cauchy Family of distributions, [27].

In addition to these earlier findings, recent developments in statistical distributions have intro-
duced promising new concepts. However, numerous statistical distributions are limited in adapting
to various data sets.

Certainly, some datasets show distinct features such as high skewness, kurtosis, heavy tails,
inverted J-shapes, multimodality, etc. Distribution generators offer the possibility of efficiently
managing, and manipulating these dataset characteristics. We aim to develop a new distribution
in this study by generalizing the Weibull distribution and making it unitary. This transformation is
motivated by the need for greater flexibility in modeling bounded data on the unit interval, particu-
larly in fields such as reliability analysis, survival modeling, and proportions data. We demonstrate
the high degree of adaptability of the distribution to real-world data using two applications: ma-
terials engineering and finance. Weibull distribution is widely used because of its advantageous
attributes, such as its probabilistic function’s mathematical simplicity and flexibility.

The article’s remaining sections are organized as follows: Section (2) presents a description of
the Generalized Unit Weibull (GUW) distribution. Section (3) addresses some noteworthy char-
acteristics. Sections (4) and (5) provide the methodology for actuarial measures and distribution
parameters estimation. Sections (6), (7), and (8) are devoted to the simulations, applications, and
new quantile regression model, in that order. Finally, the conclusion is made in the section (9)

followed by the perspectives.

2. GENERALIZED UNIT WEIBULL DISTRIBUTION

We propose a new generalized distribution with support on the unit-interval (0, 1), which arises
from a certain transformation on the two-parameter Weibull distribution [28] with probability dis-

tribution function (PDF):
k
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Ficure 1. CDF of the GUW distribution

and cumulative distribution function (CDF):
t\K
HE k) =1—e ()

Where the distribution’s shape parameter is k > 0, the scale parameter is A > 0.
Using the transformation y = té(t = y®) and then the transformation x = ﬁ(y = %) we
have a new generalized distribution on (0, 1), that we call the GUW distribution. Its CDF by is

expressed as:

!
F(x;o,B, N k)y=1—¢ [ ,x €10;1[ (1)

The hazard rate function (hrf) and related PDF are provided by:

ak—1 — by
F(x; 0B, k) = (C;\;(k(l—ﬁX)Q (16_XX) e [ ] | 2)

and

hrf(x; o, B, A\ k) =

ak B ( Bx )O‘k‘l
MF(1—=x)2\1—x '

where o, 3, A\, k > 0.

Figures (1), (2), and (3) show the CDF, PDF, and hrf of the GUW distribution, respectively. Figure
(1) illustrates the flexibility of the cumulative function across different parameter settings. Figure
(2) shows that the PDF can take various shapes, including decreasing, reversed J, or asymmetric.
Figure (3) highlights the wide range of possible hazard rate behaviors, such as increasing, de-
creasing, or bell-shaped. This observation is consistent with prior findings in the literature. These
curvature characteristics are widely understood and important for developing universal statistical

models.
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Ficure 3. hrf of the GUW distribution

3. SoME MATHEMATICAL FEATURES oF THE GUW DISTRIBUTION

This part focuses on numerous relevant mathematical characteristics of the GUW distribution.

3.1. Series development of the density function f. Proposition 1:

The series development of f is provided by:
oo oo amk—1 oo

f(x,0)= Z Z Z ZTH'U(X,J),

m=0k=0 /=0 j=0

)

[_1]m+amk+i

where

Otmkﬁamk,
m!
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and

U(x; o) = x* (6)

Proof:
According to ( 1),

F(x;a,B, X\ k) =1 —e[

Bx

Considering G(x;0) = [((1_;))]

F(x;0) =1— e 60

knowing that: e* =y > 3
So,

F(XO')—l—Z[ GXU

Let's develop [G(x;0)]",

F(xa)—l—Z[l] ( ) (7)

X ) amk

1—x

% ﬁamk (

By differentiating expression (7) with respect to x, we obtain the series expansion of f(x).

+oo _1m 1 mk k
fxio)=—)_ =1 (A) 5amk(1a_mx)2
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amk—1 oo

) e ()

i=0 j=0

) v

(amk -1
X i

Finally the development in series of f(x) is given by:

oo oo amk—1 oo

f(x;0)= Z Z Z ZTn-U(x,o*),

m=0k=0 =0 j=0

where
o (kH1) [i+)—1) famk—1) (1 mk
"k J i A
-1 mH+amk-+i
« [ ] . -amkﬁo‘mk,
and

U(x; 0) = x*+,

3.2. Rényi Entropy. Proposition 2:
The Rényi entropy for the distribution is defined as:

+oo
ER(X) = 1i |og{ZT;-/7(x,a)},
v n=0
where
, o 1 nk+kvy
T = [ :;] (}\) Bank-i-'yak (ak)?,
and
1 vy x Yyok—y+ank
neso) = [ [ (5) =
Proof:

The Rényi entropy of X in the case of a continuous random variable is defined by:

ER(X) = 1ifylog {/Rf(x,a)'ydx},fy#l,'ysupl (9)

Considering (2)
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The terms: (ak)”, (%) , B> being constant then their series developments remain unchanged.
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Thus, the series expansion of (f(x,0))” is

(F(x: o))" Z[ " ( )”k““’ﬁankmk(ak)w[(1_1X)2]7(1fx)mk_7+ank. (10)

Replacing (10) in (9) leads to:
1 +o00 [ "Y] 1 nk+kay ke y 1 y x yak—y+ank
—w'OQi/RHZ ) e (o] (55) “I

Renyi's Entropy finally is provided by:

e {5 (3]s 2] ()™

=0

ER(X) =

Let:

A
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We have:
ER(X) =

1 oo
log{> Ty ly(x,0)
1- v n=0

3.3. Moments and associated measures. At this stage, we'll look more closely at the moments
of the new distribution. Momentum is a crucial statistical concept that aids in understanding a

distribution’s characteristics and movement as well as its form.

Proposition 3:

The GUW distribution’s moment of order s can be calculated as:

oo oo amk—1 oo

Tn
Mi=) ) ) ZS+J'+/<+1’ 1)

m=0k=0 =0 j=0
where T, is defined in (4).

Proof:

A variable’s moment of order s is determined as follows:
Ms = E(X?®).

So, .
Ms :/ x° x f(x)dx
0

Using the series development (3), we obtain:

oo oo amk—1 oo

Ms = IXSXZZ Z ZT,,U(X,J)dx

0 m=0k=0 =0 j=0

oo oo amk—1 oo 1
-y Y S YT, / XK
- — 0

By setting s = 1, 2, 3, and 4, we successively obtain the first four moments of the GUW
distribution, namely the mean, variance, skewness, and kurtosis.
Figure 4 shows the mean and variance, while Figure 5 presents the skewness and kurtosis of

the GUW model, for different combinations of the parameters o, G, A\, and k.
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FIGURE 4. Mean and variance of the GUW model with A =1 and k = 0.09

skewness Kurtosis

FiGure 5. Skewness and kurtosis of the GUW model with A =2 and k = 20

3.4. Moment Generating Function (MGF). The MGF is used to fully describe the distribution of

a random variable in terms of its moments.

Proposition 4:

Let X be a random variable following the GUW distribution. Then its moment generating function

Mx (t) can be expressed as:

0|+

o] s Tn
Mx®=2_3 3 ) ) Giiiirel

Proof:

The moment-generating function is defined by:

Mx(t) =E (X°).
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Knowing that the development in a series of exponential is given by:

+o0 s
tx __ (tX)
€ _Z sl

s=0

We can write:

V()= CB () (12

s=0

The moment of order s of the distribution is represented by E (X*):

Ms = E (X°)

By replacing (11) in (12) we have:

+o0 o0 oo amk—1 o

Mx(B)=) 3 > > Zsls+1+k+1

s=0m=0k=0 /=0 j=

3.5. Quantile function. Proposition 5:

The quantile function associated with the GUW distribution is defined as follows:

(A= [=1n(1 = p))2 )
+ (A& == P ) |

Q(p;o) = [ﬁ (13)

Proof:

Let 1 = Q(t;0) Vy €]0,1].

The quantile function is defined as 7+, which is the solution to the following nonlinear equation:

t=F(x;0).

So,

_l(LuXx))a]k
A
l1—t=c¢e )

Applying a log transformation to each member of the equation, we obtain:
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( lﬁx )a k
(1 — ) = | A0 (14)
Let's raise each number in the equation (14) to the power (1/k)

1 Bx \“

Let’s raise each number in the equation (15) to the power (1/c)
1 1 1 1
Bx = (AE [~ In(1 — r)]@) ~x (AE [~ In(1 — t)]@) .
Let's arrange terms containing x in a single member

Bx +x (A [In(1 = £)]% ) = (A% [~ In(1 - 1)) )

[6+ (A= [=n(1 = 01 ) | x = (A& [~ (1 = D))
Knowing that a , A, B are strictly greater than 0, then we have:

~ pewa- )
[6+ (3 == )|

™

The UWG distribution’s 25%, 50%, and 75% quartiles may be found by adjusting p =0.25, p =0.5,
and p =0.75, respectively, in equation (13).

Assume that p is evenly distributed (0, 1), in this case, the following random data sets of size n

can be generated by the QF using the GUW distribution:
1
(A& [=In(1 =y )
1
8+ (A= [=m(1 -yl ) |

™= d=1,2,...., n

Graphs of Bowley and Moor skewness and kurtosis are shown in (6).

3.6. Survival function (suf). The GUW distribution is characterized by its survival function, which

is expressed as:

suf(x) =1— F(x),

[(aﬁ—}))a}k
suf(x)=e .
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Ficure 7. suf of the GUW distribution
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3.7. Hazard function (haf). The GUW distribution’s hazard function may be described as follows:

haf(x) = 525‘)((3()
ak B Bx
haf () = Gk A —x72 ( 1—x

) ak—1

3.8. Cumulative hazard function (cf). The GUW distribution is characterized by its cf, which is

defined as follows:

cf(x) = —log(suf(x)),
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FiGure g. Cf of the GUW distribution

So, the cf of the GUW distribution is as follows:

cf(x) = li%)

3.9. Reserve hazard function (Rf). The GUW distribution is characterized by its Rf:

Rf(x) = %

Let: A(x) =e
So,

ak 6}
(A)F (1 —x)?

6X ak—1

1—x

A(x)

Rf(x) = 1= AC)
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FiGUrRE 10. Rf of the GUW distribution

3.10. Average absolute deviation (mad). The mean absolute deviation indicates how far, on aver-

age, each piece of data in a set is from the mean of that set. If we consider a GUW distribution
with a mean of u, the average absolute deviation is calculated as:

mad(p) = E(|X — )
By using (16), we have:

1
mad(u) = /O Ix — ulF(x) dx

w 1

— [(exrmrtgdxs [ (e wrtdx
0 7
oo oo amk—1 oo

1
Z ZTN I:/M(_Xk+j+1 +/,LXk+j) dX+/ (Xk+j+1
i=0 j=0 0 W

_ /J.XkJrj) dX]
i iamk—liT (1 _2uk+j+2
n

oukti+2 _
=0 k=0

(16)

m=0 k=0

3

— = k+j7+2 k+j7+1 )
=0 J=0
So, the average absolute deviation is expressed as:

oo oo amk—1 oo

mad(p) =Y Y Y Y TaMyu(o),
where

m=0k=0 =0 =0

1— 2uk+1+2
Mu(o) =

2/J'k+j+2 —u
k+j+2

k+j4+1
3.11. Median absolute deviation (MD). If we have a GUW distribution with a median of me, the
MD may be stated as follows:

MD(me) = E(|X — mel),

(17)
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By using (17), we have:
1
MD(me) = / |x — me| x f(x) dx
0

me 1
:/ (—x+me)><f(x)dx+/ (x — me) x f(x) dx
0 e

m
S S YT, [ [t me ke o+ [ (Xk+f+1_me.xk+f>dx]
- - 0 me

iT" 1 — 2mekti+2 N 2mektit2 _ me
hikon k+Jj+2 k+j+1

where
1 —2mektit2  omekti+2 _ me

M - . .
me(0) Kti+2 o ktj+1

4. ACTUARIAL MEASURES

This section presents both the theoretical foundations and practical aspects of several essential
risk measures, including the Value at Risk (VaR), the Tail Value at Risk (TVaR), the tail conditional

variance (TV), and the tail variance risk (TVP), as applied to the new distribution.

4.0.1. VaR measure. The VaR of the GUW distribution is defined by:

(A= 1= In(1 — )12 )
6+ (M [=In(1 - ) ) |

VaR, =

Proof. The VaR of a random variable is the quantile of its distribution function, denoted by
VaRy, and can be expressed as follows:

Then using (13), we have:
VaR,; = Q(q).
So we have:
(A= 1=In(z — )12 )
6+ (x> [-n(1 - g )|

VaR, =
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FiGure 11. The VaR plot of the GUW distribution

4.0.2. TVaR measure. Proposition 6:
The TVaR of the GUW distribution is described by:

oo oo ank—1 oo

TVaR, = liq Y Y > D TaV(o),

m=0k=0 i=0 j=0

where

1 — VaRZHH

Vo)=|————=—
(o) k+j+2

Proof
TVaR is defined by:

1 1

TVaR, = xf(x) dx.
1 —a Nar,

Knowing that f(x) is given by:
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FiGure 12. The TVaR plot of the GUW distribution

4.0.3. TV measure. Proposition 7:
The GUW distribution TV is defined by:

oo amk—1 oo
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9 m—ok—o i0 j=0
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Proof.

The TV distribution may be characterized as:

TV4(X) = E(X?|X > VaR,) — (TVaR,)?
1 ! 2 2
= — x“f(x) dx — (TVaRy)
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Ficure 13. The TV plot of the GUW distribution

4.0.4. TVP measure. TVP is another key metric used in insurance and is obtained by:

TVP, = TVaR, + ATV,,

where
1 oo oo amk—1 oo
_ : 2
V=1 > Z ZT,,IV(U)—(TVaRq),
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FIGURE 14. The TVp plot of the GUW distribution
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5. ESTIMATION

Let x1,x2, ..., Xm be a random sample of size m from the variable X. Employing the PDF

provided in (2), the likelihood function may be expressed as follows:

B0 K) = [ 1709,
j=1

So, we have:

06,63 k) = i (crk) kZm im( —2Z|n(l—xj)+(ak—1)£l (16_ij}
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The first partial derivatives of /(&, B, X, k) with regard to zero are provided as follows:
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We first derived explicit formulas for the partial derivatives with respect to each parameter in the

log-likelihood of the model. The resulting system is analytically intractable due to the complexity

and non-linearity of the equations. In such situations, numerical methods become essential. These

methods offer a practical and efficient approach for obtaining approximate solutions iteratively.

6. A NeEw QUANTILE REGRESSION MODEL

The concept of parametric quantile regression recently gained popularity due to its robustness
in modeling asymmetric data or data with extreme values. This type of regression is also effective
in dealing with asymmetric and high-tail response variables, which are defined on the interval
(0,1). To implement these regressions, it is necessary to re-parameterize PDFs of the distribution
in terms of quantiles, to obtain the quantile PDF (QPDF) [4,29-32]. To formulate the quantile
regression model of the GUW distribution, we begin by substituting the parameter 3 in terms of
the quantile function of the GUW distribution. Then we substitute it in the expressions of the CDF
and the PDF. Thus, after simplification, we obtain the cumulative distribution function (QCDF) and
quantile probability density (QPDF) of the GUW distribution.

Poses Q(p, o) = 1
_ (retma e
" e+ (- )]

pB + i (A5 [=In(1 = )] ) = (A% [ In(1 = p)]=+ )
up = (A% [~ In(1 = P} ) (1 - )

]

So,

where

1 Bl
G(p) = (A& [~ In(1 - p)]e# )
QCDF and QPDF are, respectively, given by
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Where 1 € (0,1) and p € (0,1). Figures (15), (16), (17), and (18) show, respectively, the plots
of QCDFs and QPDFs for different quantiles and parameter values. QPDFs come in many shapes,

including left- and right-tilted, decreasing, increasing, symmetrical, J-shaped, and bathtub-shaped.

This shows that the regression model developed from this PDF is flexible enough to deal with

short-interval data with such properties.
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When we have random observations y1, y», 3, ....... , y¥n from the GUW distribution, and predic-
tor variables x1, X2, X3, ....... , Xn, the GUW quantile regression is established by associating the

conditional quantile of the dependent variable with the predictor variables through a suitable link
function, as follows:
glwi) = x"
In this regression model, 7y is the vector of coefficients for the independent variables, and x;
represents the vector of predictor variables for each observation /. The function g is the link
function used. For this study, the logit link function is preferred for its ease of interpretation of the

coefficients of the exogenous variables. Thus, the regression structure takes the following form:
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6.1. Estimation of regression parameters. To estimate the unidentified regression parameters us-

ing the ML technique, we compute the logarithmic likelihood by replacing:

_exp(x)
1+ exp(x] )

i

in the quantile PDF. The log-likelihood function is defined as:

06, B2k, p) = In(ak) —kY In(A)+) In(G(p))+Y In ( L= K ) (18)
=1 i=1 =1 i=1

i

_2iln(1—y/)—l—(ak—1)i|n(G(p))+(ak—1)i|n (1_ui)
i=1 i=1 i=1

Hi
(am-(l;f)y, ) -
n n G2
+(ak=1))_In(y) = (ak =1))_In(1—y) - X (19)
i=1 i=1

To obtain parameter estimates, we set the components of the score vector to zero while concur-
rently solving the resultant system of equations. To fit the median regression, we set p=0.50 in
equation (19) and maximize the log-likelihood function. The parameter standard error estimates are

computed using the ML method’s large-sample characteristic. As per [33], the Fisher information
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matrix for parameter standard error estimation is:

1) = — agﬁ(Tnly)
n'on |,—s
6.2. Regression modeling for educational data. In this section, we carry out an analysis of the real
data to compare the new regression with the Generalized Unit Half-Logistic Geometric (GUHLQ)
regression model. The data can be accessed via the link
[32]. They include three variables: level of education (expressed as a percentage

of the 35 OECD countries, y), homicide rate (as a ratio, x1), and life satisfaction (measured by the
mean score of the Cantril scale, also known as the Self-Anchoring Striving Scale, x2).

The regression model is formulated as follows:

logit(ui) = Yo + Y1x1 + YoXxo

where u; represents the median for the GUW and GUHLG distributions. We calculate maximum
likelihood estimates (MLE), associated standard errors, and estimated log-likelihood values for
all models, as shown in table (1). This reveals that only the coefficients yo and v; of the GUW
model are significant at the 0.05 threshold, while for the GUHLG model, none of the coefficients is
significant. We also observe a negative relationship between the level of education (represented
by percentage) and the country’s homicide rate, but a positive relationship between the level of
education and satisfaction with life. These results suggest that an increase in life satisfaction is
associated with an increase in the percentage of educational achievement, while an increase in the

homicide rate corresponds to a decrease in the percentage of educational achievement.

TABLE 1. The result for fitted regression models.

GUW GUHLG

Estimate Standard deviation p-value Estimate Standard deviation p-value

Yo 12.8942 6.3630 0.0427* -1.720182 4.454259 0.699
1 -2.3384 1.0181 0.0216* 0.010572 0.653999 0.987
v>  0.2337 0.1547 0.1309 -0.001193 0.076603 0.988

7. SIMULATION STUDY

In this section, we check whether the estimates obtained by the maximum likelithood method are
consistent for the GUW distribution. To do this, we carry out a simulation study using R software.
We create a thousand independent samples of different sizes (100, 200, 300, 400, and 500) from
the GUW distribution. For each sample, we compute the MLEs of the parameters of concern. Next,

we evaluate two important statistical metrics that show how reliable and accurate the estimations


https://doi.org/10.28924/ada/stat.5.11
https://stats.oecd.org/index.aspx?DataSetCode=BLI
https://stats.oecd.org/index.aspx?DataSetCode=BLI

Eur. J. Stat.

are: mean bias (Bias) and root mean square error (RMSE). The outcomes of this investigation are

shown in table (2). This simulation technique improves our understanding of MSE performance

and consistency across multiple sample sizes for the GUW distribution.

TaBLE 2. Values for mean, mean bias, and RMSE of simulations for GUW distribu-

tion.

Sample size

a=05B8=2X=5 k=038

a=06 =15 AX=3 k=5

n Mean RMSE Bias Mean RMSE Bias
100 0.3865726 0.3403587 0.003719803  0.5160878 0.09829673 -0.0007436222
200 0.3871267 0.3338191  0.002655435 0.5160524 0.09050732 -0.0060478341
o 300 0.3875297 0.3378054 0.006666082 05161166 0.09409248 -0.0024559742
400 0.3877250 0.3397468 0.007578518 0.5161333 0.09463990 -0.0026778599
500 0.3875603 0.3411975 0.010500618 0.5161374 0.09624244 -0.0009811381
100 0.4703165 0.3581328 0.003394391  0.7537197 0.08557860 -0.0006667927
200 0.4708478 0.3486794 -0.001702143 0.7536183 0.07560987 -0.0061186074
I6] 300 0.4711307 0.3545124 0.004974935 0.7536426 0.07831139 -0.0029596014
400 0.4713905 0.3554896 0.006533760 0.7536522 0.07828130 -0.0030667419
500 0.4712644 0.3582302 0.011011426  0.7536705 0.08027758 -0.0014813712
100 0.2917571 0.3026817 0.003763988  0.3319138 0.08227289 -0.0003214238
200 0.2922474 0.3003471  0.004936670  0.3319190 0.07712006 -0.0041476335
A 300 0.2927800 0.3025652 0.006881418  0.3319927 0.07986454 -0.0013732919
400 0.2928630 0.3055884 0.006582468  0.3320070 0.08059554 -0.0016638122
500 0.2926784 0.3062275 0.008259311  0.3320030 0.08181845 -0.0003755340
100 0.3932002 0.3125611 0.0031226059 0.4643264 0.1986186 -0.0006312249
200 0.3936681 0.3055806 -0.0001105596 0.4644523 0.1885544 -0.0086263304
300 0.3940392 0.3101794 0.0048216971 0.4646319 0.1952523 -0.0020652042
k 400 0.3942010 0.3120068 0.0052970049 0.4646903 0.1962480 -0.0024236803
500 0.3940626 0.3139784 0.0085886883 0.4646540 0.1987249  0.0008041739
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8. DATA HANDLING

We will utilize two appropriate data sets and compare them to some competitive models to assess

the efficacy of the distribution in practical settings:

(1) Exponentiated Topp-Leone distribution (ETPLD) [34]:

f(x; o, B) = 2aB(1 — x) (x(2 —x))**
(1—(x*(2-x)%)""

(2) Kumaraswamy distribution (KwD) [35]:
f(x;a,B) = aﬁxo‘_l(l — x"‘)ﬁ_1

(3) Rayleigh distribution(RD) [36].:
X x?
f(x;a) = o2 &P (_%12)
The predicted values of the PDF parameters were calculated and visualized using R, Matlab online
and Python under Spyder. Examination of the data allows us to check whether the distribution

behaves as expected in real-life circumstances.

8.1. Dataset I. Glass fiber strength is a measure of a glass fiber’s ability to resist breakage or
deformation under stress. This property is essential in many applications such as the manufacture
of composite materials used in the aerospace, automotive, and construction industries.

The National Physical Laboratory (NPL) is the UK’s national metrology laboratory. They carry
out precise measurements in a variety of fields, including materials characterization. In this case,
they measure the strength of glass fibers.

Data on the strength of 1.5 cm glass fibers measured at the National Physical Laboratory in
England represent important information for understanding and characterizing the mechanical prop-
erties of glass fibers, with potential implications in various industrial and research fields. The data
are presented below (

) : 0.055, 0.093, 0.125, 0.136, 0.149, 0.152, 0.158, 0.161, 0.164, 0.168, 0.173, 0.181, 0.200,
0.074, 0.104, 0.127, 0.139, 0.149, 0.153, 0.159,0.161, 0.166, 0.168, 0.176, 0.182, 0.201, 0.077, 0.111,
0.128, 0.142,0.150, 0.154, 0.160, 0.162, 0.166, 0.169, 0.176, 0.184, 0.224, 0.081,0.113, 0.129, 0.148,
0.150, 0.155, 0.161, 0.162, 0.166, 0.170, 0.177,0.184, 0.084, 0.124, 0.130, 0.148, 0.151, 0.155, 0.161,
0.163, 0.167, 0.170, 0.178, 0.189. Table (3) shows the predicted values for dataset I, with initial
values of « =2, 3 =6, A =8, and k = 5. The information criteria obtained by various models for
this dataset are summarized in table (4). In addition, the empirical PDFs for dataset | are visible
in the figure (19).
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TaBLE 3. Predicted values for various models

Model a 6] A k
UWG 2.042932 6.166541 7.907704 4.632182
ETPLD 1.857044 6.317736 - -

Kumaraswamy 1.656934 5.580659 - -

Rayleigh 1.597854 - - -

TABLE 4. Measures of selection for different models

Model AIC CAIC BIC HQIC
UWG -66.57406 -65.8844 -58.00152 -63.20243
ETPLD 82.25297 8245297  86.53924 83.93878

Kumaraswamy -41.42698 -41.22698 -37.14071 -39.74117

Rayleigh 1225984 122.6639 1247415 123.4413

8.2. Dataset Il. 58 observations, or monthly unemployment insurance measures, were made be-
tween July 2008 and April 2013. The State of Maryland, USA's Department of Labor, Licensing
and Regulation, provided these statistics.

Variable number 5, entitled “New.Claims.Filed..UCX", represents the number of new claims filed.

This variable, therefore, measures the monthly frequency with which new claims are filed by
veterans for unemployment insurance benefits. It makes it possible to monitor unemployment trends
among veterans and the evolution of unemployment insurance claims in this specific demographic
group.

Analysis of this variable can be crucial in understanding the financial support needs of veterans,
and in assessing the effectiveness of unemployment insurance programs aimed at them. It can also
help identify seasonal, economic, or geographic trends that influence veterans’ claims. The data are
presented below ( [37]):0.129, 0.103, 0.129, 0.125, 0.103, 0.111, 0.149, 0.115, 0.131, 0.106, 0.102,
0.138, 0.141, 0.140, 0.155, 0.149, 0.106, 0.132, 0.137, 0.118, 0.136, 0.157, 0.124, 0.177, 0.170,
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FIGURE 19. Visualization of PDFs for various models

0.203, 0.184, 0.173, 0.153, 0.153, 0.166, 0.145, 0.145, 0.148, 0.144, 0.164, 0.166, 0.178, 0.171,
0.179, 0.166, 0.127, 0.207, 0.168, 0.192, 0.182, 0.193, 0.191, 0.195, 0.194, 0.156, 0.267, 0.180,
0.145, 0.207, 0.159, 0.149, 0.172

Table (5) shows the estimated values for dataset Il, with initial values of oo =8, 8 =2, A =5, and
k =3. The information criteria obtained by various models for this dataset are listed in table (6).

In addition, the figure (20) presents the empirical probability (PDFs) for dataset Il.

TaBLE 5. Predicted values for various models

Model a 6] A k
UWG 7.902857 2305981 4.927164 2.806308
ETPLD 7.651511  2.087676 - -

Kumaraswamy 7.652575 2151124 - -

Rayleigh 7.613136 - - -
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TABLE 6. Measures of selection for various models

Model AIC CAIC BIC HQIC
UWG -57.56362 -56.8089 -49.32184 -54.35328
ETPLD 599.1901 599.4082 603.3109 600.7952

Kumaraswamy 1121.127 1121345 1125.248 1122.732

Rayleigh 692.6526 692.724 694.713 693.4551

20
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FiGUure 20. Visualization of PDFs for various models

After examining tables (3), (4), (5), (6), as well as figures (19) and (20), we can conclude that
the GUW model proves to be more compatible with datasets | and Il than competing models. Its
flexibility enables it to adapt to domains as varied as materials engineering and unemployment

insurance data.
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9. CoNCLUSION

In this study, we introduced and investigated the GUW distribution, a novel statistical model
derived as a generalization of the Weibull distribution. We derived several statistical properties of
the GUW distribution, including order statistics, quantile , Rényi entropy, and moments. Parameter
estimation was carried out using the maximum likelihood estimation method. In addition, we
developed key actuarial risk measures such as value at Risk, tail Value at Risk, tail conditional
variance, and tail variance risk for the new distribution.

The practical relevance of the GUW distribution was demonstrated through applications to real-
world datasets from the banking and materials engineering sectors. Its performance was compared
against existing models, such as the ETPLD, KwD, and RD distributions. Furthermore, we proposed
a quantile regression model based on the GUW quantile function. The results suggest that the
GUW distribution can be a valuable tool for professionals in materials science and financial risk

analysis, particularly those involved in modeling and statistical decision-making.

10. FUTURE WORK

We envisage several promising avenues of research. Firstly, we could extend this study by
exploring other methods of validating customized distributions, such as specific statistical tests or
cross-validation techniques. This would enable us to deepen our understanding of the performance
of these distributions in different contexts.

In addition, we could seek to improve the flexibility and accuracy of the GUW distribution by
introducing additional parameters or exploring alternative distribution functions. This could enable
us better to model complex phenomena or data with particular characteristics.

Finally, we could explore applying the data simulation approach in specific fields such as health,
the environment, or the social sciences. By adapting the proposed methodology to the needs
and particularities of these fields, we could contribute to concrete problem-solving and informed
decision-making.

By combining these approaches, we could extend the potential applications of this work and

provide valuable tools for research and practice in various fields.

Competing interests: The authors declare that there is no conflict of interest regarding the publi-
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