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Abstract. In this study, we propose a new extension of the Dagum distribution called the alpha
power transformed Dagum distribution. Basic statistical properties of the new distribution such
as; quantile function, raw and incomplete moments, moment generating function, order statistics,
Rényt entropy, stochastic ordering and stress strength model are investigated. The
characterizations of the new model is investigated. The method of maximum likelihood is used to
estimate the model parameters of the new distribution and the observed information matrix is
also obtained. A Monte Carlo simulation is presented to examine the behavior of the parameter

estimates. The applicability of the new model is demonstrated by means of three applications.

1. Introduction

The Dagum distribution was introduced by Dagum (1977) for analysing income
data as an alternative model to the log-normal and Pareto distributions. This

distribution has been used in different fields such as, reliability and survival analysis,
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wealth and income data and meteorological data. The Dagum distribution has

cumulative distribution function (cdf) given by

F(x):(1+/1x’/”)70, x>0, (1)
and its corresponding probability density function (pdf) is

() =280x "1+ x7) " x>0 2)

where A4 >0 is the scale parameter and 3,0 >0 are the shape parameters.
There are many extensions of the Dagum distribution such as; Beta-Dagum by Domma
and Condino (2013), weighted Dagum by Oluyede and Ye (2014), Weibull Dagum by
Tahir et al. (2016), power log Logistic Dagum by Bakouch et al. (2017) and odd log
Logistic Dagum by Domma et al. (2018).

Moreover, if g(X;¢) and G(X;¢) denote the pdf and cdf of a baseline model with
parameter vector ¢. Mahdavi and Kundu (2017) introduced a new method of generating

continuous distributions called the alpha-power transformation (APT for short) with cdf
and pdf given by
G(x:4)

F(x;¢)=aa—l, a>0,a#LxeR, (3)

f(xi¢) = —Iog(oi) 9 a"*?, a>0,a#lxeR. )
o

The goal of this article is to derive a new distribution from the Dagum distribution
by Alpha-power transformation as suggested by Mahdavi and Kundu (2017), called
alpha power transformed Lindley (APTL) distribution . This concept of generalization is
well established in the statistical literature (see Dey et al. (2017a, 2017b)). The
proposed distribution encompasses the behavior of and provides better fits than some
well known lifetime distributions in the literature; please see in application section 6.
We are motivated to introduce the alpha power transformed Dagum (APTD for short)
distribution because (i) it is capable of modeling increasing, decreasing, constant,
bathtub and upside-down bathtub shaped hazard rates; (ii) it can be viewed as a
suitable model for fitting the skewed data which may not be properly fitted by other

known distributions and can also be used in a variety of problems in different
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areas; see also in application section 6; and (iii) three real data applications show
that it compares well with other competing lifetime distributions. The cdf and pdf of the

APTD distribution are given, respectively, by

(lﬁ.x’/’)w

l:(X;qfﬁ):w—l_l, a>0,a=1,1,5,6>0,x>0, (5)

t0og) = 2P0 (1 o) ol s (6)

Henceforth, a random variable with density (6) will be denoted by X ~APTD(a,S,4,0).
The hazard function z(x) for the APTD distribution is given by

)—9—1 a(hﬂx’ﬁ)%

AB0log(a)x 1+ Ax 7
X) =

(1+/1x‘ﬂ )70

, x>0. (7)
-1

The remainder of this paper is orgainzed as follows. In Section 2, main
mathematical properties of the APTD model are studied. In Section 3, certain
characterizations of the new disatribution are presented. In Section 4, the maximum
likelihood estimates are obtained for the model parameters. A simulation study is
conducted in Section 5. In Section 6, we provide three applications. Section 7 offers
some concluding remarks.

2. Mathematical Properties
In this section, we will study some main properties of the APTD distribution.
2.1. Quantile Function
The quantile function of the APTD distribution Q(u) =F *(u) for ue(0,1), a >0,

B>0, 4>0 and >0 is the solution of the non-linear equation

Q) =G 1 log (1+ (e —1)u) *J/a_l -yp o
B A log(e) '

2.2. The Shape of the APTD Distribution

The shape of the density and hazard functions of the APTD distribution can be
described mathematically. The critical points of the density function are the roots of the

following equation:
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Further, the critical points of the hazard function are the roots of the following equation:

{

£+1

AB(0+1)x

X

M

1+ Ax77

Some plots of the density and hazard functions are displayed in Figures 1 and 2.
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2.3. Moments and Moment Generating Function
Let X be a random variable with the APTD distribution, then the ordinary

moment, say 4/, is given by

w=E(X")= T x" f (x)dx

> iﬂ@(log(x)WA © o\ —O(w+1)-1
:v; @—Dwi .[0 X “(1+/1x ﬁ) dx

oo —O(w+1) w1 . B -0(w+1)-1
_ Z A ,Be(log 0!) J’O W+ B0 -1 [1+ XT] dx.

w=0 ((l _1) w!

Letting y:(1+ xﬁ/l)_l, we obtain

A" 6(loger)"”

Z (a-Dw!

w=0
= A" 6(logar)""
52 (a-Dw!

Jj y_r/ﬂ (1_ y)r/ﬁ+9(w+1)-1 dy

B(1-r/B.r/B+60(W+1)), o)

1
where, B(m,n):j0 X" (1L-x)"tdx is the beta function. Substituting r=12,3,4 in (9), we

13/2

obtain the mean =z, variance = 1} — 14/, skewness = 14, / 14¥* and kurtosis = 11, / 14,*

The plots of the skewness and kurtosis of the APTD distribution for parameters
a=0.5,4=0.8 are displayed in Figure (3). Based on these plots, we conclude: if the
parameters a and [ increase, the skewness decreases and kurtosis increases.
Moreover, parameter S has more significant effect on skewness and kurtosis measures
than parameter o .

Kurtosis Skewness

10 49

Figure 3: The skewness and kurtosis of the APTD distribution.
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The nth central moment of the APTD distribution, say £,, can be obtained from

= i[n(—ﬂf)“ E(X)

N w T ﬂ,r/ﬂg I w+1
:ZZ(SJ( 2y (a—l)\sv!oga) B(1-r/B.r/B+6(w+1)).

r=0 w=0

(10)

The rth incomplete moment of the APTD distribution, denoted by ¢, (t), is

o, (t)= 't[ x* f (x) dx

w+l

o /wé?(loga) t o p \-O(wi)1
WZ—O (a-Dw! -[0X e ax?) dx

& A pe(loga)” (-0 -1\
S22 @nw [ j Jfox ax
(—9(W+1)j A7 Bo(loga )" AU

J (@-D)(s-B(j+D)w!

(11)
The moment generating function of the APTD distribution, denoted by M, (t), can

be obtained by

ML (0 =EE) =3 L EXX)

© roar/ w+1
_ 5 14" 6(loga) B(l—L,L+H(W+1)]. (12)
(@—Dwr! B

r,w=0

2.4. Probability Weighted Moments
The (r +s)th PWM of a random variable X with the APTD distribution, say

M, ., is given by

rs?

MrYS:E(X“F(x)S):TX“F(X)Sf(x)dx. (13)

From (5) and (6), we have
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e o (1+/1x ) B )
FOF (9 = 220000 sy ) ) 1
a-1 a-1
- (—l)%ﬂ@log(a)(sj _p-1 g\ 1 (s—j+l)(1+/1x’”)79
= Llx 1+ AX a
JZ_:? (CR VN ( )
~ i (<17 286(log())" (s— j+1)" (s
A (-1 w! j
P (L axf) (14)
Subsituting from (14) in (13), we obtain
M Zw:( )1 277 9(log(a))"™ (s— j+1)" (s
e (@=)"" w! J
xB(1-r/B.r/B+0O(W+1)). (15)

2.5. Order Statistics

Let X, <X . be order statistics corresponding to a sample of size n from

2ny =
the APTD distribution. The pdf of X, , the Kth order statistic, is given by
n—k

f _
()= B(kn k+1) &

-k
(-1 [ : jf(X)F(X)k“‘l (16)

Based on (5) and (6), we have

i K+i_
FOOF (' = 0 f)'ﬁ?(a)( ; j

x X (1+ AXF )_‘9‘1 a(k”_”(“xf”)ﬂ_ 1)
Using (17) in (16), we have
[ =Sy (D" Apologle) [n kj[kﬂ_lj
k_n =T (e-1)""B(k,n-k+1) j
x X7 1+ Ax7 )’9*1a<k+i-i>(1+ﬂx*ﬂ)"’ 8

Furthermore, the rth moment of kth order statistic for the APTD distribution is

given by
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e ()Mpelogla) (n-k)(k+i-l
E(Xk:")_,ojz_(;(a D B(k,n— k+1)( J[ i j

© g 01 (ke j)(1eax?)
XL Xrﬁ1(1+/1x 'B) a( D) dx

nk i (- 1)'+Jwe(|og(a))w*l(k+|—J) K+i-1
=i (@=-D""wB(k,n—k+1) i i

)—H(W+1)—1

x J? XA (1+ AX7P dx

E(X;:n)=nzli w (1)J+1/1r/ﬂ8(|og(a)) (k+i—j)" ( I j(k+!—j

i=0 j,w=0 (05—1 ke w! ]

B(1-r/B,r/B+0(W+1)) (19)
B(k,n—k+1 '
2.6. Rényi Entropy

The entropy is a useful approach used in different areas such as queuing theory

and statistics.The Rényi entropy is defined as
1 (X) = (A~ ) "log [ f(x)*dx, u>0, u#0.

Using (6) and after some manipulations, we have
i B 0" (log(e))"™
o (X) =~ p) " log 4= wl A7 - (20)
B(u+(u=1/B.60(u+w)—(u-1)/B)

2.7. Stochastic Ordering

Stochastic ordering is a vital criterion that is used in different fields to examine
the comparative behavior. According to Shaked and Shanthikumar (2007), a random
variable X, is said to be smaller than another random variable X, in the likelihood

ratio order (X1 < Xz) if f,(x)/f,(x) decreases in x. The following theorem shows that

the APTD distribution is ordered in likelithood ratio ordering if the appropriate

assumptions exist.
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Theorem 1: Let X, ~APTD(e, 5, 4,6,) and X, ~APTD(a,, 3;,,4,.6,). If o, =a,,

A=24,0,=0, and B 2, then X<, X,.
Proof: We have

Ap61og(er) | s a A (waxc) ™
fl(X) _ A -1 X (1+ /11)( ) A
f,(0) 450, log(a,) x (1+ ﬂzx_ﬂz ),gz,l az(h—j?)(m ),,,Z,l .

a,-1

Then

ﬂ_ 456, log(x) B _ -4
log 1EZ(X)—Iog{—%_1 } (B +1)log(x)-(6,+1)log (1+ 4x *)

+(1+ Ax A )76’1 log (e, )—log {M} +(3, +1)log(x)

a,-1

+(6, +1)log (1+ 4,x 7 )= (1+ Ax )_62 log(e, ).
If o, =a,, 4, =4,,6,=6, and B, = f,, then we have

d f(x) _ (B+1 x At
&Iogm— ( " j+ﬂlﬂl(01+1)[1+ﬂlx_ﬂl]

+2,3,0,100(c)X A 1+ X P )-@-1+(ﬂz_+1j

X

x B
~2,3 (6, +1)[1+/12x‘ﬂ2 J

~2,8,0, l0g (o) x "7 (14 Ax ) <.
Consequentely, f(x)/f,(X) decreases in x and hence X, <, X,.

2.8. Stress Strength Model
Let X, and X, be two independent random variables with X; ~ APTD(e, 8, 4,6})

and X, ~APTD(a,, 3,,4,,6,) distributions. Then, the stress strength model is given by

R=Pr(X, < X,) :]3 fl(“l!ﬂﬂﬂl’gl)FZ (az’ﬂwﬂz’ez)dx
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T —ﬁ1—1 1—|—ﬂlx )49171 e(lwhx’ﬁl)*glIog(a1)+(l+ﬂqx’/32)792 log(a,) dx
0
H
—QT XAt (1+ X )_01_1 e(Mlxiﬁl)igl 9(4) gy
0
E
where,
Q= AP0, Iog(al)
(o, —1)(e, 1)
B i/B 1A i w-h h
He S A7) (log (ey))”  (log(az,))
w,h, j=0 ﬁl WI
w(-6,h . .
X(h]( j2 jB(1+ﬂ2]/ﬂ1’91(w_h+1)_ﬂ2]/ﬂ1)
and
. i (-1 (log(a,)) -2)
W WIS A (G (w+1)+0+2)\ ¢
Therefore, the stress strength model for the APTD distribution is
DYADEIS Y
0 h, j=0 (=0
(21)
where
_ 6, (log(e))"”
Y (-1 (@, —1)w!
h
ZZJ[MQ%} B(l+ﬂ2j/ﬂ1,t91(W—h+l)—ﬂzj/ﬂl),
1
and

. (-1) —2
Cg w42\ ()
3. Characterization Results

This section is devoted to the characterizations of the APTD distribution in two

directions: (i) based on the ratio of two truncated moments and (ii) in terms of the
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hazard function. Note that (i) can be employed also when the cdf does not have a closed
form. We present our characterizations (i)-(ii) in two subsections.
3.1. Characterizations based on two truncated moments

This subsection deals with the characterizations of APTD distribution based on
the ratio of two truncated moments. Our first characterization employs a theorem due to
Glanzel (1987), see Theorem 1 of Appendix A. The result, however, holds also when the
interval H is not closed, since the condition of the Theorem is on the interior of H.

Proposition 3.1. Let X : Q— (0,0) be a continuous random variable and let,

—(1+},><’/3 )7

0=« and qz(X)qu(X)(lJriX_ﬁ)_e for X>0. The random variable X has pdf (6) if

and only if the function & defined in Theorem 1 is of the form
f(X)=1{1+(1+/1x‘ﬂ)9} x>0,
2

Proof. Suppose the random variable X has pdf (6), then

(1-F())E[a(X)| X 2x]= l0g (@) {1—(1+ ax? )‘9} x>0,

a-1
and
log (@) e
(1-F(X)E[ ,(X)| X 2x]= 2(0{_“1) {1—(1+/1x /) } x>0,
Further,

06 00-600= 2 f1-(1e207) |50, for x>0
Conversely, if ¢ is of the above form, then

f00qm) AP0

'(X) = 2
S0 4(-%(X)  1-(1+2x7)

, x>0,

and consequently
s(x) =—log {1—(1+ X7 )9} x>0

Now, according to Theorem 1, X has density (6).
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Corollary 3.1. Let X:Q—(0,0) be a continuous random variable and let g,(x) be as in

Proposition 3.1. The random variable X has pdf (6) if and only if there exist functions

g, and ¢ defined in Theorem 1 satisfying the following differential equation

&'(x) ql(X) _ ﬂﬁ@x‘ﬂ‘l (1_|_ ax? )—9—1
£(x) q,(x)-0,(x) (L ),9

, X>0.

Corollary 3.2. The general solution of the differential equation in Corollary 3.1 is
o)L o
E(X) :{1—(1+ ax”) H} [—Iiﬂex‘ﬁ‘l (1+2x77) ’ 1(ql(x))_1 q,(x) dx + D},

where D is a constant. We like to point out that one set of functions satisfying the
above differential equation is given in Proposition 3.1 with D=1/2. Clearly, there are
other triplets (q;, 0,,&) which satisfy conditions of Theorem 1.
3.2 Characterization in terms of hazard function

The hazard function, 7., of a twice differentiable distribution function, F, satisfies

the following first order differential equation

00 o090
(00 700

It should be mentioned that for many univariate continuous distributions, the above

equation is the only differential equation available in terms of the hazard function. In
this subsection we present non-trivial characterizations of APTD distribution in terms of
the hazard function.

Proposition 3.2. Let X :Q — R be a continuous random variable. The random variable

X has pdf (6) if and only if its hazard function 7. (X) satisfies the following differential
equation
o _a\0-1
2 B0log (a) x ey d X (14 2x7)
(1+ aAx” )gﬂ dx a—(1+/1x-ﬂ)’” 1
Proof. If X has pdf (6), then clearly the above differential equation holds. If the

, x>0.

7. (X)=4480log (o)«

7 (X) =

differential equation holds, then



—
N
(o]

Eur. J. Math. Anal. 1 (2021)

sa p\01
i{a frax?)” F<x)} welog(a)%{x (+2x7) }

dx a—(hix’ﬁ) 1

from which we arrive at the hazard function corresponding to pdf (6).
4. Maximum Likelihood Estimation
The maximum likelihood estimates (MLEs) for the model parameters of the APTD

distribution will be discussed in this section. Let X,X,,...,X, be observed values of a

random sample from the APTD distribution, then the corresponding log-likelihood

function is given by

(=n{log(2)+log(/3)+log(6)+log(log(er))-log (e 1)}
_(ﬂ_l)iz_nl:'og(xi)—(9—1)Zn:'09(1+/1xiﬂ)

+Iog(a)zn:(1+ixi’ﬁ)fg.

i=1 (22)
The components of the score vector V(= (%,%,%,%jare the following:
oa Of 04 060
o 1 |n[a(l-log(a))-1]| & o
o= 1+x7) 23
oo a{ (a—1)log(«) +,Z_1:( % ) (23)
0, (X7 log(x;)
| /1 0+1 - =1
8,8 ﬁ ZI:Og + +).1[ 1+/Ixi’ﬁ J
n -B
+2(0+1)log(a) 35| 2120 | (24)
=] (1+}in’ﬂ)

a n ! .
R S D e

and

o n o i n [ log(1+4x7)
>0 _5_%:'09 (1+ AX ﬁ)+ Iog(a);[m} (26)
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The MLEs, say ©=(4,5,4.6), of ®=(a,f,1,0) can be obtained by equating the
system of nonlinear equations (23) to (26) to zero and solving them simultaneously. The
components of the observed information matrix of the model parameters are obtained in
Appendix B.

5. Simulation Study

In this section, we evaluate the performance of the MLEs of the model parameters
of the APTD distribution via a Monte Carlo simulation. We compare MLEs to minimum
spacing absolute distance estimator (MSADE) and minimum spacing absolute-log
distance estimator (MSALDE) of the APTD distribution (see Torabi and Bagheri (2010)
and Torabi and Montazeri (2014)). The simulation is performed for sample size
n=50,100,200,300 and 500. The parameters values are a=15,=1060=05and 4=0.8.
For each sample size, we compute the MLEs, MSADEs and MSALDEs of the
parameters. We repeat this process 3,000 times and obtain the average estimates (AEs),
biases and mean square error (MSEs). The results are reported in Table 1. It is
observed that the MSEs of MLE is less than MSEs of MSADEs and MSALDEs for
large sample size. We can verify that the estimates are stable and quite close to the
true parameter values for these sample sizes. As the sample size increases the MSE
decreases in all cases. Accordingly, the sample size N plays an important role in
determining the efficiency of the parameters since when N increases some additional

information is gathered.
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Table 1: Estimated AE and MSE of MLE, MSADE and MSALDE of the model parameters of the
APTD distribution.

Different method MLE MSADE MSALDE
N | Parameter | AE Bias | MSE | AE Bias | MSE | AE Bias | MSE
a 2022 |1 0522 | 2948 | 1614 | 0114 | 1.004 | 0574 | 0.074 | 0.067
B 2346 | 1.346 | 6872 | 1.325 | 0325 | 2526 | 1.335 | 0335 | 3.003
>0 0 0551 | 0.081 | 0.092 | 0517 | 0117 | 0.144 | 0.600 | 0.100 | 0.099
A 0975 | 0175 | 0.248 | 0.863 | 0.063 | 0.093 | 0.835 | 0.035 | 0.169
a 1.693 | 0193 | 0.689 | 1597 | 0.097 | 0.641 | 1.507 | 0.007 | 0.727
B 1328 | 0328 | 3.630 | 1.210 | 0.210 | 2.079 | 1.325 | 0325 | 2.878
10 0 0553 | 0.053 | 0.087 | 0531 | 0.091 | 0.103 | 0.598 | 0.098 | 0.087
A 0915 | 0115 | 0197 | 0.824 | 0.024 | 0.092 | 0.798 | -0.002 | 0.163
a 1549 | 0.049 | 0.348 | 1.492 | -0.008 | 0.326 | 1.401 | -0.099 | 0.392
p 1164 | 0164 | 0.909 | 1147 | 0147 | 0505 | 1.226 | 0.226 | 0.938
200 0 0560 | 0.051 | 0.084 | 0.549 | 0.081 | 0.097 | 0.603 | 0.083 | 0.083
A 0.873 | 0.073 | 0.162 | 0.800 | -0.001 | 0.086 | 0.776 | -0.024 | 0.136
a 1543 | 0.043 | 0.232 | 1.482 | -0.018 | 0.252 | 1.420 | -0.080 | 0.300
B 1.084 | 0.084 | 0584 | 1.091 | 0.091 | 0.377 | 1.147 | 0147 | 0.667
200 0 0.530 | 0.030 | 0.031 | 0.540 | 0.038 | 0.049 | 0579 | 0.079 | 0.066
A 0.870 | 0.070 | 0.123 | 0.802 | 0.002 | 0.074 | 0.794 | -0.006 | 0.117
a 1520 | 0.020 | 0.033 | 1.451 | -0.197 | 0.049 | 1.419 | -0.081 | 0.241
B 1.000 | -0.001 | 0.306 | 1.077 | 0.077 | 0311 | 1.081 | 0.081 | 0.417
200 0 0519 | 0.019 | 0.027 | 0541 | 0.031 | 0.035 | 0.565 | 0.065 | 0.055
A 0.866 | 0.066 | 0.050 | 0.796 | -0.004 | 0.069 | 0.800 | 0.001 | 0.103

6. Applications

In this section, we introduce three applications to real data sets to illustrate the
usefulness of the APTD distribution. The first data set consists of 63 observations of the
strengths of 1.5 c¢cm glass fibers which obtained by workers at the UK National Physical
Laboratory. The data are: 0.55, 0.74, 0.77, 0.81, 0.84,0.93, 1.04, 1.11, 1.13, 1.24, 1.25,
1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49,1.49, 1.50, 1.50, 1.51, 1.52, 1.53,
1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61,1.62, 1.62, 1.63, 1.64, 1.66, 1.66,
1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,1.77, 1.78, 1.81, 1.82, 1.84, 1.84,
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1.89, 2.00, 2.01, 2.24. This data have also been used by Smith and Naylor (1987) and
Merovci et al. (2016).

The second data set (Cooray and Ananda, 2008) represents the failure times of
Kevlar 49/epoxy strands when the pressure is at 90% stress level: 0.07, 0.01, 0.02, 0.02,
0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12,
0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52,
0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80,
0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.1,
1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58,
1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69,
7.89.

The second data set represents the survival times (in days) of 72 quinea pigs
infected with virulent tubercle bacilli (Bjerkedal, 1960). Guinea pigs are known to have
high susceptibility of human tuberculosis, which is one of the reasons for choosing this
species. The survival times of the Guinea pigs in days are: 0.1, 0.33, 0.44, 0.56, 0.59,
072,074, 0.77, 0.92, 093, 096, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 1.12, 1.13,
1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.341.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63,
1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31,
24,245, 251, 2.53, 254, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

We estimate the unknown parameters of all competitive models by maximum
likelthood. We compute the log-likelihood function evaluated at the MLEs using a
limited memory quasi-Newton code for bound-constrained optimization (L-BFGS-B).
For model comparison, we consider six well-known statistics: the maximized log-
likelihood (LL), Akaike information criterion (AIC), BIC (Bayesian information criterion),
Anderson-Darling (A*), Cram’er von Mises, (W*) and Kolmogorov-Smirnov (K-S)
measures, where lower values of these statistics and higher p-values of K-S indicate
good fits.

We compare the APTD distribution with those of alpha power Weibull (APW)
(Nassar et al., 2016), exponentiated Kumaraswamy Dagum (EKD) (Huang and Oluyede;
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2014), Beta Dagum (BD)(Domma and Condino; 2013) and Weibull Dagum (WD) (Tahir

et al,, 2016).

The densities of the competitive models are, respectively, given by

= M Xﬂ*1 e*ixﬁ al—e’“

"X B, A>0,a %],
a-1

fAPW

o =t s ) 1)

L
x{1—[1—(1+zx-‘>) H X, 4,5, 4,050,
_pas
°° " B(a,b)
and
o b
fup = bAGBX 0 (14 2x) ™ 1[1—(1+ ax)” }

b

L I B,5.b>0.

Xe

51 s\t s\AT
X1+ A7) [1—(1+2x ) } X, A, B,8,a,b>0,

The MLEs and some statistics of the models for the data sets are introduced in Tables

(2), (3), (4), (5), (6) and (7) respectively. The estimated pdfs and cdfs plots of all

competitive distributions for the three data sets are displayed in Figures 4, 5 and 6

respectively.
Table 2: The MLEs for the first data set.
Estimates with standard error in parenthesis
Distribution N - - N N - -
a B A 0 o @ b
16.345 12.479 217.251 0.246
APTD — — — —
(3195  (1311)  (11.724)  (0.108)
APW 10.843 4.483 0.195 8.792 3.196 193.570
(1.658) (0.761) (0.108) (0.011) (0.011) (0.011)
0177 5.068
EKD — —— — — — —
(0.022) (0.033)
8D 72.416 2.198 0.455 4.826 2.652
(10.247)  (2.183) (0.256) (1822)  (1.383)
WD 14.938 52.659 0.158 1.262
(3.267)  (34.284) (0.028) (0.360)
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Table 3: Some statistics for the models fitted to the first data set.

Goodness-of-fit statistics

Distribution LL AIC BIC A” w* K-S P-value
APTD 11.662 31.324 39.190 0.817 0.149 0117 0.356
APW 13.474 32.948 39.378 0.928 0.169 0123 0.300
EKD 13.823 37.646 48.362 0.997 0.181 0.151 0.113

BD 14.283 38.566 49.282 1.038 0.187 0.144 0.146
WD 14.736 37.471 46.044 1.164 0.211 0.147 0.134

10

— APTD — APTD

o | == APW == APW
o -+-- EKD -+ EKD
- BD @ BD
—= WD —= WD
z .o
& 2 L
sl T T T T el T T T T
05 1.0 15 20 0.5 1.0 1.5 20
X X
Figure 4: Estimated pdfs and cdfs plots of the APTD distribution for data set 1.
Table 4: The MLEs for the second data set.
Estimates with standard error in parenthesis
Distribution N - - N - ~ - ~
a B y) 0 o ¢ a b
1.452 3.370 7.277 0.202
APTD
(1521) (0.687) (2.778) (0.060)
3.559 0.806 1.404
APW — — i — -
(3.937) (0.128) (0.373)
EKD 0.343 14.762 0.975 2462 3.933
(0.715) o (5.768) (0.138) (2308)  (0.042)
8D 54532 0.821 0.806 1.281 58.215
- (12323)  (0.014) - (0.423) o (0.945)  (4.171)
5.999 55.406 0.415 0.232
WD — — — —

(6.111) (5.427) (0.474) (0.246)
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Table 5: Some statistics for the models fitted to the second data set.

Goodness-of-fit statistics

Distribution
LL AIC BIC A* w* K-S P-value
APTD 100.044 208.089 218.549 0.464 0.066 0.065 0.782
APW 102.369 210.738 218.583 0.923 0.159 0.076 0.602
EKD 102.253 214.505 227.581 0.839 0141 0.077 0.594
BD 102.754 215.508 228.584 0.986 0172 0.084 0.475
WD 102.883 213.765 224.226 0.969 0.167 0.084 0.475

0.6

0.5

04

— APTD

-~ APW

-+++ EKD
BD

7 o 5
& < )
el T T T T
0 2 6 8 0 2 6 8
Figure 5: Estimated pdfs and cdfs plots of the APTD distribution for data set 2.
Table 6: The MLEs for the third data set.
Estimates with standard error in parenthesis
Distribution n - N - N - -
a B A 0 ) a b
51.948 3.065 2.980 0.331
APTD -
(11.254)  (0.476) (2.369) (0.224)
243.092 0.898 1.357
APW — — — —
(94.320)  (0.135)  (0.289)
4175 0.239 9.295 0.009
EKD -
(2.085 (0.331) (1202)  (0.027)  (4.241)
8D 1.014 1.187 0.484 3335 2.035
(0.814)  (1.249) (0.476) (1580)  (0.489)
12128 20.565 0.794 0.144
WD -
(4.430) (8.774) (0.388) (0.191)
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Table 7: Some statistics for the models fitted to the third data set.

Goodness-of-fit statistics

Distribution
LL AIC BIC A* w* K-S P-value
APTD 99.223 207.847 216.953 0.252 0.040 0.065 0.920
APW 101.156 208.312 215.142 0.489 0.078 0.082 0.719
EKD 99.987 209174 220.558 0.278 0.048 0.069 0.882
BD 101.231 212.462 223.846 0.407 0.059 0.0870 0.648
WD 104.081 216.161 225.268 0.985 0.162 0114 0.303
: ] — T e
-+ EKD
BD
g —- WD

Density
03
cdf

0.2

01

0.0

Figure 6: Estimated pdfs and cdfs plots of the APTD distribution for data set 3.

The values in Tables 3, 5 and 7 showed that the APTD distribution has the smallest
values for A*, W* AIC, BIC, KS and largest p-values among all competetive models then, it
could be chosen as the best model. It is clear from Figures 4, 5 and 6 that the new APTD

distribution provides the best fits for the three data sets.
7. Conclusions

We introduce a new four parameter Dagum distribution called the alpha power
transformed Dagum distribution distribution. The main features of the new model such
as the quantile function, ordinary and incomplete moments, moment generating function,
order statistics, Rényi entropy, stress strength model and stochastic ordering are
investigated. The characterizations of the proposed model are studied. The maximum

likelihood criterion is used to estimate the model parameters and the importance of
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these estimates are assesed by means of a simulation study. The usefulness of the new

model is illustrated via three real applications. Numerical results show that the new

distribution can be considered a good alternative model to the alpha power Weibull,

exponentiated Kumaraswamy Dagum, Beta Dagum and Weibull Dagum Distributions.
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Appendix A

Theorem 1. Let (Q,F,P) be a given probability space and let H =[a,b] be an interval for some
d<b (a=-—w, b=0 might as well be allowed). Let X:QQ—>H be a continuous random
variable with the distribution function F and let @, and @, be two real functions defined on H such

that
E[q,(X)|X 2x|=E[g,(X)|X 2x|£(x), xeH,
is defined with some real function 77. Assume that (;, 0, EC_l(H),f € CZ(H) and F is twice

continuously differentiable and strictly monotone function on the set H. Finally, assume that the

equation &, =0, has no real solution in the interior of H. Then F is uniquely determined by the
functions @;,q, and &, particularly

) |
£(u) g, (u)—a, ()|

F(X) = j:c exp(-s(u))du,

&'q,
‘fql -0,

where the function S is a solution of the differential equation §'= and C is the

normalization constant, such that IH dF =1.
We like to mention that this kind of characterization based on the ratio of truncated moments is
stable in the sense of weak convergence (see, Glanzel (1990)), in particular, let us assume that there is a

sequence {X } of random variables with distribution function {Fn} such that the functions Q,,,0,, and

n
& (neN) satisfy the conditions of Theorem 1 and let ¢, —> 0, 0,, —> 0, for some continuously
differentiable real functions g, and Q,. Let, finally, X be a random variable with distribution F. Under
the condition that ,(X) and Q,,(X) are uniformly integrable and the family {Fn} is relatively
compact, the sequence X, converges to X in distribution if and only if & converges to &, where
_E[g,(X)|X 2x]

CE[g,(X)[X =x]’

This stability theorem makes sure that the convergence of distribution function is reflected by

$(x)

corresponding convergence of the function 0,0, and & , respectively. It guarantees, for instance, the
convergence of characterization on the Wald distribution to that of the Levy-Smirrnov distribution if
o —> 0,

A further consequence of the stability property of Theorem 1 is the application of this theorem to
special tasks in statistical practice such as the estimation of the parameters of discrete distributions. For
such purpose, the functions 0,0, and, specially, & should be as simple as possible. Since the function
triplet is not uniquely determined it is often possible to choose & as a linear function. Therefore, it is

worth analyzing some special cases which helps to find new characterizations reflecting the relationship

between individual continuous univariate distributions and appropriate in other areas of statistics.
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Appendix B

The components of the observed information matrix are the following
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