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Abstract. Fisher exact test is one of most popularly used methods in modern data analyses. However,it is conservative because of discreteness. The mid-p method may reduce the conservativeness but itis defined by the factor 1
2
, an extra term beyond data. This paper considers an adjustment defined bya data-based factor. The adjusted test is compared with other ten tests. Special attention is givento the comparison between the data-based factor and the factor 1

2
. The standardized version of theadjusted test is asymptotically standard normal. The adjustment reduces the conservativeness, asevidenced by increasing test size and power and decreasing p-values. The adjusted test holds suchproperties as the significance level under control of nominal α, the same modification in the left- andright-sided p-values, and the proportional reduction from Fisher test, which the mid-p method lacks.The mid-p method is more powerful than the adjusted test but the increment of power comes from thefactor 1

2
and is not controlled by α. The unconditional tests are also more powerful but the powercomes partly from the unobserved samples. The proper choice of an adjustment is based largely upona consideration of both the power of test and the origin of power so that the adjusted test is an optionin data analyses. It is easy to implement for 2× 2 and r × c contingency tables. Two real examplesare given for analyzing 2× 2 tables and another example for r × c tables.

1. Introduction
Comparison of two independent binomial proportions occurs most frequently in statisticalanalysis. Fisher exact test (Fisher, 1922; Fisher, 1970; Agresti, 1992) is often the basic requirement.It finds a number of different applications: Although in practice it is employed in the analysis of

2× 2 contingency tables when sample sizes are small, it is valid for all sample sizes. Fisher testmust be used if the p-value obtained by the chi-squared test is around the significance level, say,0.05.
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Eur. J. Stat. 1 (2021) 75Exact methods guarantee that the size of a hypothesis test is no higher than the nominal level.Subsection 4.2 will give details about the size of test. Conditioning on both sets of marginal totals,it provides a simple way to eliminate nuisance parameters in a variety of problems. Yates (1984)mentioned that tests for independence in a 2× 2 table must be conditioned on both margins.Fisher test requires extensive computations, which once hindered its use in practice. Thatdifficulty does not exist any more however. Nowadays, computers can often implement Fisher testin a few seconds. Now it has often been employed not only in 2×2 tables but also in r × c tables,even in 2× 2× k and r × c × k tables. We will return to this topic in Section 6.It seems that applied statisticians have still favored Fisher test. However, it is conservative inthe sense of its actual test size being lower than the nominal level (see, for example, Berkson, 1978;Haviland, 1990; Crans & Shuster, 2008). Efforts have been taken to reduce the conservativeness.It is of great concern, however, that the properties of Fisher test still hold while reducing theconservativeness. This is not the case in the mid-p method. For details, see Section 5.This paper considers a data-based adjustment along the following line of thinking. We beginwith the conservativeness of Fisher test that is known to be attributable to the discreteness. Anintuitive display for the discreteness is shown as the non-exclusivity of the left- and right-sidedp-values. The adjustment is just intended to offset the non-exclusivity. An equation is given as afraction of the table probability plus the more extreme probabilities. It is solved for the fractionunder the assumption that the left- and right-sided p-values reduce proportionally to their sumequal to 1. The solution is a data-based factor, which is further converted to the adjustment. Nextcomes a presentation of properties of the adjusted test such as asymptotic normality, p-values,actual and observed test size, and actual and observed power. The data-based adjustment is alsobuilt into r ×c tables. Two real examples are given for analyzing 2×2 tables and another examplefor r × c tables. The adjusted test is compared with other ten tests. Section 2 will give a briefoverview for these tests.
2. A Brief Review of Literature

Before the development of statistical softwares, statistical inference for contingency tables hasrelied on large-sample approximations. The most long-standing is Pearson chi-squared test (Fleiss,1981). It is constructed from a sum of squared errors, or through the sample variance. An often usedform is its square root, the two-proportion z test. It is the most powerful test among the ten tests,which will be explained in Subsection 4.3. However it may underestimate true p-values becauseof discreteness. Often it becomes necessary to use Yates continuity correction (Yates, 1934), whichadjusts the formula for Pearson chi-squared test by subtracting 0.5 from the difference betweeneach observed value and its expected value in a 2 × 2 table based on Euler-Maclaurin theorem.The correction is widely adopted but it may tend to overcorrect. Other corrections are available, forexample, Kendal-Stuart correction (Conover, 1974; Haber, 1980). It is the arithmetic average of a



Eur. J. Stat. 1 (2021) 76chi-squared statistic with its next smaller possible value. Although it has so far received relativelylittle attention, we will still include it in our calculations and simulations in Subsection 4.2 and 4.3.It is widely recognized that large-sample approximations can be very poor when the contingencytable contains both small and large expected frequencies (Agresti, 1992). Fisher (1925) gave avivid description that "... the traditional machinery of statistical processes is wholly unsuited to theneeds of practical research."Alternative exact tests had been developed, for example, unconditional tests (Barnard, 1945;1947; Haber, 1986; Suissa & Shuster, 1985; Berger & Boos, 1994; Routledge, 1992; Lin & Yang,2009). Barnard exact test considers all possible values of the nuisance parameter(s) and choosesthe value(s) that maximizes the p-value. By contrast, Fisher test avoids estimating the nuisanceparameter(s) by conditioning on the margins. Barnard test relaxes this constraint on one set ofthe marginal totals. Berger and Boos (1994) took the supremum for the p-value over a confidenceinterval of values for the nuisance parameter rather than over all possible values. Berger-Boos testwill also be included in all calculations and simulations.It remains unclear, however, which test statistic is preferred to define the critical region whenimplementing Barnard test (Wikipedia, the free encyclopedia). The difficulty lies in the fact thatthe choice of test statistics influences a decision. For example, the binomial model has the criticalregion defined by the two-proportion z test (Routledge, 1992) and the modified Fisher p-value (Lin& Yang, 2009) by Fisher test. There are some other arguments on conservativeness. An exampleis what the conservativeness is ascribed to the common practice of fixing the nominal level, say, at0.05 (Upton, 1992). It is not possible to correct Fisher test without also increasing the true α-level(Berger, 2000). This is implemented in Crans-Shuster test (Crans & Shuster, 2008), which definesan increment of significance level based on unconditional approach with the critical region definedby Fisher test. More information and details about the increment will be given in Subsection 4.2.Unconditional tests are more powerful than Fisher test (Lydersen, Fagerland & Laake, 2009),but they are not at all commonly used up to date. This is because considerable controversysurrounds their use in statistical literature (see, for example, Agresti, 2001; Agresti, 2002, p95;Cheng, Liou, Aston & Tsai, 2008). Fisher criticized the unconditional approach, arguing thatpossible samples with quite different numbers of successes than observed were not relevant. In plainwords, the unconditional tests require not only the observed sample at hand but also the unobservedsamples in statistical inferences. Some other statisticians have argued that the unconditionalapproach is artificial because it averages what happened in the observed sample with hypotheticalresponse distributions, some of which are much different than observed (Agresti, 2001). Obviously,it has the same meaning as the Fisher argument. A concern is that the power of unconditionaltests comes partly from the unobserved samples. It is noted that some authors including Barnardhimself refuted Barnard test in favor of Fisher test (Agresti, 2002, p95). As for Crans-Shuster test,



Eur. J. Stat. 1 (2021) 77it has so far not gained wide use since fixed significance levels are the standard in real-worldapplications (Crans & Shuster, 2008).To this end one may find a way to compensate the discreteness. A randomization test wasproposed based on the p-value of Fisher test (Tocher, 1950). Nevertheless, this post hoc test hastheoretical interests only and has not been accepted widely in a practical setting (Hirji, Tan &Elashoff, 1991; Liddle, 1976; Mantel & Greenhouse, 1968).For highly discrete data when large-sample methods are questionable but exact methods maybe conservative, one could alternatively use adjustments of exact methods based on the mid-pmethod (see, for example, Lancaster, 1961; Hwang & Yang, 2001). The mid-p-value is defined ashalf the conditional probability of the observed statistic plus the conditional probability of moreextreme values, given the marginal totals. Thus the mid-p-value is less than the ordinary p-valueby half the probability of the observed result. In one view, it has nice properties in terms ofType I error and power and so is recommended by leading statisticians (see, for example, Hirji,Tan & Elashoff, 1991; Routledge, 1992; Agresti, 2001; Agresti, 2002, p21; Lydersen, Fagerland& Laake, 2009). In the other view, a relevant concern is that it is a non-randomized version ofFisher test (Hirji, Tan & Elashoff, 1991). For example, SISA (Simple Interactive Statistical Analysishttp://www.quantitativeskills.com /sisa/) does not recommend the use of mid-p values. In addition,it is defined by the factor 12 , an extra term beyond data, which raises some more concerns. Furtherdetails will be given in Section 5. The mid-p method is more powerful than Fisher test but theincrement of power comes from the factor 12 .Controversy continues about the appropriateness of some exact methods, however, there is stillno consensus (Agresti, 2001). Thus the work continues on the development of the adjustments.
3. Deriving an Adjustment

3.1 Fisher Exact Test and the ConservativenessConsider the situation in which Yj , j = 1, 2, represents two independent binomial observationswith parameters (nj , πj). It follows that the total sample size n = n1 + n2 with the sample fraction
kj = nj/n, the difference of proportions µ = π1 − π2, and the average π̄ = k1π1 + k2π2. The totalfrequency is M = Y1 + Y2 with the observed data M = m = y1 + y2.Given the parameters n1, n2, and m, the hypergeometric probability density function (pdf) is

f (y1 = t) = (n1t )
(
n2
m−t

)
/ (nm) ,

where (ab) = a!/b!/(a − b)!, ξ− ≤ t ≤ ξ+, ξ− = max(0, m − n2), and ξ+ = min(n1, m). Then wehave ∑ξ−≤t≤ξ+ f (t) = 1. The left- and right-sided p-values of Fisher test are given by
FF (y1) =

∑
ξ−≤t≤y1

f (t) and SF (y1) =
∑

y1≤t≤ξ+

f (t). (3.1)



Eur. J. Stat. 1 (2021) 78To conduct a two-sided test, a popular approach (Agresti, 1992) is
PF (1) =

∑
ξ−≤t≤ξ+

f (t)|(f (t) ≤ f (y1)), (3.2)

where f (y1) is the table probability. It is of interest to see the left and right components of atwo-sided p-value. Thus the range of t is divided into the left [ξ−, tmax ] and right half [tmax , ξ+],where tmax = t|max(f (t), t ∈ [ξ−, ξ+]). Then we define the position of y1 as
y1 = t|max(f (t)|(f (t) ≤ f (y1)), t ∈ [ξ−, tmax ])

when y1 ∈ [ξ−, tmax ]. Likewise, the position of its opposite point is defined as
y∗1 = t|max(f (t)|(f (t) ≤ f (y1)), t ∈ [tmax , ξ+]).

With both y1 and y∗1 , (3.2) can be rewritten in the form
PF (1) =

∑
ξ−≤t≤y1

f (t) +
∑

y∗1≤t≤ξ+

f (t),

which shows the left and right components.It is worth noting that mistakes may occur if ignoring the asymmetrical two-sided p-valuewhen n1 6= n2. In this case, the right component can differ from the left substantially. Refer to theexample in Pearson (1947)(see Subsection 4.1). The sample sizes are {n1, n2} = {12, 8} and thetotal frequency is m = 7. Given y1 = 2, we have the two-sided p-value PF (1) = 0.062 with theleft component 0.052 and the right 0.01. When n1 = n2, y∗1 is the mirror image of y1 and so the twocomponents are equal. Suppose the sample sizes are {n1, n2} = {10, 10}, the two-sided p-valuebecomes PF (1) = 0.35 with the left component 0.175 and the right 0.175. Recalling the forms seenin Agresti (2002, p93), they are fit only for symmetrical two-sided p-values when n1 = n2.In this way, another possibility of two-sided test (Agresti, 2002, p93) is expressed as
PF (2) =

∑
ξ−≤t≤E[t]

f (t)|(t − E[t] ≤ y1 − E[t]) +
∑

E[t]≤t≤ξ+

f (t)|(t − E[t] ≥ y∗1 − E[t]),

where E[t] = mn1/n. This approach takes E[t] as the boundary of two halves instead of tmax .Differences may occur when E[t] 6= tmax , which will be seen in the fish experiment (Routledge,1992) in Subsection 7.1. Similarly, the fourth approach (Agresti, 2002, p93) is given by
PF (3) = min

 ∑
ξ−≤t≤ξ+

f (t)|(t ≤ y1),
∑

ξ−≤t≤ξ+

f (t)|(t ≥ y1)



+ min

 ∑
ξ−≤t≤ξ+

f (t)|(t ≤ y∗1 ),
∑

ξ−≤t≤ξ+

f (t)|(t ≥ y∗1 )

 .



Eur. J. Stat. 1 (2021) 79When n1 = n2, it simplifies to
PF (3) = 2 min

 ∑
ξ−≤t≤ξ+

f (t)|(t ≤ y1),
∑

ξ−≤t≤ξ+

f (t)|(t ≥ y1)

 ,
which happens to be the third approach (Agresti, 2002, p93). Moreover, Dupont (1986) investigatedthe advantages of doubling the one-sided p-value in conducting a two-sided test:

PF (4) = 2FF (y1).

To see the conservativeness intuitively, we will use the following procedure: The formula (3.1)specifies that FF (y1) and SF (y1) are the sums of elements in the sets
AF = {f (t)|ξ− ≤ t ≤ y1} and AS = {f (t)|y1 ≤ t ≤ ξ+}.

The two sets have the union and the intersection
AF∪S = {f (t)|ξ− ≤ t ≤ ξ+} and AF∩S = {f (t)|t = y1}.

The elements in AF∪S sum to 1 and in AF∩S to f (y1). The sets are related by AF∪S = AF +AS −
AF∩S and the sums by 1 = FF (y1) + SF (y1)− f (y1) or

FF (y1) + SF (y1) = 1 + f (y1).

This signifies the non-exclusivity when the sum 1 + f (y1) > 1, which is an intuitive display ofthe discreteness. It indicates that the small sample effect may overestimate p-values, meaning theconservativeness.In a continuous distribution, inclusion or exclusion of the observed point is immaterial sothat the left- and right-sided p-values sum to 1. In a discrete distribution, inclusions lead to
FF (y1) + SF (y1) ≥ 1 (Hirji, Tan, and Elashoff, 1991). Observe what happens to 1 + f (y1) as nincreases. It returns the maximum of 2 when {n1, n2} = {1, 0} and {y1, y2} = {1, 0}. In the fishexperiment, where n = 6, we have 1 + f (y1) = 1.05. When the sample size magnifies three times,i.e., n = 18, we have 1 + f (y1) = 1.000021. As n increases indefinitely, 1 + f (y1) approachesnearer and nearer to the minimum of 1. In words, the sum is the measure in the continuous-discrete classification: 2, 1.05, 1.000021, . . . refer to discreteness and 1 refers to continuousness.The problem at hand is how to offset the non-exclusivity or how to make the left- and right-sidedp-values summing to 1 when sample sizes are limited.

3.2 A Data-based AdjustmentIn doing so, an equation is given as a fraction of the table probability plus the more extremeprobabilities:
F (y1) = W f (y1) + P (t < y1) and S(y1) = (1−W )f (y1) + P (t > y1), (3.3)



Eur. J. Stat. 1 (2021) 80where W ∈ [0, 1] is the fraction, P (t < y1) =
∑
ξ−≤t<y1 f (t), and P (t > y1) =

∑
y1<t≤ξ+ f (t).Now the equation (3.3) indicates

F (y1) + S(y1) = 1 and S(y1) = 1− F (y1).

Stevens (1950) proposed W = U , where U is a uniform (0,1) random number and then (3.3)represents the randomized p-value. While the randomized p-value has theoretical interests only,one may turn to the expected value of U (Agresti 2002, p27), i.e., W = 1
2 . Then (3.3) becomesthe mid-p method. In another context, the fraction W is regarded as the weight in the weightedaverage of the two probabilities obtained by inclusion and exclusion of the observed point:

W [f (y1) + P (t < y1)] + (1−W )[0 + P (t < y1)] = W f (y1) + P (t < y1).

The weight is also known as W = 1
2 in the mid-p method (Hirji, Tan & Elashoff, 1991).No matter which mechanism defines it, the factor 12 is an extra term beyond data. But onegolden aphorism is clear: Estimation, hypothesis testing, and inference, in general, are based onthe data at hand (Insightful Corporation, 2007, p1). This raises two questions: (1) Is W = 1

2justified? (2) What does the fraction W equal given a data set? Question (1) will be consideredlater in Section 5. Question (2) is solved now.In view of (3.1), the whole table probability is added to both the left- and right-sided p-valuesof Fisher test:
FF (y1) = f (y1) + P (t < y1) and SF (y1) = f (y1) + P (t > y1) (3.4)

so that their sum may be greater than 1. This predicts a reducing process from Fisher test to anadjusted test. It seems only reasonable that the left- and right-sided p-values reduce proportionallyto their sum equal to 1:
FF (y1)

SF (y1)
=
F (y1)

S(y1)
=

F (y1)

1− F (y1)
, (3.5)where the right-hand side shows the numerator and denominator summing to 1. Evidently, there isno reason to expect a disproportional reduction. Note that the equality of two ratios in (3.5) doesnot imply FF (y1) = F (y1) and SF (y1) = S(y1). Converting (3.3) into

P (t < y1) = F (y1)−W f (y1) and P (t > y1) = S(y1)− (1−W )f (y1)

and putting it into (3.4) produces
FF (y1) = f (y1) + F (y1)−W f (y1) and SF (y1) = f (y1) + S(y1)− (1−W )f (y1)

or
FF (y1) = (1−W )f (y1) + F (y1) and SF (y1) = W f (y1) + S(y1). (3.6)Substituting (3.6) into (3.5) yields

(1−W )f (y1) + F (y1)

W f (y1) + S(y1)
=

F (y1)

1− F (y1)
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f (y1)−W f (y1) + F (y1)

W f (y1) + 1− F (y1)
=

F (y1)

1− F (y1)
.

Taking a crossing multiplication
(f (y1)−W f (y1) + F (y1))(1− F (y1)) = (W f (y1) + 1− F (y1))F (y1)

gives
f (y1)−W f (y1)+F (y1)− f (y1)F (y1)+W f (y1)F (y1)−F 2(y1) = W f (y1)F (y1)+F (y1)−F 2(y1).

All terms on the right-hand side are also found on the left and so cancel out:
f (y1)−W f (y1)− f (y1)F (y1) = 0.

Finally, we gain such a solution
W = 1− F (y1) and W = S(y1).

So now this is the answer to Question (2). The solution is just the data-based factor.Now put the data-based factor back into (3.3); then we have
F (y1) = (1− F (y1))f (y1) + P (t < y1) and S(y1) = (1− S(y1))f (y1) + P (t > y1). (3.7)

This is just the adjusted test, which is comparable with the mid-p method in formula expressions.The calculation requires iteration, however. With initial values of F (y1) and S(y1), say, 0.5,adequate convergence usually takes three or four iterations. In addition, putting the data-basedfactor into (3.6) results in
FF (y1) = F (y1) f (y1) + F (y1) and SF (y1) = S(y1) f (y1) + S(y1).

With a little arrangement
FF (y1) = F (y1)(1 + f (y1)) and SF (y1) = S(y1)(1 + f (y1)),

we obtain
F (y1) = FF (y1)/(1 + f (y1)) and S(y1) = SF (y1)/(1 + f (y1)).Substituting (3.1) into it produces
F (y1) =

∑
ξ−≤t≤y1

f (t)

1 + f (y1)
and S(y1) =

∑
y1≤t≤ξ+

f (t)

1 + f (y1)
. (3.8)

This is the applied form of the adjusted test. It does not require iteration but its result is identicalto that of (3.7). The denominator (1 + f (y1))−1 is just the data-based adjustment.A comparison of (3.8) and (3.1) provides an insight into the mechanism of the adjustment: using
f (t)/(1 + f (y1)) in place of f (t). With this mechanism, the adjustment is used easily in two-sidedtest. Let P (1), P (2), P (3), and P (4) denote the adjusted two-sided p-values corresponding to
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PF (1), PF (2), PF (3), and PF (4), respectively. Applying the adjustment for the popular approach(3.2) produces
P (1) =

∑
ξ−≤t≤ξ+

f (t)/(1 + f (y1))|(f (t) ≤ f (y1)) = PF (1)/(1 + f (y1)). (3.9)

The adjusted version of another possibility is given by
P (2) =

∑
ξ−≤t≤E[t] f (t)|(t − E[t] ≤ y1 − E[t]) +

∑
E[t]≤t≤ξ+ f (t)|(t − E[t] ≥ y∗1 − E[t])

1 + f (y1)or
P (2) = PF (2)/(1 + f (y1)).

The fourth approach and Dupont approach have the adjusted versions
P (3) = PF (3)/(1 + f (y1))

and
P (4) = PF (4)/(1 + f (y1)) = 2F (y1),

respectively.
4. Properties of the Adjusted Test

Before seeing properties of the adjusted test, it is good to remember that:
Remark 4.1. The adjustment (1 + f (y1))−1 is the reciprocal of the non-exclusivity 1 + f (y1)

and so it offsets the non-exclusivity. Consequently, the two one-sided p-values become mutually
exclusive so that we have S(y1) = 1− F (y1), a property of continuous distributions.

Remark 4.2. The adjustment attains its minimum of (1 + f (y1))−1 = 0.5 when {n1, n2} = {1, 0}
and {y1, y2} = {1, 0}. In this situation, Fisher test produces FF (y1) = 1, SF (y1) = 1, and
PF (1) = 2. It is inexplicable to see a two-sided p-value of 2. The adjusted test gives a favourable
turn with the interpretable results f (y1) = 1, F (y1) = 0.5, S(y1) = 0.5, and P (1) = 1. It seems as
if Fisher test must be accompanied by the adjustment for it to be perfect. The adjustment reaches
its maximum of (1 + f (y1))−1 = 1 as n →∞. This signifies elimination of the non-exclusivity and
so the adjustment vanishes into void.

4.1 Assessing Asymptotic NormalityA standardized version of Fisher test is asymptotically standard normal under H0 (see, forexample, Pearson, 1947 among others) and the same is true for the adjusted test. Given a dataset, the adjustment (1 + f (y1))−1 is a constant, which defines a linear transformation from FF (y1)to F (y1) as indicated by (3.8). Linear transformations of normal random variables are themselvesnormal.



Eur. J. Stat. 1 (2021) 83From the pdf of hypergeometric distribution in Subsection 3.1, the expected value of Y1 isdefined to be E[Y1] =
∑
ξ−≤y1≤ξ+ y1f (y1) and the variance to be V [Y1] =

∑
ξ−≤y1≤ξ+{y1 −

E[Y1]}2f (y1). They are often written in the corresponding analytic forms E[Y1] = mn1/n and
V [Y1] =

m(n −m)n1n2
n2(n − 1)

.

Looking at V [Y1], it is also the variance in Mantel-Haenszel statistic when there is only one stratum,where the term n− 1 is the finite population correction factor. With the substitution of n for n− 1,the standardized value (Y1 − E[Y1])/
√
V [Y1] equals the statistic of two-proportion z test. This isknown to be asymptotically standard normal N(0, 1) by the central limit theorem. Letting E[Y1]and V [Y1] be denoted by µ and σ2, the corresponding pdf of normal distribution is expressed as

fY1(y1) =
1

σ
√

2π
exp

{
−

1

2

(
y1 − µ
σ

)2}
.

A numerical calculation is provided for comparing the pdf’s of hypergeometric and normaldistributions. The example in Pearson (1947) is used again with a program available in R language(Venables, Smith, et al., 2019). The sample size is n = 20 with sample fractions {k1, k2} =

{0.6, 0.4} and the total frequency m = 7. The results are presented in the upper part of Table 4.1.
Table 4.1. Comparing the hypergeometric and normal probabilities

Distributions Frequency in treatment group Y10 1 2 3 4 5 6 7Values of probability density functionHypergeometric 0.0001 0.0043 0.0477 0.1987 0.3576 0.2861 0.0954 0.0102Normal 0.0002 0.0043 0.0453 0.1989 0.3657 0.2817 0.0909 0.0123Left-sided p-values of Fisher exact testHypergeometric 0.0001 0.0044 0.0521 0.2508 0.6084 0.8944 0.9898 1Normal 0.0002 0.0045 0.0498 0.2487 0.6144 0.8961 0.9870 0.9993Left-sided p-values of the adjusted testHypergeometric 0.0001 0.0044 0.0497 0.2092 0.4481 0.6955 0.9036 0.9899Normal 0.0002 0.0045 0.0477 0.2075 0.4499 0.6991 0.9047 0.9872
The sample size is n = 20 with sample fractions {k1, k2} = {0.6, 0.4} for treatment and controlgroup, respectively. The total frequency is m = 7.
The left-sided p-values of Fisher test are computed by accumulating the pdf in left to right order,shown in the middle part. In this way, we have the left-sided p-values of the adjusted test by usingthe adjustment (1 + f (y1))−1 to the pdf’s and the results are listed in the lower part. A comparisonof the adjusted test and Fisher test is displayed in Figure 1.
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Both the table and the figure show that the left-sided p-values of the adjusted test are lessthan those of Fisher test. Moreover, we have seen a satisfactory convergence of hypergeometricdistribution to normality, as evidenced by the close agreement between hypergeometric and normaldistributions.
Remark 4.3. The standardized version of the adjusted test is asymptotically standard normal,

which inherits from Fisher test. The asymptotic normality is a premise for building the size and
power of the adjusted test.

4.2 Actual and Observed Test SizeThe size of test is often the first consideration when conducting a test. To calculate actualtest size, we want to use the exact conditional method but this is the power function of Fisher test(Haseman, 1978; Casagrande et al., 1978). Therefore, we take up an extension for the control of



Eur. J. Stat. 1 (2021) 85actual test size. A further extension provides a scope to cover other tests. The method is set upon the sum m = y1 + y2 and the odds ratio ψ = π1(1 − π2)/π2/(1 − π1). Here π1 = π2 = πand ψ = 1 under H0 and π1 ≥ π2 and ψ ≥ 1 under H0 ∪ H1 over the range of µ ∈ [0, 1). Theconditional density function of y1 is given by
f (y1|m,ψ) =

(
n1
y1

) (
n2
m−y1

)
ψy1∑

ξ−≤t≤ξ+ (n1t )
(
n2
m−t

)
ψt

in terms of the non-central hypergeometric distribution. The expression must give∑ξ−≤y1≤ξ+ f (y1|m,ψ) =

1. It reduces to the central hypergeometric distribution f (y1|m, 1) =
(
n1
y1

) (
n2
m−y1

)
/ (nm) when thenull hypothesis is true with ψ = 1.Let y1c be the critical value of y1 at α-level under H0. It can be found by∑

y1c≤y1≤ξ+

f (y1|m, 1) ≤ α (4.1)

and ∑y1c−1≤y1≤ξ+ f (y1|m, 1) > α. The left-hand side of (4.1) is just the the right-sided p-value ofFisher test in this context.With the critical value, it is easy to see the conditional test size g(1|m) =
∑
y1c≤y1≤ξ+ f (y1|m, 1).The actual test size can then be determined from g(1|m) by taking the supremum over π:

g(1, π) = sup
0≤π≤1

∑
1≤m≤n−1

g(1|m)P (m,π), (4.2)

where P (m,π) is the joint distribution of m under H0,
P (m,π) =

∑
ξ−≤t≤ξ+

(n1t )
(
n2
m−t

)
πm(1− π)n−m.

Refer to (3.6) with W = 1
2 to get

FL(y1) = FF (y1)−
1

2
f (y1) and SL(y1) = SF (y1)−

1

2
f (y1), (4.3)

which is the mid-p method. It states that the mid-p value is Fisher p-value minus half the tableprobability. Following (4.1), the right-sided p-value of (4.3) is rewritten ∑y1c≤y1≤ξ+ f (y1|m, 1) −
1
2 f (y1c |m, 1) ≤ α in this context. Moving the term 1

2 f (y1c |m, 1) to the right-hand side gives∑
y1c≤y1≤ξ+

f (y1|m, 1) ≤ α+
1

2
f (y1c |m, 1). (4.4)

It is a heuristic that the decrement of p-values is equivalent to the increment of significance level.Calculating (4.4) requires iteration. Giving an initial value of f (y1c |m, 1), say, 0.5 produces a valueof y1c and further a value of f (y1c |m, 1). Repeating the process yields a stationary value of y1cwith fast convergence.



Eur. J. Stat. 1 (2021) 86Crans-Shuster test uses the significance level plus an increment so that the value of y1c isgiven by ∑
y1c≤y1≤ξ+

f (y1|m, 1) ≤ α+ ε, (4.5)

where ε is known to be the increment. It is calculated with
ε = inf{εs : sup[(g(1, π)|α+ εs) ≤ α]}, (4.6)

where εs represents the addend for the gradually increasing significance level.Here the right-sided p-value of the adjusted test (3.8) is written ∑y1c≤y1≤ξ+ f (y1|m, 1)/(1 +

f (y1c |m, 1)) ≤ α or, in a form more convenient for our present purpose,∑
y1c≤y1≤ξ+

f (y1|m, 1) ≤ α+ α f (y1c |m, 1). (4.7)

The term α f (y1c |m, 1) is the increment. The calculation of (4.7) requires iteration likewise for(4.4). Now the method may cover the mid-p method, Crans-Shuster test, and the adjusted test aslong as using (4.4), (4.5), and (4.7) in place of (4.1).We show a numerical analysis to look into actual test size by taking the supremum over 0 ≤
π ≤ 1. A sample of size n = 20 is taken with sample fractions {k1, k2} = {0.6, 0.4}. That is unequalallocation, which is known to be best. The nominal level of significance is α = 0, 0.0125, . . . , 0.1(one-sided). The increment for Crans-Shuster test is ε = 0, 0.0124, . . . , 0.0570 calculated using(4.6). Shown in the upper part of Table 4.2 are the findings from the exact conditional method withthe extensions.
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Tests Nominal α (one-sided)0 0.0125 0.025 0.0375 0.05 0.0625 0.075 0.0875 0.1Exact conditional method with the extensionsAdjusted test 0 0.004 0.012 0.012 0.025 0.033 0.033 0.042 0.057Fisher exact test 0 0.004 0.012 0.012 0.018 0.033 0.033 0.042 0.042Mid-p method 0 0.009 0.018 0.033 0.042 0.057 0.061 0.096 0.096Crans-Shuster test 0 0.012 0.025 0.033 0.042 0.061 0.074 0.075 0.096Algorithm of Crans and Shuster with the extensionsAdjusted test 0 0.004 0.012 0.012 0.025 0.033 0.033 0.042 0.057Fisher exact test 0 0.004 0.012 0.012 0.018 0.033 0.033 0.042 0.042Mid-p method 0 0.009 0.018 0.033 0.042 0.057 0.061 0.096 0.096Crans-Shuster test 0 0.012 0.025 0.033 0.042 0.061 0.074 0.075 0.096Binomial model 0 0.011 0.017 0.033 0.042 0.061 0.061 0.082 0.095Barnard exact test 0 0.011 0.017 0.033 0.042 0.061 0.061 0.082 0.095Berger-Boos test 0 0.011 0.018 0.033 0.042 0.061 0.061 0.082 0.095Modified Fisher p-value 0 0.011 0.025 0.033 0.042 0.061 0.074 0.074 0.095Two-proportion z test 0 0.017 0.033 0.057 0.061 0.096 0.096 0.11 0.12Yates corrected z test 0 0.003 0.009 0.012 0.018 0.033 0.033 0.042 0.042Kendal-Stuart correction 0 0.004 0.011 0.017 0.033 0.033 0.042 0.042 0.061
The sample size is n = 20 with sample fractions {k1, k2} = {0.6, 0.4}. The actual test size iscalculated at α = 0, 0.0125, . . . , 0.1 (one-sided) by taking the supremum over 0 ≤ π ≤ 1. Theincrement of significance level is ε = 0, 0.0124, . . . , 0.0570 for Crans-Shuster test.

The calculations are repeated by another method, the algorithm described in Crans and Shus-ter (2008). We extend it along the same line to cover the eleven tests including three conditional,five unconditional, and three approximate tests. The unconditional tests require not only the ob-served sample m = y1 + y2 but also the unobserved samples [1, m) ∪ (m, n − 1]. The binomialmodel and Barnard test have the critical region defined by the z test and Berger-Boos test usesthe confidence coefficient of 0.999. Details regarding the extensions are available from the authorupon request. The actual test size of these tests appears in the lower part of the Table 4.2.The observed test size is computed by Monte Carlo simulation with the same parametervalues as those in calculating the actual size. The observations yj were sampled from binomialdistribution. In each instance, a total of 1000 sets of samples were generated. The nominal levelof significance was α = 0.01, 0.025, and 0.05. The common binomial parameter was prescribedas π = 0, 0.1, . . . , 1. Computations are performed for the right-sided p-value of the adjusted test
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S(y1). The fraction of times H0 is rejected for the p-value is calculated. The experiment results inthe observed test size
α̂ =

1000∑
1

I{p-value ≤ α|H0}/1000.

The experiment covers the other tests as well. In the extreme case π = 0 or 1, the observed testsize is zero for any test at any level. Over the range of π, the observed size increases first anddecreases later with the peak at π = 0.6 so that only the results for π = 0, 0.3, 0.5, and 0.6 arelisted in Table 4.3.Table 4.3. Observed test size of the adjusted test and the other tests

Tests π = 0 π = 0.3 π = 0.5 π = 0.60.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05Conditional testsAdjusted test 0 0 0 0.002 0.013 0.023 0.004 0.014 0.025 0.004 0.013 0.03Fisher exact test 0 0 0 0.002 0.013 0.013 0.004 0.014 0.021 0.004 0.013 0.023Mid-p method 0 0 0 0.002 0.013 0.031 0.008 0.021 0.042 0.011 0.023 0.045Unconditional testsCrans-Shuster test 0 0 0 0.002 0.023 0.045 0.008 0.025 0.042 0.011 0.03 0.045Binomial model 0 0 0 0.008 0.013 0.045 0.009 0.021 0.042 0.011 0.023 0.045Barnard exact test 0 0 0 0.008 0.013 0.045 0.009 0.021 0.042 0.011 0.023 0.045Berger-Boos test 0 0 0 0.008 0.023 0.045 0.008 0.021 0.042 0.007 0.023 0.045Modified Fisher p-value 0 0 0 0.008 0.023 0.045 0.009 0.025 0.042 0.011 0.03 0.045Approximate testsTwo-proportion z test 0 0 0 0.013 0.028 0.063 0.014 0.033 0.066 0.013 0.033 0.069Yates corrected z test 0 0 0 0.001 0.002 0.013 0.001 0.008 0.021 0.002 0.011 0.023Kendal-Stuart correction 0 0 0 0.002 0.007 0.028 0.004 0.013 0.033 0.004 0.013 0.033
The observed test size is given by the fraction of p-values less than or equal to α under H0 in1000 sets of samples, where α = 0.01, 0.025, 0.05 (one-sided). The increment of significancelevel is ε = 0.0081, 0.0272, 0.0522 for Crans-Shuster test. The sample size is n = 20 with samplefractions {k1, k2} = {0.6, 0.4}.
Appearing in Figure 2 is a comparison of the adjusted test and the other tests for the observedtest size.
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4.3 Actual and Observed PowerActual power is calculated from the exact conditional method with the extensions under H0∪H1with π1 ≥ π2 and ψ ≥ 1. First, we get the conditional power of the level-α test g(ψ|m) =∑
y1c≤y1≤ξ+ f (y1|m,ψ). Then the actual power is given by

g(ψ, π1, π2) =
∑

1≤m≤n−1
g(ψ|m)P (m,π1, π2), (4.8)

where P (m,π1, π2) is the joint distribution of m under H0 ∪H1,
P (m,π1, π2) =

∑
ξ−≤t≤ξ+

(n1t )πt1(1− π1)n1−t
(
n2
m−t

)
πm−t2 (1− π2)n2−m+t .
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Table 4.4. Actual power of the adjusted test and the other tests (β ∈ (0, 1))

Tests Difference µ0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72Exact conditional method with the extensionsAdjusted test 0.012 0.04 0.087 0.155 0.252 0.384 0.548 0.72 0.864 0.95Fisher exact test 0.003 0.017 0.052 0.117 0.219 0.357 0.52 0.683 0.82 0.923Mid-p method 0.014 0.049 0.116 0.222 0.363 0.523 0.68 0.811 0.908 0.971Crans-Shuster test 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Algorithm of Crans and Shuster with the extensionsAdjusted test 0.012 0.04 0.087 0.155 0.252 0.384 0.548 0.72 0.864 0.95Fisher exact test 0.003 0.017 0.052 0.117 0.219 0.357 0.52 0.683 0.82 0.923Mid-p method 0.014 0.049 0.116 0.222 0.363 0.523 0.68 0.811 0.908 0.971Crans-Shuster test 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Binomial model 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Barnard exact test 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Berger-Boos test 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Modified Fisher p-value 0.036 0.085 0.156 0.252 0.38 0.53 0.682 0.812 0.908 0.971Two-proportion z test 0.041 0.106 0.203 0.325 0.465 0.61 0.748 0.861 0.938 0.98Yates corrected z test 0.003 0.017 0.052 0.117 0.219 0.357 0.52 0.683 0.82 0.923Kendal-Stuart correction 0.014 0.047 0.11 0.202 0.322 0.461 0.61 0.758 0.885 0.968
The actual power is calculated at α = 0.05 (one-sided). The increment of significance level is

ε = 0.0522 for Crans-Shuster test. The sample size is n = 20 with sample fractions
{k1, k2} = {0.6, 0.4}. The difference is µ, the probability for control group is π2 = 0.2, and thatfor treatment group is π1 = π2 + µ.

Also the calculations are repeated by the algorithm of Crans and Shuster with the extensions.The results are presented in the lower part of Table 4.4.To see the observed power, we appeal again to Monte Carlo methods. Also we take the sameparameter values as those in calculating the actual power. Crossing combination of these quantities
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1− β̂ =

1000∑
1

I{p-value ≤ α|H1}/1000.

Table 4.5 portrays the results of the experiment sets at α = 0.05.
Table 4.5. Observed power of the adjusted test and the other tests (β ∈ (0, 1))

Tests Difference µ0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72Conditional testsAdjusted test 0.013 0.049 0.101 0.166 0.262 0.387 0.566 0.739 0.878 0.95Fisher exact test 0.005 0.019 0.063 0.129 0.222 0.362 0.538 0.698 0.843 0.933Mid-p method 0.015 0.058 0.127 0.229 0.377 0.532 0.696 0.832 0.918 0.975Unconditional testsCrans-Shuster test 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975Binomial model 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975Barnard exact test 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975Berger-Boos test 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975Modified Fisher p-value 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975Approximate testsTwo-proportion z test 0.049 0.111 0.209 0.339 0.483 0.626 0.755 0.872 0.937 0.979Yates corrected z test 0.005 0.019 0.063 0.129 0.222 0.362 0.538 0.698 0.843 0.933Kendal-Stuart correction 0.015 0.057 0.119 0.203 0.331 0.472 0.63 0.777 0.895 0.971
The observed power is given by the fraction of p-values less than or equal to α under H1 in 1000sets of samples, where α = 0.05 (one-sided). The increment of significance level is ε = 0.0522 forCrans-Shuster test. The sample size is n = 20 with sample fractions {k1, k2} = {0.6, 0.4}. Thedifference is µ, the probability for control group is π2 = 0.2, and that for treatment group is

π1 = π2 + µ.
The observed average proportion in the jth group is close to the pre-specified value of πj . Theobserved power of these tests can readily be grasped from Figure 3.
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Figure 4 shows a comparison between the observed and actual power of the adjusted test at avariety of significance levels.
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The above calculations are limited to fixed sample sizes. Now consider a more comprehensivesimulation for samples of various sizes. The exact conditional method can return sample sizes butcomputations are not straightforward and require iteration. Here the sample size is computed by(4.7) and (4.8) for the adjusted test with the parameter values α = 0.05 (one-sided), β = 0.1,
{k1, k2} = (0.6, 0.4), π2 = 0.2, µ = 0, 0.08, . . . , 0.72, and π1 = π2 + µ. Needless to say, thisrequires extensive computations. The actual power is calculated with the same method as that forthe fixed sample and the observed power is still computed by Monte Carlo methods. For simplicityin presentation, only the findings for µ = 0.32, 0.4, . . . , 0.72 are displayed in Table 4.6.
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Actual power Observed powerDifference µ 0.32 0.4 0.48 0.56 0.64 0.72 0.32 0.4 0.48 0.56 0.64 0.72Sample size n 87 57 41 31 23 17 87 57 41 31 23 17Conditional testsAdjusted test 0.9 0.9 0.895 0.903 0.907 0.901 0.908 0.9 0.894 0.903 0.907 0.908Fisher exact test 0.9 0.887 0.88 0.901 0.888 0.848 0.908 0.886 0.879 0.901 0.885 0.853Mid-p method 0.928 0.924 0.926 0.944 0.945 0.946 0.93 0.926 0.919 0.948 0.935 0.946Unconditional testsBinomial model 0.923 0.919 0.909 0.923 0.924 0.946 0.926 0.922 0.905 0.925 0.92 0.946Barnard exact test 0.923 0.919 0.909 0.923 0.924 0.946 0.926 0.922 0.905 0.925 0.92 0.946Berger-Boos test 0.928 0.925 0.935 0.943 0.945 0.946 0.93 0.927 0.929 0.948 0.935 0.946Modified Fisher p-value 0.928 0.932 0.935 0.944 0.945 0.946 0.93 0.938 0.929 0.948 0.935 0.946Approximate testsTwo-proportion z test 0.935 0.936 0.945 0.948 0.963 0.958 0.937 0.942 0.943 0.952 0.958 0.951Yates corrected z test 0.893 0.887 0.88 0.896 0.888 0.848 0.901 0.886 0.879 0.9 0.885 0.869Kendal-Stuart correction 0.9 0.889 0.895 0.903 0.91 0.944 0.908 0.889 0.894 0.903 0.909 0.946
The probability for control group is π2 = 0.2 and that for treatment group is π1 = π2 + µ. Thesample size is computed by (4.7) and (4.8) with iterations, where the sample fractions are
{k1, k2} = {0.6, 0.4}. The actual power is calculated at α = 0.05 (one-sided) and the observedpower is given by the fraction of p-values less than or equal to α under H1 in 1000 sets ofsamples.

We have seen that the adjusted test has its power around 0.9 but the other tests have a widevariety of power.Power calculations and simulations were conducted at α = 0.01, 0.025, 0.05, and 0.1 and
β ∈ (0, 1). In Table 4.4, 4.5, 4.6, however, only the results at the 0.05-level are listed since theresults are generally the same for other levels.Before leaving this section, there are some notes of interest:

Remark 4.4. On comparing the upper and lower parts of Table 4.2 and 4.4, we see that two
distinct algorithms provide identical results of actual test size and power. One is the exact condi-
tional method with the extensions. The other is an unconditional method, the algorithm of Crans
and Shuster with the extensions.

Remark 4.5. Two tests produce identical values of power (see Table 4.4 and 4.5). One is
the modified Fisher p-value, which gives a decreased p-value. The other is Crans-Shuster test,
which uses an increased significance level. This is no surprise: Both of them are derived from
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unconditional approach with the critical region defined by Fisher test so that the decrement of
p-values is equivalent to the increment of significance level. The equivalence also holds for the
size of test except for a few differences literal (see Table 4.2 and 4.3). Crans-Shuster test is not so
easy to compute as the modified Fisher p-value. In fact, the increment of significance level ε (4.6) is
too time consuming to compute for larger sample sizes. Hence we could not include Crans-Shuster
test in the more comprehensive simulation.

Remark 4.6. The binomial model has the critical region defined by the z test (Routledge, 1992).
It remains unclear which test statistic is preferred when implementing Barnard test (Wikipedia, the
free encyclopedia). In this context, we also took the z test to define the critical region of Barnard
test such that it yields the result identical to that of the binomial model. Different results may be
encountered, however, in other contexts. For example, Barnard test may have the critical region
defined by Fisher test and then it becomes the modified Fisher p-value (Lin and Yang, 2009).

5. Comparing the Data-based Factor and the Factor 12The equation (3.3) is the adjusted test when W = 1 − F (y1) and the mid-p method when
W = 1

2 . Both of them address the conservativeness of Fisher test. In comparing the data-basedfactor and the factor 12 , our main interest is to see whether or not the properties of Fisher test hold.Thus Fisher test is taken as the starting point. On the one hand, Fisher test holds the propertythat the significance level is under control of nominal α, which in turn dominates over the test sizeand power. On the other, Fisher test gives p-values depending on observed data (Agresti, 2002,p95), especially the ratio of the left- to right-sided p-values RF = FF (y1)/SF (y1) may shed lighton the nature of data.
5.1 Controlled and Uncontrolled Significance LevelsAs we mention in Subsection 4.2, a test may be conducted at the nominal α plus an increment.The increment is ε, α f (y1c |m, 1), and 12 f (y1c |m, 1) for Crans-Shuster test, the adjusted test, andthe mid-p method as shown in (4.5), (4.7), and (4.4), respectively. It is of great concern, however,that the increment is still under control of nominal α. This is true for Crans-Shuster test and theadjusted test, arguing that the increment ε in (4.6) and the increment α f (y1c |m, 1) in (4.7) are thefunctions of α. It is not true for the mid-p method, however, because the increment 12 f (y1c |m, 1)in (4.4) is independent of α. For clarity, the right-hand sides of (4.1), (4.7), and (4.4) are arrangedsuccessively as an array

α, α+ α f (y1c |m, 1), and α+
1

2
f (y1c |m, 1), (5.1)

which are the significance levels for Fisher test, the adjusted test, and the mid-p method, respec-tively.Each increment of significance level has a corresponding increment of test size. For example,we return now to Table 4.2 and see the column "Nominal level α = 0.05", where the values of
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0.018, 0.018 + 0.007 = 0.025, and 0.018 + 0.024 = 0.042,

respectively. There is a one-to-one correspondence between the increment of significance level andthe increment of actual test size. Regarding the adjusted test, the increment of significance level
α f (y1c |m, 1) corresponds to the increment of actual test size 0.007. The mid-p method shows theincrement of significance level 12 f (y1c |m, 1) and the corresponding increment of actual test size0.024. As expected, Fisher test has the value of actual size 0.018 much lower than the nominallevel 0.05. Using the increment of significance level, the adjusted test gains higher value 0.025 andthe mid-p method even higher value 0.042 but both of them are still lower than the nominal level.Such a correspondence is also seen in the relevant values of power. Looking at Table 4.4, thecolumn "Difference µ = 0.64" gives the values of actual power for the three tests:

0.82, 0.82 + 0.044 = 0.864, and 0.82 + 0.088 = 0.908.

The corresponding increment of actual power is 0.044 for the adjusted test and 0.088 for the mid-pmethod.We have seen that all the increments in the mid-p method are larger than the correspondingincrements in the adjusted test. However, it is important to note that:
Remark 5.1. With respect to the adjusted test, the increment of significance level α f (y1c |m, 1)

is under control of α and so are the corresponding increments of test size and power.
Remark 5.2. The mid-p method uses a higher significance level with the increment 12 f (y1c |m, 1),

which is in general larger than α f (y1c |m, 1). This predicts a higher test size and power. However,
the increment of significance level 12 f (y1c |m, 1) is not controlled by α and as a consequence, the
corresponding increments of test size and power suffer from the same problem.

5.2 Proportional and Disproportional ReductionAny modification should be the same for the left- and right-sided p-values. This is the case forthe adjusted test. Looking at (3.8), the adjustment (1 + f (y1))−1 is the same for the two one-sidedp-values.By contrast, this is not the case for the mid-p method. For clarity, (4.3) is put into the form
FL(y1) =

∑
ξ−≤t≤y1

(
f (t)−

1
2 f (y1)

y1 − ξ− + 1

) and SL(y1) =
∑

y1≤t≤ξ+

(
f (t)−

1
2 f (y1)

ξ+ − y1 + 1

)
. (5.2)

Since y1 − ξ− + 1 6= ξ+ − y1 + 1 holds in general, it follows that
1
2 f (y1)

y1 − ξ− + 1
6=

1
2 f (y1)

ξ+ − y1 + 1
. (5.3)

It states that the subtrahend on the left-hand side differs from that on the right. In the fishexperiment, for example, the calculation of (5.3) results in 0.025 6= 0.00625. Evidently, the mid-pmethod uses different modifications for the two one-sided p-values.
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R =

F (y1)

S(y1)
=
FF (y1)/(1 + f (y1))

SF (y1)/(1 + f (y1))
≡ RF ,

which gives a confirmation of the proportional reduction as mentioned in Subsection 3.2.Conversely, the mid-p method indicates a disproportional reduction from Fisher test. This caneasily be seen from (4.3). When FF (y1) 6= SF (y1), it gives the ratio RL unequal to RF :
RL =

FL(y1)

SL(y1)
=
FF (y1)− 12 f (y1)

SF (y1)− 12 f (y1)
6= RF .

A consequence of this is that the smaller one in the left- and right-sided p-values is depressed,which predicts an increase in Type I error rate (very significance level and pseudo power areattainable). Again in the fish experiment, the adjusted test gives the ratio R = 0.048/0.952 = 0.05,which is identical to RF = 0.05/1 = 0.05, whereas the mid-p method gives the much less ratio
RL = 0.025/0.975 = 0.026. In a careful examination, the mid-p method has the left-sided p-valuedepressed from 0.048 to 0.025 with the decrement 0.023 and the right elevated from 0.952 to 0.975with the increment 0.023. The increment is just equal to the decrement. That is equivalent to TypeI error rate being elevated by 0.023.Here the thing being counted is the factor 12 that raises some more concerns: the significancelevel not being entirely controlled by α, different modifications in the two one-sided p-values, anddisproportional reduction from Fisher test. This explains that the mid-p method fails to hold theproperties of Fisher test. We now return to Question (1): The solution is obvious enough.

6. Extensions for r × c Contingency Tables
As a preparation for extending to r × c contingency tables, the cell counts in 2 × 2 tablesare denoted by {Yi j} for i = 1, 2 and j = 1, 2. Given a data set {Yi j} = {yi j}, we have the rowmargins {n1, n2}, the column margins {m1, m2}, and the total number of observations n. The pdfof hypergeometric distribution in Subsection 3.1 is rewritten in a more general form

f (t) =
n1!n2!m1!m2!

n!y11!y12!y21!y22!
,

where f (t) is the probability of table t , ξ− ≤ t ≤ ξ+, ξ− = max(0, m1−n2), and ξ+ = min(n1, m1).This form provides a room for extending to r × c tables.With a little straightforward, i = 1, 2 and j = 1, 2 are extended to i = 1, 2, . . . , R and j =

1, 2, . . . , C, followed by the row margins {n1, n2, . . . , nR} and the column margins {m1, m2, . . . , mC}.One may use the network algorithm (Mehta & Patel, 1983) to generate all possible tables withgiven margins. Letting t = 1, 2, . . . , T denote all the tables, the pdf is extended to
f (t) =

∏
i(ni !)

∏
j(mj !)

n!
∏
i

∏
j(yi j !)

(6.1)
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with a multiple hypergeometric distribution. Since (6.1) holds, it must be true that ∑T
t=1 f (t) = 1.Assume that f (y) is the probability of the observed table y , so that the popular approach fora two-sided test (3.2)(Agresti, 1992) is extended to

PF =

T∑
t=1

f (t)|(f (t) ≤ f (y)). (6.2)

This is just the statistic of exact conditional test. Note that there are no one-sided p-values in
r × c tables. When R = 2 and C = 2, (6.2) reduces to (3.2) for 2× 2 tables.Applying the data-based adjustment, (3.9) is extended to

PZ =

T∑
t=1

f (t)/(1 + f (y))|(f (t) ≤ f (y)) = PF /(1 + f (y)). (6.3)

This is the statistic of adjusted test for r × c tables. The reducibility also holds for (6.3): When
R = 2 and C = 2, (6.3) reduces to (3.9) for 2× 2 tables.Special algorithms and software are widely available for computing exact conditional testsfor r × c tables (Agresti, 2002, p98). For larger tables, one can use Monte Carlo method tosample randomly under the multiple hypergeometric distribution from the set of tables with thegiven margins. The estimated p-value is then the sample proportion of tables having test statisticvalue at least as large as the value observed.Using the same principle, the data-based adjustment is easy to be applied in 2 × 2 × k and
r × c × k tables. As R and / or C increase, however, the conservativeness issue for conditionaltests becomes less problematic and then adjustments become less important.

7. Examples
7.1 The Fish ExperimentTo illustrate the use of the adjusted test, we take the fish experiment from Routledge (1992)for ease of comparison and repetition. It was designed to assess the ability of ozone to controlbacteria in a fish tank. Six tanks were randomly allocated into two groups of three each. A fixedamount of bacteria was added to each of them. Tanks in one group were also treated with ozone.This group will be labeled the treatment group; the other, the control group. After some time, allthree tanks in the control group contained dead fish, whereas none of the other tanks did. Table7.1 shows the results of the experiment.
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Treatment Response category TotalSome dead fish No dead fishTreated 0 3 3Untreated 3 0 3Total 3 3 6
Source: Routledge (1992).

Let π1 be the probability for the treatment group and let π2 be that for the control group. Statethe decision rule for testing H0 : π1 = π2 versus H1 : π1 < π2 at α = 0.05. Crans-Shuster testuses the significance level plus an increment ε calculated by a call to (4.6).The analysis gives the table probability of f (y1) = 0.05. This is just the left-sided p-value ofFisher test in this case. It exactly matches α = 0.05. The right-sided p-value is 1 so that we havethe sum of 1.05. The two-sided p-values (the left, right components) are PF (1) = 0.1 (0.05, 0.05),
PF (2) = 0.05 (0.05, 0), PF (3) = 0.1 (0.05, 0.05), and PF (4) = 0.1. Note that PF (2) alone givesdifferent values because E[t] = 1.5 is different from tmax = 1 in this case. This reminds us thatanother possibility of two-sided test must be used with caution, which has already been predictedin Subsection 3.1. The left- and right-sided p-values from the mid-p method are FL(y1) = 0.025and SL(y1) = 0.975 with the sum of 1 and the two-sided p-value is PL = 0.05. Regarding theadjusted test, the left-sided p-value comes to F (y1) = 0.048 that is significant at the 0.05 level. Ithas a complementary right-sided p-value S(y1) = 0.952. This is in favor of such an interpretationthat using ozone is better than not using. The two-sided p-values are P (1) = 0.095 (0.048, 0.048),
P (2) = 0.048 (0.048, 0), P (3) = 0.095 (0.048, 0.048), and P (4) = 0.095.It is of interest to see possible results from different frequencies. Thus we write t = Y1 and
m − t = Y2, where t = 0, 1, 2, 3. The left- and two-sided p-values are computed for all the eleventests as shown in Table 7.2.



Eur. J. Stat. 1 (2021) 100Table 7.2. Left- and two-sided p-values of the eleven tests in the fish experiment

Tests The left-sided (Y1 = t) The two-sided (Y1 = t)0 1 2 3 0 1 2 3Conditional testsAdjusted test 0.048 0.345 0.655 0.952 0.095 0.69 0.69 0.095Fisher exact test 0.05 0.5 0.95 1 0.1 1 1 0.1Mid-p method 0.025 0.275 0.725 0.975 0.05 0.55 0.55 0.5Unconditional testsCrans-Shuster test 0.05 0.5 0.95 1 0.1 1 1 0.1Binomial model 0.016 0.344 0.656 0.984 0.031 0.687 0.687 0.031Barnard exact test 0.016 0.344 0.656 0.984 0.031 0.687 0.687 0.031Berger-Boos test 0.017 0.345 0.655 0.983 0.032 0.688 0.688 0.032Modified Fisher p-value 0.016 0.25 0.766 0.781 0.031 0.5 0.5 0.031Approximate testsTwo-proportion z test 0.007 0.207 0.793 0.993 0.014 0.414 0.414 0.014Yates corrected z test 0.051 0.207 0.793 0.949 0.102 0.414 0.414 0.102Kendal-Stuart correction 0.034 0.207 0.793 0.966 0.068 0.414 0.527 0.068
Of these, the two-sided p-values of Fisher test and the adjusted test are calculated by thepopular approach (3.2) and (3.9), respectively.The column "t = 0" refers to the results of the observed data. The left-sided p-value of theadjusted test is smaller than that of Fisher test and greater than that of the mid-p method. Wehave already seen in Section 5, however, that the adjusted test holds the properties of Fisher testand has the increment of power under control of α, which the mid-p method lacks (see Remark 5.1and 5.2). The binomial model and Barnard test reach the same results. The p-values of Berger-Boos test and the modified Fisher p-value are less than the p-value of the mid-p method. Theunconditional tests have smaller p-values than the adjusted test. As mentioned in Subsection4.2, however, when using the unconditional tests, the inference depends partly on the unobservedsamples so that considerable controversy surrounds their use in statistical literature (recall thegolden aphorism). The minimum p-value comes from the z test and the maximum from Yates z test.The left-sided p-value of Yates z test resembles that of Fisher test. The p-value of Kendal-Stuartcorrection is less than that of Yates z test. Kendal-Stuart correction has smaller p-value than theadjusted test. Note, however, that approximate tests are inappropriate for such a small samplesince the approximations can be very poor in such cases (see Section 2). They are mentioned herefor comparison only. The relative change of the two-sided p-values among these tests is the sameas that of the left-sided p-values.
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t = 2, 3 with the differences {0.023, 0.07,−0.07,−0.023|t = 0, 1, 2, 3}. Obviously, the differencesin the two regions just cancel each other out.

7.2 The Lady Tasting Tea ExperimentAnother example is the lady tasting tea experiment, which is quoted from Agresti (2002, p92).A lady tasted eight cups of tea, four of which had milk added first and four of which had tea addedfirst. She knew there were four cups of each type and had to predict which four had the milk addedfirst. The order of presenting the cups to her was randomized. The results of the experiment arepresented in Table 7.3.
Table 7.3. The results of lady tasting tea experiment

Poured First Guess poured first TotalMilk TeaMilk 3 1 4Tea 1 3 4Total 4 4 8
Source: Agresti (2002, p92).

Thus the hypotheses to be tested are H0 : π1 = π2 vs H1 : π1 > π2, where π1 is the probabilityfor milk added first and π2 that for tea added first. The experimental design fixed both marginaldistributions, since the researcher had to predict which four cups had milk added first. Thus thehypergeometric applies naturally for the null distribution of Y1.With the table probability f (y1) = 0.229, the right-sided p-value of Fisher test is SF (y1) =

0.243. It fails to reach significance at α = 0.05 so that this result does not establish an associationbetween the actual order of pouring and her predictions. It is not helpful using any other tests.For example, the mid-p method gives SL(y1) = 0.129 and the adjusted test S(y1) = 0.198.In an attempt to assess the association, we repeat the calculations with one to sixfold increasein the sample size. Table 7.4 presents the right-sided p-values.
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Tests Multiples of sample sizes1 2 3 4 5 6Conditional testsAdjusted test 0.198 0.062 0.019 0.006 0.002 0.001Fisher exact test 0.243 0.066 0.02 0.006 0.002 0.001Mid-p method 0.129 0.036 0.011 0.003 0.001 0Unconditional testsCrans-Shuster test 0.243 0.066 0.02 0.006 0.002 0.001Binomial model 0.145 0.038 0.011 0.004 0.001 0Barnard exact test 0.145 0.038 0.011 0.004 0.001 0Berger-Boos test 0.146 0.039 0.012 0.005 0.002 0.001Modified Fisher p-value 0.145 0.038 0.011 0.004 0.001 0Approximate testsTwo-proportion z test 0.079 0.023 0.007 0.002 0 0Yates corrected z test 0.24 0.067 0.021 0.007 0.002 0Kendal-Stuart correction 0.159 0.057 0.019 0.006 0.002 0
It is no surprise that as n increases the p-values decrease. Multiple 1 refers to the originalsample sizes. All of the right-sided p-values are greater than 0.05. Certainly H0 is not rejected at

α = 0.05 by any of the tests. With double sample sizes, however, H0 is rejected at α = 0.05 bythe mid-p method, the unconditional tests, or the z test. This implies that there be an associationbetween the actual order of pouring and her predictions. When sample sizes increase by threefoldor more, any of the tests may give p-values below 0.05. In addition, the numerical distancesbetween any two p-values decrease as n increases.
7.3 The Illustrative Example for r × c TablesFor comparing easily, we take the illustrative example from Howell and Gordon (1976), asshown in Table 7.5.

Table 7.5. An illustrative example for exact conditional test

Y11 = 4 Y12 = 4 Y13 = 0 n1 = 8

Y21 = 0 Y22 = 4 Y23 = 3 n2 = 7

m1 = 4 m2 = 8 m3 = 3 n = 15

Source: Howell and Gordon, 1976.
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t1 ∈ [ξ1−, ξ1+], where ξ1− = max(0, m1 − n2) = 0 and ξ1+ = min(n1, m1) = 4. The range of t2 isdefined as t2 ∈ [ξ2−, ξ2+], where ξ2− = max(0, m2 − (n2 −m1 + t1)) and ξ2+ = min(n1 − t1, m2).Given margins, t1 and t2 determine the other cell counts based on (2− 1)(3− 1) = 2 degrees offreedom. There are a total of 20 possible tables as tabulated in Table 7.6.

Table 7.6. All possible tables and the corresponding probabilities

t1 t2 f (t)0 5 6 7 8 0.0087e 0.0131 0.0037e 0.0002e1 4 5 6 7 0.0435 0.1044 0.0522 0.0050e2 3 4 5 6 0.0522 0.1958 0.1566 0.02613 2 3 4 5 0.0174 0.1044 0.1305 0.03484 1 2 3 4 0.0012e 0.0131 0.0261 0.0109y
Source: Howell and Gordon 1976. The column t1 gives the values of frequency Y11, t2 the valuesof frequency Y12, and f (t) the probability of table t with t1 = Y11 and t2 = Y12. The symbol yindicates the table probability and e the extreme probabilities.

The corresponding probabilities are easily calculated by a call to (6.1), shown in the column
f (t). We have seen that the 20 probabilities sum to 1.One may find the table probability from the term with the symbol y and the five extremeprobabilities from the terms with symbol e . Using (6.2) yields PF = 0.02968 the p-value of exactconditional test, which is the same as that in Howell and Gordon, 1976. The calculation of (6.3)gives PZ = 0.02936 the p-value of the adjusted test. The null hypothesis is therefore rejected at
α = 0.05.Large-sample tests may be inappropriate for such a small sample. For comparison, however,the usual chi-squared test is also mentioned here. Using the statistic gives 6.96429 with theprobability 0.03074, which is the same as that in Howell and Gordon, 1976. Again for comparison,the data are analyzed by the Monte Carlo method. Sampling was repeated 2000 times resultedin 0.02977 for exact conditional test and 0.02945 for the adjusted test, which are similar to thosefrom (6.2) and (6.3). For this example, a simple computer program in R language is available fromthe author upon request.

8. Discussion
The principle behind the data-based adjustment is quite simple: The conservativeness of Fishertest is known to be due to the discreteness, which is displayed intuitively as the non-exclusivityas noted in Subsection 3.1. The adjustment just offsets the non-exclusivity as shown in Remark



Eur. J. Stat. 1 (2021) 1044.1. Accordingly, the two one-sided p-values become mutually exclusive, which is a property ofcontinuous distributions.The adjustment is derived from an intuitive method: Take account of both the left- and right-sided p-values and treat them equally in the derivation. This is practiced in each of the followingthree steps: (1) Set up an equation that incorporates a fraction of the table probability and themore extreme probabilities (see (3.3)). (2) Solve the equation for the fraction, which results in thedata-based factor (see (3.7)). (3) Convert the factor to the data-based adjustment (see (3.8)). It isimportant to note that the properties of Fisher test do hold in the process (recall Section 5).Interesting points of the adjustment are: (1) It gives the results always interpretable in thewhole range of the sample sizes, 1 ≤ n < ∞, in which the adjustment has its minimum of 0.5and maximum of 1. (2) The adjustment vanishes into void as n → ∞ (recall Remark 4.2). (3) Thestandardized version of the adjusted test is asymptotically standard normal (see Remark 4.3).The data-based adjustment reduces the conservativeness, as evidenced by increasing test sizeand power and decreasing p-values. A check is provided by the fact that two totally differentalgorithms produce the identical results when calculating the actual test size and power (seeRemark 4.4).The adjustment makes the size of test increased. When data set is small, the size of theadjusted test is greater than that of Fisher test, which can be seen in Table 4.2 and 4.3 as wellas Figure 2. As expected, the adjusted test has less size than the mid-p method. The size of themid-p method resembles the size of the unconditional tests such as Crans-Shuster test, the binomialmodel, Barnard test, Berger-Boos test, and the modified Fisher p-value. Yates z test behaves likeFisher test not only for the size of test but also for power and p-values. Kendal-Stuart correctionhas greater size than Yates z test. In most situations, Kendal-Stuart correction has greater sizethan the adjusted test as shown in Table 4.2 and 4.3 as well as in Figure 2. The z test has thesize exceeding nominal level, whereas none of the other tests do.The adjusted test has a power advantage over Fisher test, as noted in Table 4.4, 4.5, and 4.6as well as Figure 3. The five unconditional tests are as powerful as the mid-p method. The poweris the same for Crans-Shuster test and the modified Fisher p-value as shown in Table 4.4 and 4.5.It is no surprise that the z test is the most powerful. The power of Kendal-Stuart correction alwayslies between the power of the z test and Yates z test. In general, Kendal-Stuart correction hashigher power than the adjusted test in the range of µ = 0, 0.08, . . . , 0.72 as shown in Table 4.4 and4.5 as well as in Figure 3. The numerical distances of power between any two tests decrease as nincreases. For example, Table 4.6 shows that the adjusted test is more powerful than Fisher test forsamples of sizes 17 to 57 but the two tests give the same power for the sample of size 87. Again,Table 4.6 says that the adjusted test is less powerful than Kendal-Stuart correction for the sampleof size 17 but the two tests show the same power for the sample of size 87. Figure 4 explains



Eur. J. Stat. 1 (2021) 105that the data-based adjustment behaves well, as evidenced by the close agreement between theobserved and actual power at different significance levels. Concerning the power of test, it is saidthat the validity is questionable in an unconditional evaluation of a conditional test (Hirji, Tan,and Elashoff, 1991) arguing that a conditional test is naturally less powerful than an unconditionaltest. The adjustment decreases the p-values in small samples. This is clearly displayed in Table4.1 and Figure 1 as well as in the examples (Section 7). In both the fish experiment and the ladytasting tea experiment, we have seen that the p-value of the adjusted test is less than that ofFisher test. The adjusted test has greater p-value than the mid-p method at the observed point.It is the opposite, however, when the frequency is greater than its expected value. In addition,Kendal-Stuart correction has smaller p-values than the adjusted test (see Section 7).The adjusted test has been compared with the other ten tests but special attention is given tothe comparison with the mid-p method. Note that the mid-p method is but a particular form of theadjusted test. In rare cases, when F (y1) = S(y1), we have 1− F (y1) = 1
2 and 1− S(y1) = 1

2 andthen the adjusted test (3.7) equals the mid-p method. In addition, they have a common point: Theadjusted test has the left- and right-sided p-values summing to 1 and so does the mid-p method.The adjusted test is easy to implement. With 2 × 2 tables, one may use (3.8) and (3.9) tocalculate the one- and two-sided p-values. The same results are obtained from (3.1) and (3.2)divided by one plus the table probability. As for r × c tables, one may refer to (6.3) to calculatethe p-values of the adjusted test. Also, one may use (6.2) to obtain the p-value of exact conditionaltest and then divided by one plus the probability of observed table.The mid-p method is more powerful than the adjusted test but the increment of power comesfrom the factor 12 . The adjusted test holds such properties as the significance level under controlof nominal α, the same modification in the left- and right-sided p-values, and the proportionalreduction from Fisher test, which the mid-p method lacks as noted in Section 5. Concerning theunconditional tests, they are more powerful as well but the power comes partly from the unobservedsamples so that they raise some controversies (recall the golden aphorism). As for approximatetests, they are inappropriate for small samples since the approximations can be very poor in suchcases (see Section 2). One pursues high power of test, but must ensure that the power comes fromthe data at hand and is under control of nominal α. Thus the proper choice of an adjustment isbased largely upon a consideration of both the power of test and the origin of power so that theadjusted test is an option in data analyses.The principle of the data-based adjustment can be employed to deal with other discreteproblems as well, which will be reported separately.
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