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ABSTRACT. Fisher exact test is one of most popularly used methods in modern data analyses. However,
it is conservative because of discreteness. The mid-p method may reduce the conservativeness but it
is defined by the factor % an extra term beyond data. This paper considers an adjustment defined by
a data-based factor. The adjusted test is compared with other ten tests. Special attention is given
to the comparison between the data-based factor and the factor % The standardized version of the
adjusted test is asymptotically standard normal. The adjustment reduces the conservativeness, as
evidenced by increasing test size and power and decreasing p-values. The adjusted test holds such
properties as the significance level under control of nominal a, the same modification in the left- and
right-sided p-values, and the proportional reduction from Fisher test, which the mid-p method lacks.
The mid-p method is more powerful than the adjusted test but the increment of power comes from the
factor % and is not controlled by . The unconditional tests are also more powerful but the power
comes partly from the unobserved samples. The proper choice of an adjustment is based largely upon
a consideration of both the power of test and the origin of power so that the adjusted test is an option
in data analyses. It is easy to implement for 2 X 2 and r X ¢ contingency tables. Two real examples

are given for analyzing 2 x 2 tables and another example for r x c tables.

1. INTRODUCTION

Comparison of two independent binomial proportions occurs most frequently in statistical
analysis. Fisher exact test (Fisher, 1922; Fisher, 1970; Agresti, 1992) is often the basic requirement.
It finds a number of different applications: Although in practice it is employed in the analysis of
2 x 2 contingency tables when sample sizes are small, it is valid for all sample sizes. Fisher test
must be used if the p-value obtained by the chi-squared test is around the significance level, say,
0.05.
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Exact methods guarantee that the size of a hypothesis test is no higher than the nominal level.
Subsection 4.2 will give details about the size of test. Conditioning on both sets of marginal totals,
it provides a simple way to eliminate nuisance parameters in a variety of problems. Yates (1984)
mentioned that tests for independence in a 2 x 2 table must be conditioned on both margins.

Fisher test requires extensive computations, which once hindered its use in practice. That
difficulty does not exist any more however. Nowadays, computers can often implement Fisher test
in a few seconds. Now it has often been employed not only in 2 x 2 tables but also in r x ¢ tables,
even in 2 X 2 x k and r x ¢ X k tables. We will return to this topic in Section 6.

It seems that applied statisticians have still favored Fisher test. However, it is conservative in
the sense of its actual test size being lower than the nominal level (see, for example, Berkson, 1978;
Haviland, 1990; Crans & Shuster, 2008). Efforts have been taken to reduce the conservativeness.
It is of great concern, however, that the properties of Fisher test still hold while reducing the
conservativeness. This is not the case in the mid-p method. For details, see Section 5.

This paper considers a data-based adjustment along the following line of thinking. We begin
with the conservativeness of Fisher test that is known to be attributable to the discreteness. An
intuitive display for the discreteness is shown as the non-exclusivity of the left- and right-sided
p-values. The adjustment is just intended to offset the non-exclusivity. An equation is given as a
fraction of the table probability plus the more extreme probabilities. It is solved for the fraction
under the assumption that the left- and right-sided p-values reduce proportionally to their sum
equal to 1. The solution is a data-based factor, which is further converted to the adjustment. Next
comes a presentation of properties of the adjusted test such as asymptotic normality, p-values,
actual and observed test size, and actual and observed power. The data-based adjustment is also
built into r x ¢ tables. Two real examples are given for analyzing 2 x 2 tables and another example
for r x c tables. The adjusted test is compared with other ten tests. Section 2 will give a brief

overview for these tests.

2. A BRIEF REVIEW OF LITERATURE

Before the development of statistical softwares, statistical inference for contingency tables has
relied on large-sample approximations. The most long-standing is Pearson chi-squared test (Fleiss,
1981). It is constructed from a sum of squared errors, or through the sample variance. An often used
form is its square root, the two-proportion z test. It is the most powerful test among the ten tests,
which will be explained in Subsection 4.3. However it may underestimate true p-values because
of discreteness. Often it becomes necessary to use Yates continuity correction (Yates, 1934), which
adjusts the formula for Pearson chi-squared test by subtracting 0.5 from the difference between
each observed value and its expected value in a 2 x 2 table based on Euler-Maclaurin theorem.
The correction is widely adopted but it may tend to overcorrect. Other corrections are available, for

example, Kendal-Stuart correction (Conover, 1974; Haber, 1980). It is the arithmetic average of a
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chi-squared statistic with its next smaller possible value. Although it has so far received relatively
little attention, we will still include it in our calculations and simulations in Subsection 4.2 and 4.3.
It is widely recognized that large-sample approximations can be very poor when the contingency
table contains both small and large expected frequencies (Agresti, 1992). Fisher (1925) gave a
vivid description that "... the traditional machinery of statistical processes is wholly unsuited to the
needs of practical research."

Alternative exact tests had been developed, for example, unconditional tests (Barnard, 1945;
1947; Haber, 1986; Suissa & Shuster, 1985; Berger & Boos, 1994; Routledge, 1992; Lin & Yang,
2009). Barnard exact test considers all possible values of the nuisance parameter(s) and chooses
the value(s) that maximizes the p-value. By contrast, Fisher test avoids estimating the nuisance
parameter(s) by conditioning on the margins. Barnard test relaxes this constraint on one set of
the marginal totals. Berger and Boos (1994) took the supremum for the p-value over a confidence
interval of values for the nuisance parameter rather than over all possible values. Berger-Boos test
will also be included in all calculations and simulations.

It remains unclear, however, which test statistic is preferred to define the critical region when
implementing Barnard test (Wikipedia, the free encyclopedia). The difficulty lies in the fact that
the choice of test statistics influences a decision. For example, the binomial model has the critical
region defined by the two-proportion z test (Routledge, 1992) and the modified Fisher p-value (Lin
& Yang, 2009) by Fisher test. There are some other arguments on conservativeness. An example
is what the conservativeness is ascribed to the common practice of fixing the nominal level, say, at
0.05 (Upton, 1992). It is not possible to correct Fisher test without also increasing the true a-level
(Berger, 2000). This is implemented in Crans-Shuster test (Crans & Shuster, 2008), which defines
an increment of significance level based on unconditional approach with the critical region defined
by Fisher test. More information and details about the increment will be given in Subsection 4.2.

Unconditional tests are more powerful than Fisher test (Lydersen, Fagerland & Laake, 2009),
but they are not at all commonly used up to date. This is because considerable controversy
surrounds their use in statistical literature (see, for example, Agresti, 2001; Agresti, 2002, p95;
Cheng, Liou, Aston & Tsai, 2008). Fisher criticized the unconditional approach, arquing that
possible samples with quite different numbers of successes than observed were not relevant. In plain
words, the unconditional tests require not only the observed sample at hand but also the unobserved
samples in statistical inferences. Some other statisticians have arqued that the unconditional
approach is artificial because it averages what happened in the observed sample with hypothetical
response distributions, some of which are much different than observed (Agresti, 2001). Obviously,
it has the same meaning as the Fisher argument. A concern is that the power of unconditional
tests comes partly from the unobserved samples. It is noted that some authors including Barnard

himself refuted Barnard test in favor of Fisher test (Agresti, 2002, p95). As for Crans-Shuster test,
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it has so far not gained wide use since fixed significance levels are the standard in real-world
applications (Crans & Shuster, 2008).

To this end one may find a way to compensate the discreteness. A randomization test was
proposed based on the p-value of Fisher test (Tocher, 1950). Nevertheless, this post hoc test has
theoretical interests only and has not been accepted widely in a practical setting (Hirji, Tan &
Elashoff, 1991; Liddle, 1976; Mantel & Greenhouse, 1968).

For highly discrete data when large-sample methods are questionable but exact methods may
be conservative, one could alternatively use adjustments of exact methods based on the mid-p
method (see, for example, Lancaster, 1961; Hwang & Yang, 2001). The mid-p-value is defined as
half the conditional probability of the observed statistic plus the conditional probability of more
extreme values, given the marginal totals. Thus the mid-p-value is less than the ordinary p-value
by half the probability of the observed result. In one view, it has nice properties in terms of
Type | error and power and so is recommended by leading statisticians (see, for example, Hirji,
Tan & Elashoff, 1991; Routledge, 1992; Agresti, 2001; Agresti, 2002, p21; Lydersen, Fagerland
& Laake, 2009). In the other view, a relevant concern is that it is a non-randomized version of
Fisher test (Hirji, Tan & Elashoff, 1991). For example, SISA (Simple Interactive Statistical Analysis
http://www.quantitativeskills.com /sisa/) does not recommend the use of mid-p values. In addition,
it is defined by the factor % an extra term beyond data, which raises some more concerns. Further
details will be given in Section 5. The mid-p method is more powerful than Fisher test but the
increment of power comes from the factor %

Controversy continues about the appropriateness of some exact methods, however, there is still

no consensus (Agresti, 2001). Thus the work continues on the development of the adjustments.

3. DERIVING AN ADJUSTMENT

3.1 Fisher Exact Test and the Conservativeness
Consider the situation in which Y}, j = 1, 2, represents two independent binomial observations
with parameters (n;, ;). It follows that the total sample size n = n; + np with the sample fraction
ki = n;/n, the difference of proportions u = m; — >, and the average T = k;my + komo. The total
frequency is M = Y] + Y5 with the observed data M = m = y; + yo.

Given the parameters ny, np, and m, the hypergeometric probability density function (pdf) is

Fn=1)= (1) (%) / ()

where (7) = al/bl/(a—b)!, £- <t < &4, &&= max(0, m — n2), and €4 = min(ny, m). Then we

have Z&Stﬁa f(t) = 1. The left- and right-sided p-values of Fisher test are given by

Frn)= ) f()and Se(y1) = Y F(1). (3.1)

§-<t<n y1<t<ér
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To conduct a two-sided test, a popular approach (Agresti, 1992) is

Pe(1) = ) F(OIF(t) < F()), (3.2)
§-<t<&y
where f(y;) is the table probability. It is of interest to see the left and right components of a
two-sided p-value. Thus the range of t is divided into the left [{_, tmax] and right half [tmax, €41,
where tmax = timax(f(t), t € [-,&4]). Then we define the position of y; as

y1 = timax(f(t)[(F(t) < F(y1)), t € [€-, tmax])

when y; € [€_, tmax]- Likewise, the position of its opposite point is defined as

yi = timax(F()|(f(t) < f(y1)). t € [tmax. €4]).

With both y; and y;, (3.2) can be rewritten in the form

PE(L)= Y  f(O+ > f().
§-<t<yy yr<t<&t
which shows the left and right components.

It is worth noting that mistakes may occur if ignoring the asymmetrical two-sided p-value
when n; # np. In this case, the right component can differ from the left substantially. Refer to the
example in Pearson (1947)(see Subsection 4.1). The sample sizes are {ny, n,} = {12,8} and the
total frequency is m = 7. Given y; = 2, we have the two-sided p-value Pg(1) = 0.062 with the
left component 0.052 and the right 0.01. When ny = no, y{ is the mirror image of y; and so the two
components are equal. Suppose the sample sizes are {ny, n} = {10, 10}, the two-sided p-value
becomes Pr(1) = 0.35 with the left component 0.175 and the right 0.175. Recalling the forms seen
in Agresti (2002, p93), they are fit only for symmetrical two-sided p-values when n; = n,.

In this way, another possibility of two-sided test (Agresti, 2002, p93) is expressed as

Pr2)= )  fOIt—Ell<n—EM)+ ) f(Olt—El] =y - El),
§-<t<E[t] Elt]<t<éy

where E[t] = mny/n. This approach takes E[t] as the boundary of two halves instead of tnax.
Differences may occur when E[t] # tmax, which will be seen in the fish experiment (Routledge,

1992) in Subsection 7.1. Similarly, the fourth approach (Agresti, 2002, p93) is given by

PE@)=min | >  FOIt<yn)., Y FOIt=n)

§-<t<&y §-<t<&y

+min [ Y A<y, Y A=)

§-<t<&t §-<t<&y



Eur. J. Stat. 1 (2021)

When n; = np, it simplifies to

Pr@3)=2min | )  FOIt<y)., Y FOIt=n)
E_<t<éy §-<t<{y
which happens to be the third approach (Agresti, 2002, p93). Moreover, Dupont (1986) investigated

the advantages of doubling the one-sided p-value in conducting a two-sided test:

Pr(4) = 2FF(11).

To see the conservativeness intuitively, we will use the following procedure: The formula (3.1)

specifies that Fr(y1) and Sg(y1) are the sums of elements in the sets

Ar ={f(t)[{- <t<y}and As = {f(t)[ys <t <&}

The two sets have the union and the intersection

Arus = {f(t)I€- <t <&y} and Apns = {f(1)|t = »1}.

The elements in Ags sum to 1 and in Agns to f()y1). The sets are related by Ap s = Ar + As —
Arns and the sums by 1 = Fe(y1) + Se(y1) — (1) or

FE(y1) + SF(y1) = 1+ f(y1).

This signifies the non-exclusivity when the sum 1 + f(y;) > 1, which is an intuitive display of
the discreteness. It indicates that the small sample effect may overestimate p-values, meaning the
conservativeness.

In a continuous distribution, inclusion or exclusion of the observed point is immaterial so
that the left- and right-sided p-values sum to 1. In a discrete distribution, inclusions lead to
Fr(y1) + SF(y1) > 1 (Hirji, Tan, and Elashoff, 1991). Observe what happens to 1 + f(y1) as n
increases. It returns the maximum of 2 when {ny, no} = {1,0} and {y1,y>} = {1,0}. In the fish
experiment, where n = 6, we have 1+ f(y;) = 1.05. When the sample size magnifies three times,
e, n = 18, we have 1 + f(y;) = 1.000021. As n increases indefinitely, 1 4+ f(y1) approaches
nearer and nearer to the minimum of 1. In words, the sum is the measure in the continuous-
discrete classification: 2,1.05,1.000021, ... refer to discreteness and 1 refers to continuousness.
The problem at hand is how to offset the non-exclusivity or how to make the left- and right-sided
p-values summing to 1 when sample sizes are limited.

3.2 A Data-based Adjustment
In doing so, an equation is given as a fraction of the table probability plus the more extreme

probabilities:

Fy1) =W f(y1) + P(t <y1) and S(y1) = (1 = W)f(y1) + P(t > y1), (3.3)
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where W € [0,1] is the fraction, P(t < y1) = )¢ <4, F(£), and P(t > y1) = 3, _<¢, F(2).

Now the equation (3.3) indicates

F(y1) +S(n)=1and S(y1) =1 — F()1).

Stevens (1950) proposed W = U, where U is a uniform (0,1) random number and then (3.3)
represents the randomized p-value. While the randomized p-value has theoretical interests only,
one may turn to the expected value of U (Agresti 2002, p27), ie, W = % Then (3.3) becomes
the mid-p method. In another context, the fraction W is regarded as the weight in the weighted

average of the two probabilities obtained by inclusion and exclusion of the observed point:
WIf(y1) + P(t <y)] + (1 =W)[0+ P(t <y1)] =W F(y1) + P(t < y1).

The weight is also known as W = % in the mid-p method (Hirji, Tan & Elashoff, 1991).

No matter which mechanism defines it, the factor % is an extra term beyond data. But one
golden aphorism is clear: Estimation, hypothesis testing, and inference, in general, are based on
the data at hand (Insightful Corporation, 2007, p1). This raises two questions: (1) Is W = %
justified? (2) What does the fraction W equal given a data set? Question (1) will be considered
later in Section 5. Question (2) is solved now.

In view of (3.1), the whole table probability is added to both the left- and right-sided p-values

of Fisher test:

Fr(y1) =)+ P(t <y1)and Se(y1) = f(y1) + P(t > y1) (3.4)

so that their sum may be greater than 1. This predicts a reducing process from Fisher test to an
adjusted test. It seems only reasonable that the left- and right-sided p-values reduce proportionally

to their sum equal to 1:
FEF(vi)  Fn)  F(n)

SF(v1)  Sn)  1-F(n)
where the right-hand side shows the numerator and denominator summing to 1. Evidently, there is

(3.5)

no reason to expect a disproportional reduction. Note that the equality of two ratios in (3.5) does

not imply Fe(y1) = F(y1) and Se(y1) = S(y1). Converting (3.3) into
P(t <y1) = Fn) =W Q) and P(t > y1) = S(1) — (1 = W)Ff ()
and putting it into (3.4) produces

Fr(y1) = f(y1) + F(y1) =W f(y1) and Sp(y1) = f(y1) + S(y1) — (1 = W)f(y1)

or
FE(y1) = @ =W)f(y1) + F(y1) and Sp(y1) = W F(y1) + S(y1). (3.6)
Substituting (3.6) into (3.5) yields

I-W)fy)+F) _ FOn)
W f(y1) + S(y) 1—F(yn)
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" Fn)— W) + Fba)  F(n)

WFEy)+1-F()  1-Fn)
Taking a crossing multiplication

(f) =W rfn)+Fn)A = F(n)) = W) +1—-F(y))F(n)

gives

Fy1) =W F()+F () — Fr) FOa) +W F (i) F(n) — F2(n) = W () F(n) + F (i) — F2 ().

All terms on the right-hand side are also found on the left and so cancel out:

fy1) =W fn) —f(y1)F(n) =0.

Finally, we gain such a solution
W=1- F(yl) and W = S(yl)

So now this is the answer to Question (2). The solution is just the data-based factor.

Now put the data-based factor back into (3.3); then we have

Fy1) =1 = F(n)f(n) + P(t <y1)and S(y1) = (1 — S(»1))f()1) + P(t > y1). (3.7)

This is just the adjusted test, which is comparable with the mid-p method in formula expressions.
The calculation requires iteration, however. With initial values of F(y;) and S(y1), say, 0.5,
adequate convergence usually takes three or four iterations. In addition, putting the data-based

factor into (3.6) results in

Fr(y1) = F(y1) f(y1) + F(y1) and Se(y1) = S(y1) f(y1) + S(v1).

With a little arrangement

FE(y1) = F(y1)(1 +f(y1)) and Se(y1) = S(y1)(1 + f(y1)),

we obtain
F(y1) = FF(yx1)/ (1 + f(y1)) and S(y1) = Sr(y1)/(1 + f(y1))-

Substituting (3.1) into it produces

B f(t) B f(t)
Fy1) = £<Zt<y1 TN and S(y1) = y1<;£+ 5 ) (3.8)

This is the applied form of the adjusted test. It does not require iteration but its result is identical
to that of (3.7). The denominator (1 + f(y1))~! is just the data-based adjustment.

A comparison of (3.8) and (3.1) provides an insight into the mechanism of the adjustment: using
f(t)/(14f(y1)) in place of f(t). With this mechanism, the adjustment is used easily in two-sided
test. Let P(1), P(2), P(3), and P(4) denote the adjusted two-sided p-values corresponding to
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Pe(1), Pe(2), Pr(3), and Pr(4), respectively. Applying the adjustment for the popular approach
(3.2) produces

P(1)= Y f(O)/A+Fo)IF(t) < F(n)) = Pe(1)/(1+ f(n)). (3.9)
g-<t<és

The adjusted version of another possibility is given by

2 ¢ <r<epy (O — E[t] < y1— E[t]) + 2 gr<e<e, F(OI(E — E[t] 2 y7 — E[t])
1+ f(»)

P(2) =

P(2) = Pr(2)/(1 + f(y1)).

The fourth approach and Dupont approach have the adjusted versions

P(3) = Pe(3)/(1 + f(y1))
and
P(4) = Pe(4)/(1+ f(y1)) = 2F (1),

respectively.

4. PROPERTIES OF THE ADJUSTED TEST

Before seeing properties of the adjusted test, it is good to remember that:

Remark 4.1. The adjustment (1 + f(y1))~" is the reciprocal of the non-exclusivity 1 + f(y;)
and so it offsets the non-exclusivity. Consequently, the two one-sided p-values become mutually
exclusive so that we have S(y1) =1 — F(y1), a property of continuous distributions.

Remark 4.2. The adjustment attains its minimum of (1+f(y1))~% = 0.5 when {ny, n,} = {1,0}
and {y1,y»} = {1,0}. In this situation, Fisher test produces Fr(y1) = 1, Sk(y1) = 1, and
Pe(1) = 2. It is inexplicable to see a two-sided p-value of 2. The adjusted test gives a favourable
turn with the interpretable results f(y1) =1, F(y1) = 0.5, S(y1) = 0.5, and P(1) = 1. It seems as
if Fisher test must be accompanied by the adjustment for it to be perfect. The adjustment reaches
its maximum of (1+ f(y1))~! = 1 as n — oo. This signifies elimination of the non-exclusivity and
so the adjustment vanishes into void.

4.1 Assessing Asymptotic Normality

A standardized version of Fisher test is asymptotically standard normal under Hy (see, for
example, Pearson, 1947 among others) and the same is true for the adjusted test. Given a data
set, the adjustment (1 + f(y1))~! is a constant, which defines a linear transformation from Fg(y;)
to F(y1) as indicated by (3.8). Linear transformations of normal random variables are themselves

normal.
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From the pdf of hypergeometric distribution in Subsection 3.1, the expected value of Y7 is
defined to be E[Y1] = ) . -, < yif(y1) and the variance to be V[Vi] = } . - - {» —
E[Y1]}2f(y1). They are often written in the corresponding analytic forms E[Y1] = mn;/n and

V] = m(:z(nri)gw
Looking at V/[Y1], it is also the variance in Mantel-Haenszel statistic when there is only one stratum,
where the term n — 1 is the finite population correction factor. With the substitution of n for n — 1,
the standardized value (Y; — E[Y1])/+/V[Y1] equals the statistic of two-proportion z test. This is
known to be asymptotically standard normal N(0O, 1) by the central limit theorem. Letting E[Yi]

and V[Y1] be denoted by w and o2, the corresponding pdf of normal distribution is expressed as

. 2
o= e |3 (22 ]

A numerical calculation is provided for comparing the pdf's of hypergeometric and normal

distributions. The example in Pearson (1947) is used again with a program available in R lanquage
(Venables, Smith, et al, 2019). The sample size is n = 20 with sample fractions {ki, ko} =
{0.6,0.4} and the total frequency m = 7. The results are presented in the upper part of Table 4.1.

Table 4.1. Comparing the hypergeometric and normal probabilities

Frequency in treatment group Y;
0 1 2 3 4 5 6 7
Values of probability density function
Hypergeometric ~ 0.0001  0.0043 0.0477 0.1987 03576 0.2861 0.0954 0.0102
Normal 0.0002 0.0043 0.0453 0.1989 03657 0.2817 0.0909 0.0123
Left-sided p-values of Fisher exact test
Hypergeometric ~ 0.0001  0.0044 0.0521 0.2508 0.6084 0.8944 0.9898 1
Normal 0.0002 0.0045 0.0498 0.2487 0.6144 0.8961 0.9870 0.9993
Left-sided p-values of the adjusted test
Hypergeometric ~ 0.0001  0.0044 0.0497 0.2092 0.4481 0.6955 0.9036  0.9899
Normal 0.0002 0.0045 0.0477 02075 0.4499 0.6991 0.9047 0.9872

Distributions

The sample size is n = 20 with sample fractions {ki, ko} = {0.6, 0.4} for treatment and control

group, respectively. The total frequency is m = 7.

The left-sided p-values of Fisher test are computed by accumulating the pdf in left to right order,
shown in the middle part. In this way, we have the left-sided p-values of the adjusted test by using
the adjustment (1+f(y1))~! to the pdf's and the results are listed in the lower part. A comparison
of the adjusted test and Fisher test is displayed in Figure 1.



Eur. J. Stat. 1 (2021)

0.7 + )
Fisher exact test

0.6
05

04

Left-sided p-values

03

0.2

—=-

1 1 1 J

0 1 2 3 4 5 6 7
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Figure 1. Left-sided p-values of the adjusted test and Fisher exact test. The
sample size i1s n = 20 with sample fractions {k;, k,} = {0.6, 0.4} for treatment
and control group respectively. The total frequency is m = 7. Solid line
represents the left-sided p-values calculated from the hypergeometric
distributions and dash line from normal distributions.

Both the table and the figure show that the left-sided p-values of the adjusted test are less
than those of Fisher test. Moreover, we have seen a satisfactory convergence of hypergeometric
distribution to normality, as evidenced by the close agreement between hypergeometric and normal
distributions.

Remark 4.3. The standardized version of the adjusted test is asymptotically standard normal,
which inherits from Fisher test. The asymptotic normality is a premise for building the size and
power of the adjusted test.

4.2 Actual and Observed Test Size

The size of test is often the first consideration when conducting a test. To calculate actual
test size, we want to use the exact conditional method but this is the power function of Fisher test

(Haseman, 1978; Casagrande et al., 1978). Therefore, we take up an extension for the control of
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actual test size. A further extension provides a scope to cover other tests. The method is set up
on the sum m = y; + y» and the odds ratio ¥ = m1(1 — m)/m2/(1 — 7). Here my =M =7
and ¥ = 1 under Hp and m; > 7> and ¢ > 1 under Hg U Hy over the range of u € [0,1). The

conditional density function of y; is given by

)
f()/1| ,’l[)) - Z£7§t§£+ (ntl) (mnit) 'lpt

in terms of the non-central hypergeometric distribution. The expression must give Z&Syﬁ& f(yilm,¢) =

1. It reduces to the central hypergeometric distribution f(y1|m, 1) = (}}) (mniyl) / (},) when the

null hypothesis is true with 9 = 1.

Let yic be the critical value of y; at a-level under Hp. It can be found by

> falm 1) <a (4.1)
Vie<y1<&+
and ), 1<y, <¢. f(yilm 1) > a. The left-hand side of (4.1) is just the the right-sided p-value of
Fisher test in this context.
With the critical value, it is easy to see the conditional test size g(1|m) =3}, -, <, f(y1|lm, 1).

The actual test size can then be determined from g(1|m) by taking the supremum over T:
g(l.m)= sup >  g(1lm)P(m,m), (4.2)
e |
where P(m, ) is the joint distribution of m under Ho,
Pimm) = S () ()71 —m)" .
£-<t<&y

Refer to (3.6) with W = % to get

FuLln) = Fr(m) = 3F0n) and S, () = Sr() = 57 (). (43)

which is the mid-p method. It states that the mid-p value is Fisher p-value minus half the table
probability. Following (4.1), the right-sided p-value of (4.3) is rewritten 3, - . f(y1lm, 1) —
Lf(y1clm, 1) < a in this context. Moving the term 2f(y1c|m, 1) to the right-hand side gives

1
> falm 1) <ot Sf(yaelm, 1), (4.4)
Vie<yi<&+
It is a heuristic that the decrement of p-values is equivalent to the increment of significance level.
Calculating (4.4) requires iteration. Giving an initial value of f(y1.|m, 1), say, 0.5 produces a value
of y1c and further a value of f(y1c|m, 1). Repeating the process yields a stationary value of y;.

with fast convergence.
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Crans-Shuster test uses the significance level plus an increment so that the value of yi. is

given by
Y flalm 1) <a+e (4.5)

Yie<yni<é&y
where € is known to be the increment. It is calculated with

e = inf{e® : sup[(g(1, m)|a +€°) < a]}, (4.6)

where €° represents the addend for the gradually increasing significance level.
Here the right-sided p-value of the adjusted test (3.8) is written }_, -, . f(y1lm, 1)/(1+

f(y1clm, 1)) < a or, in a form more convenient for our present purpose,

Y fnlm 1) <a+af(ncm ). (4.7)

Yie<y <&y

The term a f(y1c|m, 1) is the increment. The calculation of (4.7) requires iteration likewise for
(4.4). Now the method may cover the mid-p method, Crans-Shuster test, and the adjusted test as
long as using (4.4), (4.5), and (4.7) in place of (4.1).

We show a numerical analysis to look into actual test size by taking the supremum over 0 <
m < 1. Asample of size n = 20 is taken with sample fractions {k1, ko} = {0.6,0.4}. That is unequal
allocation, which is known to be best. The nominal level of significance is & = 0,0.0125, ..., 0.1
(one-sided). The increment for Crans-Shuster test is € = 0,0.0124, ..., 0.0570 calculated using
(4.6). Shown in the upper part of Table 4.2 are the findings from the exact conditional method with

the extensions.
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Table 4.2. Actual test size of the adjusted test and the other tests

Nominal o (one-sided)

Tests 0 00125 0025 00375 005 00625 0075 00875 0.1
Exact conditional method with the extensions
Adjusted test 0 0004 0.012 0.012 0025 0033 0.033 0.042 0.057
Fisher exact test 0 0.004 0012 0012 0.018 0.033 0.033 0.042 0.042
Mid-p method 0 0.009 0018 0033 0.042 0.057 0.061 0.096 0.096

Crans-Shuster test 0 0.012 0.025 0.033 0042 0061 0074 0.075 0.096
Algorithm of Crans and Shuster with the extensions

Adjusted test 0 0.004 0.012 0.012 0025 0033 0033 0042 0.057
0.004 0.012 0.012 0.018 0033 0033 0042 0.042
0.009 0.018 0.033 0.042 0057 0061 0.09 0.096
0.012 0.025 0.033 0.042 0.061 0074 0.075 0.096
0.011 0.017 0.033 0.042 0.061 0.061 0.082 0.095
0.011 0.017 0.033 0.042 0.061 0.061 0.082 0.095
0.011 0.018 0.033 0.042 0.061 0.061 0.082 0.095
0.011 0.025 0.033 0.042 0061 0074 0.074 0.095
0.017 0.033 0.057 0.061 0.096 0.09 0.11 0.12
0.003 0.009 0.012 0.018 0.033 0033 0.042 0.042
0.004 0.011 0.017 0.033 0.033 0042 0.042 0.061

Fisher exact test
Mid-p method
Crans-Shuster test
Binomial model
Barnard exact test
Berger-Boos test
Modified Fisher p-value
Two-proportion z test

Yates corrected z test

SO O O O O O O o o o

Kendal-Stuart correction

The sample size is n = 20 with sample fractions {k1, ko} = {0.6,0.4}. The actual test size is
calculated at &« = 0,0.0125, .. ., 0.1 (one-sided) by taking the supremum over 0 < 7w < 1. The
increment of significance level is € = 0,0.0124, .. ., 0.0570 for Crans-Shuster test.

The calculations are repeated by another method, the algorithm described in Crans and Shus-
ter (2008). We extend it along the same line to cover the eleven tests including three conditional,
five unconditional, and three approximate tests. The unconditional tests require not only the ob-
served sample m = y; + y» but also the unobserved samples [1, m) U (m, n — 1]. The binomial
model and Barnard test have the critical region defined by the z test and Berger-Boos test uses
the confidence coefficient of 0.999. Details regarding the extensions are available from the author
upon request. The actual test size of these tests appears in the lower part of the Table 4.2.

The observed test size is computed by Monte Carlo simulation with the same parameter
values as those in calculating the actual size. The observations y; were sampled from binomial
distribution. In each instance, a total of 1000 sets of samples were generated. The nominal level
of significance was a = 0.01, 0.025, and 0.05. The common binomial parameter was prescribed

as m=0,0.1,...,1. Computations are performed for the right-sided p-value of the adjusted test
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S(y1). The fraction of times Hp is rejected for the p-value is calculated. The experiment results in

the observed test size .

o

00

& = I{p-value < a|Hp}/1000.

-]

The experiment covers the other tests as well. In the extreme case m = 0 or 1, the observed test
size is zero for any test at any level. Over the range of 7, the observed size increases first and
decreases later with the peak at m = 0.6 so that only the results for m = 0, 0.3, 0.5, and 0.6 are
listed in Table 4.3.

Table 4.3. Observed test size of the adjusted test and the other tests

m™=20 m™=20.3 m=05 m=0.6
Tests 0.01 0.025 0.05 001 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
Conditional tests
Adjusted test 0 0 0 000200130023 0.0040.0140.025 0.004 0.013 0.03
Fisher exacttest 0 0 0 0.0020.0130.013 0.004 0.014 0.021 0.004 0.013 0.023
Mid-p method 0 0 0 000200130031 0.0080.0210.042 0.011 0.023 0.045

Unconditional tests
0.002 0.023 0.045 0.008 0.025 0.042 0.011 0.03 0.045
0.008 0.013 0.045 0.009 0.021 0.042 0.011 0.023 0.045
0.008 0.013 0.045 0.009 0.021 0.042 0.011 0.023 0.045
0.008 0.023 0.045 0.008 0.021 0.042 0.007 0.023 0.045
0.008 0.023 0.045 0.009 0.025 0.042 0.011 0.03 0.045

Approximate tests
0 0.0130.028 0.063 0.014 0.033 0.066 0.013 0.033 0.069
Yates corrected z test 0 0 0.001 0.002 0.013 0.001 0.008 0.021 0.002 0.011 0.023
Kendal-Stuart correction 0 0 0 0.002 0.007 0.028 0.004 0.013 0.033 0.004 0.013 0.033

Crans-Shuster test
Binomial model
Barnard exact test
Berger-Boos test
Modified Fisher p-value

o O oo O O
oSO O O O O
o O O o o

o

Two-proportion z test 0

o

The observed test size is given by the fraction of p-values less than or equal to o under Hp in
1000 sets of samples, where o = 0.01, 0.025, 0.05 (one-sided). The increment of significance
level is € = 0.0081, 0.0272, 0.0522 for Crans-Shuster test. The sample size is n = 20 with sample
fractions {ky, ko} = {0.6,0.4}.

Appearing in Figure 2 is a comparison of the adjusted test and the other tests for the observed

test size.
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Figure 2. A comparison of the adjusted test and the other ten tests for the
observed test size. The sample size is n = 20 with sample fractions {k;, k,} =
{0.6, 0.4}. The horizontal straight line refers to the nominal level o = 0.05 (one-
sided). Dash line represents the mid-p method and solid line the other tests.

4.3 Actual and Observed Power
Actual power is calculated from the exact conditional method with the extensions under HoUH1
with m > 7 and ¥ > 1. First, we get the conditional power of the level-a test g(¢|m) =
2 y.<y<e, F(alm, ). Then the actual power is given by

g, m,m) = Y g($|lm)P(m, m, m), (4.8)

1<m<n-—-1

where P(m, w1, m2) is the joint distribution of m under Hyo U Hy,

Plmm ) = 3 (1w - m)nt (f2) mt L - mynm
£-<t<&t



Eur. J. Stat. 1 (2021)

Similarly, we give a numerical analysis to look into the actual power. The sample size is the
same as that for the actual test size. The significance level is taken to be 0.01, 0.025, 0.05, and
0.1 (one-sided). The other parameters are specified as m, = 0.2 and . = 0,0.08, ..., 0.72. In the
upper part of Table 4.4 are given the results at a = 0.05 from the exact conditional method with

the extensions.

Table 4.4. Actual power of the adjusted test and the other tests (B € (0, 1))

Difference u

Tests
0 008 016 024 032 04 048 056 064 0.72
Exact conditional method with the extensions
Adjusted test 0.012 0.04 0.087 0155 0.252 0.384 0548 0.72 0.864 0.95
Fisher exact test 0.003 0.017 0.052 0117 0.219 0357 052 0.683 0.82 0.923
Mid-p method 0.014 0.049 0.116 0.222 0363 0523 0.68 0.811 0.908 0.971

Crans-Shuster test 0.036 0.085 0.156 0.252 038 053 0682 0.812 0.908 0.971

Algorithm of Crans and Shuster with the extensions

Adjusted test 0.012 0.04 0.087 0.155 0.252 0.384 0548 0.72 0.864 0.95
Fisher exact test 0.003 0.017 0.052 0.117 0.219 0357 052 0.683 0.82 0.923
Mid-p method 0.014 0.049 0.116 0.222 0363 0.523 0.68 0.811 0.908 0.971
Crans-Shuster test 0.036 0.085 0.156 0.252 038 053 0.682 0.812 0.908 0.971
Binomial model 0.036 0.085 0.156 0.252 038 053 0.682 0.812 0.908 0.971

Barnard exact test 0.036 0.085 0.156 0.252 0.38 053 0.682 0.812 0.908 0.971
Berger-Boos test 0.036 0.085 0.156 0.252 038 053 0.682 0.812 0.908 0.971
Modified Fisher p-value 0.036 0.085 0.156 0.252 038 053 0.682 0.812 0.908 0.971
Two-proportion z test  0.041 0.106 0.203 0.325 0.465 0.61 0.748 0.861 0.938 0.98
Yates corrected z test  0.003 0.017 0.052 0.117 0.219 0357 052 0.683 0.82 0.923
Kendal-Stuart correction 0.014 0.047 0.11 0.202 0.322 0.461 0.61 0.758 0.885 0.968

The actual power is calculated at & = 0.05 (one-sided). The increment of significance level is
€ = 0.0522 for Crans-Shuster test. The sample size is n = 20 with sample fractions
{ki, ko} = {0.6,0.4}. The difference is y, the probability for control group is m> = 0.2, and that

for treatment group is T = 7o + .

Also the calculations are repeated by the algorithm of Crans and Shuster with the extensions.
The results are presented in the lower part of Table 4.4.
To see the observed power, we appeal again to Monte Carlo methods. Also we take the same

parameter values as those in calculating the actual power. Crossing combination of these quantities
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returns 10 patterns. The observed power is given by

1000
1-6= Z I{p-value < a|H;}/1000.
1

Table 4.5 portrays the results of the experiment sets at o = 0.05.

Table 4.5. Observed power of the adjusted test and the other tests (B € (0, 1))

Difference u

Tests 0 008 016 024 032 04 048 056 064 072
Conditional tests

Adjusted test 0.013 0049 0.101 0166 0.262 0387 0.566 0739 0.878 0.95

Fisher exact test 0005 0.019 0063 0.129 0222 0.362 0538 0.698 0.843 0.933

Mid-p method 0.015 0058 0.127 0229 0377 0532 0.696 0832 0.918 0.975

Unconditional tests
Crans-Shuster test 0.04 0.089 0.159 0.257 0.388 0537 0.696 0.832 0.918 0.975
Binomial model 0.04 0.089 0.159 0.257 0.388 0537 0.696 0.832 0.918 0.975
Barnard exact test 0.04 0.089 0.159 0.257 0.388 0537 0.696 0.832 0.918 0.975
Berger-Boos test 0.04 0.089 0.159 0.257 0.388 0537 0.696 0.832 0.918 0.975
Modified Fisher p-value 0.04 0.089 0.159 0.257 0.388 0.537 0.696 0.832 0.918 0.975
Approximate tests
Two-proportion z test ~ 0.049 0.111 0.209 0339 0.483 0.626 0.755 0.872 0.937 0.979
Yates corrected z test  0.005 0.019 0.063 0.129 0.222 0.362 0.538 0.698 0.843 0.933
Kendal-Stuart correction 0.015 0.057 0.119 0.203 0331 0472 0.63 0.777 0.895 0.971

The observed power is given by the fraction of p-values less than or equal to o under H; in 1000
sets of samples, where oo = 0.05 (one-sided). The increment of significance level is € = 0.0522 for
Crans-Shuster test. The sample size is n = 20 with sample fractions {ki, ko} = {0.6,0.4}. The
difference is u, the probability for control group is m> = 0.2, and that for treatment group is

T = T2 + W

The observed average proportion in the jth group is close to the pre-specified value of ;. The

observed power of these tests can readily be grasped from Figure 3.



Eur. J. Stat. 1 (2021)

1 -
09 )
Two-proportion z test ...
0.8
0.7
Crans-Shuster test o o A Adjusted test
0.6 Binomial model
Barnard exact test
05

Berger-Boos test Kendal-Stuart correction

Modified Fisher p-value

0.4

i Fisher exact test
0.3 i L. Yates corrected z test

Observed power

0.2 i B Mid-p method
0.1

1

0 0.08 0.16 0.24 0.32 0.4 048 056 0.64 0.72
Difference p

1 1 1 ]

Figure 3. A comparison of the adjusted test and the other ten tests for the
observed power. The observed power is given by the fraction of p-values less
than or equal to aunder H, in 1000 sets of samples, where a = 0.05 (one-sided)
but 0.05 + 0.0522 for Crans-Shuster test. The sample size is n = 20 with sample
fractions {k;, k,} = {0.6, 0.4}. The success probability of control group is 7, =
0.2 and that of treatment group is 7, = m, + w. Dash line represents the mid-p
method and solid line the other tests.

Figure 4 shows a comparison between the observed and actual power of the adjusted test at a

variety of significance levels.
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Figure 4. A comparison of the observed and actual power of the adjusted test. Solid lines
indicate the observed power from 1000 times of simulations. Dash lines represent the actual
power from the exact conditional method (Haseman, 1978, Casagrande et al., 1978) with
extensions or the algorithm of Crans and Shuster (2008) with extensions. The sample size is n
= 20 with sample fractions {k;, k,} = {0.6, 0.4}. The success probability of control group is x,
= 0.2 and that of treatment group is 7, = m,+u.

The above calculations are limited to fixed sample sizes. Now consider a more comprehensive
simulation for samples of various sizes. The exact conditional method can return sample sizes but
computations are not straightforward and require iteration. Here the sample size is computed by
(4.7) and (4.8) for the adjusted test with the parameter values a = 0.05 (one-sided), 8 = 0.1,
{ki,ko} = (0.6,0.4), mo = 0.2, u = 0,0.08, ..., 0.72, and m; = 7y + u. Needless to say, this
requires extensive computations. The actual power is calculated with the same method as that for
the fixed sample and the observed power is still computed by Monte Carlo methods. For simplicity

in presentation, only the findings for © = 0.32,0.4, .. ., 0.72 are displayed in Table 4.6.
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Table 4.6. Power of the adjusted test and the other tests for samples of various sizes (8 = 0.1)

Actual power Observed power
Difference 032 04 048 056 064 072 032 04 048 056 0.64 0.72
Sample size n 87 57 4 31 23 17 87 57 41 31 23 17

Conditional tests
Adjusted test 09 0.9 0.8950.9030.907 0.901 0.908 0.9 0.894 0.903 0.907 0.908
Fisher exact test 0.9 0.887 0.88 0.901 0.888 0.848 0.908 0.886 0.879 0.901 0.885 0.853
Mid-p method 0.928 0.924 0.926 0.944 0.945 0.946 0.93 0.926 0.919 0.948 0.935 0.946
Unconditional tests
Binomial model 0.923 0.919 0.909 0.923 0.924 0.946 0.926 0.922 0.905 0.925 0.92 0.946
Barnard exact test  0.9230.919 0.909 0.923 0.924 0.946 0.926 0.922 0.905 0.925 0.92 0.946
Berger-Boos test 0.928 0.925 0.935 0.943 0.945 0.946 0.93 0.927 0.929 0.948 0.935 0.946
Modified Fisher p-value 0.928 0.932 0.935 0.944 0.945 0.946 0.93 0.938 0.929 0.948 0.935 0.946
Approximate tests
Two-proportion z test  0.935 0.936 0.945 0.948 0.963 0.958 0.937 0.942 0.943 0.952 0.958 0.951
Yates corrected z test  0.893 0.887 0.88 0.896 0.888 0.848 0.901 0.886 0.879 0.9 0.885 0.869
Kendal-Stuart correction 0.9 0.889 0.895 0.903 0.91 0.944 0.908 0.889 0.894 0.903 0.909 0.946

The probability for control group is m = 0.2 and that for treatment group is m; = 7 + u. The
sample size is computed by (4.7) and (4.8) with iterations, where the sample fractions are
{ki, ko} ={0.6,0.4}. The actual power is calculated at & = 0.05 (one-sided) and the observed
power is given by the fraction of p-values less than or equal to o under H; in 1000 sets of

samples.

We have seen that the adjusted test has its power around 0.9 but the other tests have a wide
variety of power.

Power calculations and simulations were conducted at o = 0.01, 0.025, 0.05, and 0.1 and
B € (0,1). In Table 4.4, 4.5, 4.6, however, only the results at the 0.05-level are listed since the
results are generally the same for other levels.

Before leaving this section, there are some notes of interest:

Remark 4.4. On comparing the upper and lower parts of Table 4.2 and 4.4, we see that two
distinct algorithms provide identical results of actual test size and power. One is the exact condi-
tional method with the extensions. The other is an unconditional method, the algorithm of Crans
and Shuster with the extensions.

Remark 4.5. Two tests produce identical values of power (see Table 4.4 and 4.5). One is
the modified Fisher p-value, which gives a decreased p-value. The other is Crans-Shuster test,

which uses an increased significance level. This is no surprise: Both of them are derived from
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unconditional approach with the critical region defined by Fisher test so that the decrement of
p-values is equivalent to the increment of significance level. The equivalence also holds for the
size of test except for a few differences literal (see Table 4.2 and 4.3). Crans-Shuster test is not so
easy to compute as the modified Fisher p-value. In fact, the increment of significance level € (4.6) is
too time consuming to compute for larger sample sizes. Hence we could not include Crans-Shuster
test in the more comprehensive simulation.

Remark 4.6. The binomial model has the critical region defined by the z test (Routledge, 1992).
It remains unclear which test statistic is preferred when implementing Barnard test (Wikipedia, the
free encyclopedia). In this context, we also took the z test to define the critical region of Barnard
test such that it yields the result identical to that of the binomial model. Different results may be
encountered, however, in other contexts. For example, Barnard test may have the critical region

defined by Fisher test and then it becomes the modified Fisher p-value (Lin and Yang, 2009).

5. COMPARING THE DATA-BASED FACTOR AND THE FACTOR %

The equation (3.3) is the adjusted test when W = 1 — F(y1) and the mid-p method when
W = % Both of them address the conservativeness of Fisher test. In comparing the data-based
factor and the factor % our main interest is to see whether or not the properties of Fisher test hold.
Thus Fisher test is taken as the starting point. On the one hand, Fisher test holds the property
that the significance level is under control of nominal o, which in turn dominates over the test size
and power. On the other, Fisher test gives p-values depending on observed data (Agresti, 2002,
p95), especially the ratio of the left- to right-sided p-values Rg = Fe(y1)/SF(y1) may shed light
on the nature of data.

5.1 Controlled and Uncontrolled Significance Levels

As we mention in Subsection 4.2, a test may be conducted at the nominal & plus an increment.
The increment is €, a f(y1c|m, 1), and %f(ylc|m, 1) for Crans-Shuster test, the adjusted test, and
the mid-p method as shown in (4.5), (4.7), and (4.4), respectively. It is of great concern, however,
that the increment is still under control of nominal a. This is true for Crans-Shuster test and the
adjusted test, arguing that the increment € in (4.6) and the increment o f(y1c|m, 1) in (4.7) are the
functions of a. It is not true for the mid-p method, however, because the increment %f(ylclm, 1)
in (4.4) is independent of a.. For clarity, the right-hand sides of (4.1), (4.7), and (4.4) are arranged

successively as an array
1
a, at+af(yiclm 1), anda+§f(ylc|m,1), (5.1)

which are the significance levels for Fisher test, the adjusted test, and the mid-p method, respec-
tively.
Each increment of significance level has a corresponding increment of test size. For example,

we return now to Table 4.2 and see the column "Nominal level @ = 0.05", where the values of
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actual test size for the three tests are
0.018, 0.018 +0.007 = 0.025, and 0.018 + 0.024 = 0.042,

respectively. There is a one-to-one correspondence between the increment of significance level and
the increment of actual test size. Regarding the adjusted test, the increment of significance level
a f(y1c/m, 1) corresponds to the increment of actual test size 0.007. The mid-p method shows the
increment of significance level %f(ylc|m, 1) and the corresponding increment of actual test size
0.024. As expected, Fisher test has the value of actual size 0.018 much lower than the nominal
level 0.05. Using the increment of significance level, the adjusted test gains higher value 0.025 and
the mid-p method even higher value 0.042 but both of them are still lower than the nominal level.

Such a correspondence is also seen in the relevant values of power. Looking at Table 4.4, the

column "Difference u = 0.64" gives the values of actual power for the three tests:
0.82, 0.82+0.044 = 0.864, and 0.82 + 0.088 = 0.908.

The corresponding increment of actual power is 0.044 for the adjusted test and 0.088 for the mid-p
method.

We have seen that all the increments in the mid-p method are larger than the corresponding
increments in the adjusted test. However, it is important to note that:

Remark 5.1. With respect to the adjusted test, the increment of significance level o f(y1c|m, 1)
is under control of a and so are the corresponding increments of test size and power.

Remark 5.2. The mid-p method uses a higher significance level with the increment %f(ylc|m, 1),
which is in general larger than o f(y1c|m, 1). This predicts a higher test size and power. However,
the increment of significance level %f(ylc|m, 1) is not controlled by o and as a consequence, the
corresponding increments of test size and power suffer from the same problem.

5.2 Proportional and Disproportional Reduction

Any modification should be the same for the left- and right-sided p-values. This is the case for
the adjusted test. Looking at (3.8), the adjustment (1 + f(y1))~ ! is the same for the two one-sided
p-values.

By contrast, this is not the case for the mid-p method. For clarity, (4.3) is put into the form

3f(1) 3f(y1)
FLn) = ) _ (f(t) -2 ——]adS (n)= ) [f-—"—""=]| (52
¢ <t<n n-i-tl n<t<és Srontl
Since y1 —&- +1# &+ — y1 + 1 holds in general, it follows that
lf ilr

yi—& +1 E+—yn+1
It states that the subtrahend on the left-hand side differs from that on the right. In the fish
experiment, for example, the calculation of (5.3) results in 0.025 # 0.00625. Evidently, the mid-p

method uses different modifications for the two one-sided p-values.
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Further insight is provided by the ratio of the left- to right-sided p-values. The adjusted test
(3.8) indicates that the ratio R is identical to Rf:

_FO) _ FEb)/(A+fn)) _
SGn) — SFo)/(A+fn) — 7

which gives a confirmation of the proportional reduction as mentioned in Subsection 3.2.

R

Conversely, the mid-p method indicates a disproportional reduction from Fisher test. This can
easily be seen from (4.3). When Fr(y1) # Sr()1), it gives the ratio R, unequal to Rg:

_ Fln) _ Frn) — 5f(0n)

Stn)  Se(n) = 3f(n)

A consequence of this is that the smaller one in the left- and right-sided p-values is depressed,

R

£ Rr.

which predicts an increase in Type | error rate (very significance level and pseudo power are
attainable). Again in the fish experiment, the adjusted test gives the ratio R = 0.048/0.952 = 0.05,
which is identical to RF = 0.05/1 = 0.05, whereas the mid-p method gives the much less ratio
R, =0.025/0.975 = 0.026. In a careful examination, the mid-p method has the left-sided p-value
depressed from 0.048 to 0.025 with the decrement 0.023 and the right elevated from 0.952 to 0.975
with the increment 0.023. The increment is just equal to the decrement. That is equivalent to Type
| error rate being elevated by 0.023.

Here the thing being counted is the factor % that raises some more concerns: the significance
level not being entirely controlled by «, different modifications in the two one-sided p-values, and
disproportional reduction from Fisher test. This explains that the mid-p method fails to hold the

properties of Fisher test. We now return to Question (1): The solution is obvious enough.
6. EXTENSIONS FOR r X ¢ CONTINGENCY TABLES

As a preparation for extending to r X ¢ contingency tables, the cell counts in 2 x 2 tables
are denoted by {Yj;} for i = 1,2 and j = 1,2. Given a data set {Yj;} = {y;}, we have the row
margins {n1, no}, the column margins {my, my}, and the total number of observations n. The pdf

of hypergeometric distribution in Subsection 3.1 is rewritten in a more general form
niltnatmyimo!

f(t) = ,
() n'y11lyialys1!y2o!
where f(t) is the probability of table t, {— <t < &4, &~ = max(0, m—ny), and £ = min(ny, my).

This form provides a room for extending to r x c tables.

With a little straightforward, i = 1,2 and j = 1,2 are extended to / = 1,2,..., R and j =
1,2,..., C, followed by the row margins {ny, no, .. ., nr} and the column margins {my, mo, ..., mc}.
One may use the network algorithm (Mehta & Patel, 1983) to generate all possible tables with
given margins. Letting t =1,2,..., T denote all the tables, the pdf is extended to
[T:(ni) [T;(m1)

1) = At (i)

(6.1)
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with a multiple hypergeometric distribution. Since (6.1) holds, it must be true that Z;l f(t)=1.
Assume that f(y) is the probability of the observed table y, so that the popular approach for
a two-sided test (3.2)(Agresti, 1992) is extended to

.
Pe=) FOIf(t) <F(y)). (6.2)
t=1

This is just the statistic of exact conditional test. Note that there are no one-sided p-values in
r x c tables. When R =2 and C = 2, (6.2) reduces to (3.2) for 2 x 2 tables.

Applying the data-based adjustment, (3.9) is extended to
T

Pz=) F(6)/(L+F)IF(t) < F(y) = Pe/(L+f(¥)). (6.3)

t=1
This is the statistic of adjusted test for r x c tables. The reducibility also holds for (6.3): When
R =2 and C =2, (6.3) reduces to (3.9) for 2 x 2 tables.

Special algorithms and software are widely available for computing exact conditional tests
for r x c tables (Agresti, 2002, p98). For larger tables, one can use Monte Carlo method to
sample randomly under the multiple hypergeometric distribution from the set of tables with the
given margins. The estimated p-value is then the sample proportion of tables having test statistic
value at least as large as the value observed.

Using the same principle, the data-based adjustment is easy to be applied in 2 x 2 x k and
r x ¢ X k tables. As R and / or C increase, however, the conservativeness issue for conditional

tests becomes less problematic and then adjustments become less important.

7. EXAMPLES

7.1 The Fish Experiment
To illustrate the use of the adjusted test, we take the fish experiment from Routledge (1992)
for ease of comparison and repetition. It was designed to assess the ability of ozone to control
bacteria in a fish tank. Six tanks were randomly allocated into two groups of three each. A fixed
amount of bacteria was added to each of them. Tanks in one group were also treated with ozone.
This group will be labeled the treatment group; the other, the control group. After some time, all
three tanks in the control group contained dead fish, whereas none of the other tanks did. Table

7.1 shows the results of the experiment.
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Table 7.1. The results of the fish experiment

Response category

Treatment - - Total
Some dead fish No dead fish
Treated 0 3
Untreated 3 0
Total 3 3

Source: Routledge (1992).

Let 71 be the probability for the treatment group and let 7, be that for the control group. State
the decision rule for testing Hp : m1 = 7 versus Hy : m1 < 7o at o = 0.05. Crans-Shuster test
uses the significance level plus an increment € calculated by a call to (4.6).

The analysis gives the table probability of f(y1) = 0.05. This is just the left-sided p-value of
Fisher test in this case. It exactly matches o = 0.05. The right-sided p-value is 1 so that we have
the sum of 1.05. The two-sided p-values (the left, right components) are Pe(1) = 0.1 (0.05, 0.05),
Pg(2) = 0.05 (0.05,0), Pr(3) = 0.1 (0.05,0.05), and Pr(4) = 0.1. Note that Pr(2) alone gives
different values because E[t] = 1.5 is different from tp.x = 1 in this case. This reminds us that
another possibility of two-sided test must be used with caution, which has already been predicted
in Subsection 3.1. The left- and right-sided p-values from the mid-p method are F;(y1) = 0.025
and S;(y1) = 0.975 with the sum of 1 and the two-sided p-value is P, = 0.05. Regarding the
adjusted test, the left-sided p-value comes to F(y;) = 0.048 that is significant at the 0.05 level. It
has a complementary right-sided p-value S(y1) = 0.952. This is in favor of such an interpretation
that using ozone is better than not using. The two-sided p-values are P(1) = 0.095 (0.048, 0.048),
P(2) = 0.048 (0.048,0), P(3) = 0.095 (0.048,0.048), and P(4) = 0.095.

It is of interest to see possible results from different frequencies. Thus we write t = Y7 and
m—t =Y where t =0,1,2,3. The left- and two-sided p-values are computed for all the eleven

tests as shown in Table 7.2.
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Table 7.2. Left- and two-sided p-values of the eleven tests in the fish experiment

The left-sided (Y1 = t) The two-sided (Y1 = t)
fests 0 1 2 3 0 1 2 3
Conditional tests

Adjusted test 0.048 0345 0655 0952 0095 0.69 0.69 0.095

Fisher exact test 0.05 05 0.95 1 0.1 1 1 0.1

Mid-p method 0.025 0275 0725 0975 0.05 0.55 0.55 0.5

Unconditional tests

Crans-Shuster test 0.05 05 0.95 1 0.1 1 1 0.1
Binomial model 0.016 0344 0656 0984 0031 0.687 0687 0.031
Barnard exact test 0016 0344 0656 0984 0.031 0687 0687 0.031
Berger-Boos test 0017 0345 0655 0983 0032 0.688 0688 0.032

Modified Fisher p-value 0.016 025 0.766 0.781  0.031 0.5 0.5 0.031
Approximate tests

Two-proportion z test 0.007 0207 0793 0993 0.014 0414 0414 0.014

Yates corrected z test 0.051 0207 0793 0949 0102 0414 0414 0102

Kendal-Stuart correction  0.034 0.207 0.793 0966 0.068 0.414 0527 0.068

Of these, the two-sided p-values of Fisher test and the adjusted test are calculated by the
popular approach (3.2) and (3.9), respectively.

The column "t = Q" refers to the results of the observed data. The left-sided p-value of the
adjusted test is smaller than that of Fisher test and greater than that of the mid-p method. We
have already seen in Section 5, however, that the adjusted test holds the properties of Fisher test
and has the increment of power under control of &, which the mid-p method lacks (see Remark 5.1
and 5.2). The binomial model and Barnard test reach the same results. The p-values of Berger-
Boos test and the modified Fisher p-value are less than the p-value of the mid-p method. The
unconditional tests have smaller p-values than the adjusted test. As mentioned in Subsection
4.2, however, when using the unconditional tests, the inference depends partly on the unobserved
samples so that considerable controversy surrounds their use in statistical literature (recall the
golden aphorism). The minimum p-value comes from the z test and the maximum from Yates z test.
The left-sided p-value of Yates z test resembles that of Fisher test. The p-value of Kendal-Stuart
correction is less than that of Yates z test. Kendal-Stuart correction has smaller p-value than the
adjusted test. Note, however, that approximate tests are inappropriate for such a small sample
since the approximations can be very poor in such cases (see Section 2). They are mentioned here
for comparison only. The relative change of the two-sided p-values among these tests is the same

as that of the left-sided p-values.
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Table 7.2. also lists the results in the range of t = 1,2, 3, which show that the manner of
variability among these tests is the same as that for t = 0. The left-sided p-values of the adjusted
test are greater than those of the mid-p method in the region t = 0,1 but smaller in the region
t = 2, 3 with the differences {0.023,0.07, —0.07, —0.023|t = 0, 1, 2, 3}. Obviously, the differences
in the two regions just cancel each other out.

7.2 The Lady Tasting Tea Experiment

Another example is the lady tasting tea experiment, which is quoted from Agresti (2002, p92).
A lady tasted eight cups of tea, four of which had milk added first and four of which had tea added
first. She knew there were four cups of each type and had to predict which four had the milk added
first. The order of presenting the cups to her was randomized. The results of the experiment are

presented in Table 7.3.

Table 7.3. The results of lady tasting tea experiment

Guess poured first

Poured First Milk Tem Total
Milk 3 1
Tea 1
Total 4

Source: Agresti (2002, p92).

Thus the hypotheses to be tested are Hy : ™3 = T vs Hy @ ™1 > T, where 7 is the probability
for milk added first and 7o that for tea added first. The experimental design fixed both marginal
distributions, since the researcher had to predict which four cups had milk added first. Thus the
hypergeometric applies naturally for the null distribution of Y3.

With the table probability f(y;) = 0.229, the right-sided p-value of Fisher test is Sg(y1) =
0.243. It fails to reach significance at o = 0.05 so that this result does not establish an association
between the actual order of pouring and her predictions. It is not helpful using any other tests.
For example, the mid-p method gives S; (y1) = 0.129 and the adjusted test S(y;) = 0.198.

In an attempt to assess the association, we repeat the calculations with one to sixfold increase

in the sample size. Table 7.4 presents the right-sided p-values.
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Table 7.4. The right-sided p-values calculated from samples of various sizes

Multiples of sample sizes

fests 1 2 3 4 5 6
Conditional tests
Adjusted test 0.198 0.062 0.019 0.006 0.002 0.001
Fisher exact test 0243 0.066 002 0.006 0.002 0.001
Mid-p method 0129 0.036 0.011 0.003 0.001 0

Unconditional tests
Crans-Shuster test 0.243 0.066 0.02 0.006  0.002 0.001

Binomial model 0.145 0.038 0.011 0.004 0.001 0
Barnard exact test 0.145 0.038 0.011 0.004 0.001 0
Berger-Boos test 0.146 0.039 0.012 0.005 0.002 0.001

Modified Fisher p-value  0.145 0.038 0.011 0.004 0.001 0
Approximate tests
Two-proportion z test 0.079 0.023 0.007 0.002 0
Yates corrected z test 024 0.067 0.021 0.007 0.002
Kendal-Stuart correction  0.159 0.057 0.019 0.006 0.002

It is no surprise that as n increases the p-values decrease. Multiple 1 refers to the original
sample sizes. All of the right-sided p-values are greater than 0.05. Certainly Hg is not rejected at
a = 0.05 by any of the tests. With double sample sizes, however, Hg is rejected at o = 0.05 by
the mid-p method, the unconditional tests, or the z test. This implies that there be an association
between the actual order of pouring and her predictions. When sample sizes increase by threefold
or more, any of the tests may give p-values below 0.05. In addition, the numerical distances
between any two p-values decrease as n increases.

7.3 The Illustrative Example for r x ¢ Tables

For comparing easily, we take the illustrative example from Howell and Gordon (1976), as
shown in Table 7.5.

Table 7.5. An illustrative example for exact conditional test

Y11:4 Y12:4 Y13:0 n1:8
Y21 =0 Yoo =4 Yoz =3 ny =
m =4 my =8 ms =3 n=15

Source: Howell and Gordon, 1976.
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Let t; be the values of Yi1 and let t» be the values of Yi2. The range of t; is defined as
t1 € [£1—, &14], where £&3— = max(0, m; — np) = 0 and &1+ = min(ny, my) = 4. The range of t is
defined as tp € [€2—, €24 ], where &5 = max(0, my — (np — my + t1)) and &4 = min(ny — t1, my).
Given margins, t; and t, determine the other cell counts based on (2 — 1)(3 — 1) = 2 degrees of

freedom. There are a total of 20 possible tables as tabulated in Table 7.6.

Table 7.6. All possible tables and the corresponding probabilities

t1 t f(t)

6 5 6 7 8 0.0087¢ 0.0131 0.0037¢ 0.0002¢
1 4 5 6 7 0.0435 0.1044 0.0522 0.0050¢
2 3 4 5 6 0.0522 0.1958 0.1566 0.0261

3 2 3 4 5 0.0174 0.1044 0.1305 0.0348
4 1 2 3 4 0.0012¢ 0.0131 0.0261 0.0109Y

Source: Howell and Gordon 1976. The column t; gives the values of frequency Y11, t> the values
of frequency Yi, and f(t) the probability of table t with t; = Y31 and t» = Yi». The symbol ¥

indicates the table probability and € the extreme probabilities.

The corresponding probabilities are easily calculated by a call to (6.1), shown in the column
f(t). We have seen that the 20 probabilities sum to 1.

One may find the table probability from the term with the symbol ¥ and the five extreme
probabilities from the terms with symbol €. Using (6.2) yields Pr = 0.02968 the p-value of exact
conditional test, which is the same as that in Howell and Gordon, 1976. The calculation of (6.3)
gives Pz = 0.02936 the p-value of the adjusted test. The null hypothesis is therefore rejected at
a = 0.05.

Large-sample tests may be inappropriate for such a small sample. For comparison, however,
the usual chi-squared test is also mentioned here. Using the statistic gives 6.96429 with the
probability 0.03074, which is the same as that in Howell and Gordon, 1976. Again for comparison,
the data are analyzed by the Monte Carlo method. Sampling was repeated 2000 times resulted
in 0.02977 for exact conditional test and 0.02945 for the adjusted test, which are similar to those
from (6.2) and (6.3). For this example, a simple computer program in R language is available from

the author upon request.

8. DiscussioN

The principle behind the data-based adjustment is quite simple: The conservativeness of Fisher
test is known to be due to the discreteness, which is displayed intuitively as the non-exclusivity

as noted in Subsection 3.1. The adjustment just offsets the non-exclusivity as shown in Remark
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4.1. Accordingly, the two one-sided p-values become mutually exclusive, which is a property of
continuous distributions.

The adjustment is derived from an intuitive method: Take account of both the left- and right-
sided p-values and treat them equally in the derivation. This is practiced in each of the following
three steps: (1) Set up an equation that incorporates a fraction of the table probability and the
more extreme probabilities (see (3.3)). (2) Solve the equation for the fraction, which results in the
data-based factor (see (3.7)). (3) Convert the factor to the data-based adjustment (see (3.8)). It is
important to note that the properties of Fisher test do hold in the process (recall Section 5).

Interesting points of the adjustment are: (1) It gives the results always interpretable in the
whole range of the sample sizes, 1 < n < oo, in which the adjustment has its minimum of 0.5
and maximum of 1. (2) The adjustment vanishes into void as n — oo (recall Remark 4.2). (3) The
standardized version of the adjusted test is asymptotically standard normal (see Remark 4.3).

The data-based adjustment reduces the conservativeness, as evidenced by increasing test size
and power and decreasing p-values. A check is provided by the fact that two totally different
algorithms produce the identical results when calculating the actual test size and power (see
Remark 4.4).

The adjustment makes the size of test increased. When data set is small, the size of the
adjusted test is greater than that of Fisher test, which can be seen in Table 4.2 and 4.3 as well
as Figure 2. As expected, the adjusted test has less size than the mid-p method. The size of the
mid-p method resembles the size of the unconditional tests such as Crans-Shuster test, the binomial
model, Barnard test, Berger-Boos test, and the modified Fisher p-value. Yates z test behaves like
Fisher test not only for the size of test but also for power and p-values. Kendal-Stuart correction
has greater size than Yates z test. In most situations, Kendal-Stuart correction has greater size
than the adjusted test as shown in Table 4.2 and 4.3 as well as in Figure 2. The z test has the
size exceeding nominal level, whereas none of the other tests do.

The adjusted test has a power advantage over Fisher test, as noted in Table 4.4, 4.5, and 4.6
as well as Figure 3. The five unconditional tests are as powerful as the mid-p method. The power
is the same for Crans-Shuster test and the modified Fisher p-value as shown in Table 4.4 and 4.5.
It is no surprise that the z test is the most powerful. The power of Kendal-Stuart correction always
lies between the power of the z test and Yates z test. In general, Kendal-Stuart correction has
higher power than the adjusted test in the range of © = 0,0.08, .. ., 0.72 as shown in Table 4.4 and
4.5 as well as in Figure 3. The numerical distances of power between any two tests decrease as n
increases. For example, Table 4.6 shows that the adjusted test is more powerful than Fisher test for
samples of sizes 17 to 57 but the two tests give the same power for the sample of size 87. Again,
Table 4.6 says that the adjusted test is less powerful than Kendal-Stuart correction for the sample

of size 17 but the two tests show the same power for the sample of size 87. Figure 4 explains
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that the data-based adjustment behaves well, as evidenced by the close agreement between the
observed and actual power at different significance levels. Concerning the power of test, it is said
that the validity is questionable in an unconditional evaluation of a conditional test (Hirji, Tan,
and Elashoff, 1991) arquing that a conditional test is naturally less powerful than an unconditional
test.

The adjustment decreases the p-values in small samples. This is clearly displayed in Table
4.1 and Figure 1 as well as in the examples (Section 7). In both the fish experiment and the lady
tasting tea experiment, we have seen that the p-value of the adjusted test is less than that of
Fisher test. The adjusted test has greater p-value than the mid-p method at the observed point.
It is the opposite, however, when the frequency is greater than its expected value. In addition,
Kendal-Stuart correction has smaller p-values than the adjusted test (see Section 7).

The adjusted test has been compared with the other ten tests but special attention is given to
the comparison with the mid-p method. Note that the mid-p method is but a particular form of the
adjusted test. In rare cases, when F(y1) = S(y1), we have 1 — F(y1) = 2 and 1 — S(y1) = 4 and
then the adjusted test (3.7) equals the mid-p method. In addition, they have a common point: The
adjusted test has the left- and right-sided p-values summing to 1 and so does the mid-p method.

The adjusted test is easy to implement. With 2 x 2 tables, one may use (3.8) and (3.9) to
calculate the one- and two-sided p-values. The same results are obtained from (3.1) and (3.2)
divided by one plus the table probability. As for r x c tables, one may refer to (6.3) to calculate
the p-values of the adjusted test. Also, one may use (6.2) to obtain the p-value of exact conditional
test and then divided by one plus the probability of observed table.

The mid-p method is more powerful than the adjusted test but the increment of power comes
from the factor % The adjusted test holds such properties as the significance level under control
of nominal o, the same modification in the left- and right-sided p-values, and the proportional
reduction from Fisher test, which the mid-p method lacks as noted in Section 5. Concerning the
unconditional tests, they are more powerful as well but the power comes partly from the unobserved
samples so that they raise some controversies (recall the golden aphorism). As for approximate
tests, they are inappropriate for small samples since the approximations can be very poor in such
cases (see Section 2). One pursues high power of test, but must ensure that the power comes from
the data at hand and is under control of nominal a. Thus the proper choice of an adjustment is
based largely upon a consideration of both the power of test and the origin of power so that the
adjusted test is an option in data analyses.

The principle of the data-based adjustment can be employed to deal with other discrete

problems as well, which will be reported separately.
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