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Discrete Harris Extended Inverse Exponential Distribution and Its Applications to COVID-19
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Abstract. In this paper, we introduce a novel discrete probability distribution, referred to as thediscrete Harris extended inverse exponential distribution, and explore its fundamental properties. Wedemonstrate that the proposed model serves as a generalization of the discrete Marshall-Olkin in-verted exponential distribution. Key theoretical characteristics of the proposed model are derived,including its probability generating function, moments, hazard rate function, cumulative hazard ratefunction, reversed hazard rate function, mean residual life, and quantile function. Parameter estima-tion is performed using various estimation techniques, including the maximum likelihood estimation,Anderson-Darling, Cramér-von Mises, ordinary least squares, and weighted least squares. In addi-tion, a simulation study is conducted to evaluate the performance of the estimators. The applicabilityof the proposed distribution is further illustrated through its fit to two discrete real-world data setsof COVID-19 from China and Pakistan.

1. Introduction
In scientific studies, discrete variables are common, particularly in reliability or life testing ex-periments where measuring a device’s lifespan on a continuous scale is often impractical. Forexample, the durability of an on/off switch is typically quantified by counting its operational cycles,making its lifespan a discrete random variable. In survival analysis, researchers may record thenumber of days a patient survives post-treatment or the time from remission to relapse, relying oncounts rather than continuous measurements. By discretizing continuous distributions, researchershave developed various discrete lifetime distributions. These include the discrete Weibull distribu-tion introduced by Nakagawa and Osaki [1], a second type by Stein and Dattero [2], a third typeby Padgett and Spurrier [3], the discrete exponential distribution by Sato et al. [4], the discrete
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Eur. J. Stat. 10.28924/ada/stat.5.15 2normal distribution by Roy [5], the discrete Rayleigh distribution by Roy [6], the discrete Laplacedistribution by Inusah and Kozubowski [7], the discrete skew-Laplace distribution by Kozubowskiand Inusah [8], the discrete Burr and Pareto distributions by Krishna and Pundir [9], and the dis-crete inverse Weibull distribution by Jazi et al. [10], among others, are notable contributions tothe literature. Discretization is vital in variable selection techniques, extending beyond the meretransformation of continuous variables into discrete forms. It can significantly improve the efficacyof classification algorithms applied to high-dimensional biomedical data analysis. When construct-ing a discrete counterpart of a continuous distribution, preserving key properties of the originaldistribution is often a priority. The literature presents various approaches to discretization, asexplored by different authors, including Bracquemond and Gaudoin [11] and Chakraborty [12].In this study, we introduce a novel discrete Harris extended inverted distribution, termed thediscrete Harris extended inverse exponential distribution. This family enhances modeling flexibilityfor non-monotonic and heavy-tailed datasets. Aly and Benkherouf [13] generalized the Marshall-Olkin (MO) distribution to introduce a more flexible model using the pgf of the Harris distribution(Harris, 1948) for generating new distributions. Cordeiro et al. [14] introduced Harris extendedLindley distribution. Tomy et al. [15] Harris extended modified Lindley. Jabir and Bindu [16, 20]proposed the Harris extended inverted Kumaraswamy and Harris extended Dagum distributions.Sophia et al. [17] introduced the discrete Harris extended Weibull distribution. The survival functionof Harris family of distribution is given by
F̄HE(x) =

α
1
β Ḡ(x)[

1− ᾱḠ(x)β
] 1
β

, x > 0, (1)
where ᾱ = 1−α, α > 0, and β > 0. The newly introduced parameters α and β represent additionalshape parameters that allow for enhanced flexibility. The survival function and probability densityfunction of the inverse exponential distribution are provided below.

ḠIE(x) = 1− e−
θ
x , x > 0, θ > 0, (2)

and
gIE(x) =

1

θx2
e−

θ
x , x > 0, θ > 0. (3)

The remaining part of the paper is organized in the following order : Section 2 describes the Harrisextended inverse exponential distribution. In Section 3, we defined the discrete Harris extendedinverse exponential distribution with its associated statistical properties, such as quantile function,median, skewness and kurtosis, moments and moment generating function. The estimation of theparameters by using different estimation methods such as maximum likelihood, Anderson-Darling,Ordinary Least Squares, Weighted Least Squares and Cramer-von Mises, is discussed in Section 4.
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Eur. J. Stat. 10.28924/ada/stat.5.15 3In Section 5, certain simulated data sets are provided to understand the behavior of the proposedmodel in a large sample. Two real datasets related to COVID-19 are analyzed using the proposeddistribution in Section 6. Finally, the study is concluded in Section 7.
2. Harris extended inverse exponential distribution

Definition 1. A random variable X is said to have Harris extended inverse exponential distribution
(HEIE) with parameters θ, α, β, denoted by X ∼ HEIE(θ, α, β) if its probability density function
(pdf) is given by,

gHEIE(x) =
α
1
β 1
θx2
e−

θ
x(

1− ᾱ
(

1− e−
θ
x

)β)(1+ 1β ) , x > 0, (4)
where θ > 0, ᾱ = 1− α, α > 0 and β > 0.

Definition 2. If X ∼ HEIE(θ, α, β) then its cumulative distribution function (cdf) is given by,

FHEIE(x) = 1−
α
1
β

(
1− e−

θ
x

)
(

1− ᾱ
(

1− e−
θ
x

)β) 1β , x > 0, (5)
where θ > 0, ᾱ = 1− α, α > 0 and β > 0.

• The general approach of discretizing a continuous variable is to introduce a floor functionor greatest integer function of X i.e., [X] (the greatest integer less than or equal to X till itreaches the integer), in order to introduce grouping on a time axis.
• A discrete HEIE variable Xd , can be viewed as the discrete concentration of the continuousHEIE variable X. where the corresponding probability mass function of Xd can be writtenas:

P (Xd = x) = p(x) = S(x)− S(x + 1), x > 0, (6)where, S(x) is the survival function of HEIE distribution.
3. discrete Harris extended inverse exponential distribution

Definition 3. If Xd ∼ DHEIE(α, β, q) then its probability mass function (pmf) and cumulative
distribution function (cdf) are given by,

p(x) = α
1
β

 1− q
1
x(

1− ᾱ
(

1− q
1
x

)β) 1β − 1− q
1
x+1(

1− ᾱ
(

1− q
1
x+1

)β) 1β
 , x = 0, 1, 2, . . . (7)
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and

F (x) = 1−
α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β , x = 0, 1, 2, ... (8)
where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.

• When β = 1 the distribution reduces to discrete Marshall-Olkin inverse exponential(DMOIE) distribution.

Figure 1. Plot of pmf of DHEIE for various values of α, β and q.

3.1. Survival function.
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Definition 4. The survival function (sf) of the DHEIE distribution is given by,

S(x) =
α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β , x = 0, 1, 2, ... (9)
where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.

3.2. Hazard function.

Definition 5. The failure rate function (or hazard rate function) (hrf), h(x) = p(x)
S(x) of the DHEIE

distribution is given by,

h(x) =
(1− q1/x)

(
1− ᾱ(1− q1/(x+1))β

)1/β
(1− q1/(x+1))

(
1− ᾱ(1− q1/x)β

)1/β − 1, x = 0, 1, 2, ... (10)
where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.

Figures 1 and 2 depict the pmf and hrf of the DHEIE distribution for varying parameter values.As illustrated, The pmf of the DHEIE distribution is a versatile statistical tool capable of modelinga wide range of discrete data behaviors. As illustrated across the plots, the distribution can takeon different shapes depending on its parameters ranging from sharply right-skewed to symmetricor even slightly left-skewed forms. It can capture unimodal patterns where the probability massis concentrated around a central value, as well as distributions where the mass is heavily skewedtoward one end of the support. This flexibility allows the DHEIE distribution to accurately repre-sent real-world scenarios where data may be clustered, dispersed, or asymmetrically distributed.The ability to control the peak location, spread, and skewness through its parameters makes itparticularly well-suited for applications involving complex, non-uniform data, such as those foundin environmental monitoring, resource usage, or other sustainability-related fields. Its adaptabilityenhances the modeler’s ability to capture true variability in observed phenomena, supporting moreprecise analysis and more reliable decision-making.Furthermore, the hrf of the DHEIE distribution is a powerful tool for modeling time-to-eventdata across diverse applications. This function quantifies the conditional probability of an eventoccurring at a specific time, given it has not yet occurred. As shown in the accompanying plots,the hrf of the DHEIE distribution can exhibit decreasing or upside-down bathtub (UBT) shapes,depending on parameter values. This versatility enables the DHEIE distribution to capture a widerange of real-world phenomena. A decreasing hrf is well-suited for scenarios where the risk ofan event-such as failure-diminishes over time, as seen in reliability studies of robust systems likeindustrial machinery. In contrast, a UBT-shaped hrf, characterized by an initially high risk that
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Figure 2. Plot of the hrf of DHEIE for various values of α, β, and q.
decreases to a minimum before rising again, is ideal for modeling systems with early vulnerabilitiesfollowed by a stable period and later wear-out, such as electronic components or certain biologicalprocesses. The flexibility of the DHEIE hrf makes it particularly valuable for sustainability-focusedmodeling, where understanding the timing and risk of events—such as equipment failure, resourcedepletion, or environmental incidents—is critical. By accurately capturing these dynamic risk pro-files, the DHEIE hrf supports precise predictions and informed decision-making in domains likeengineering, environmental management, and resource planning.
3.3. Cumulative hazard function.

Definition 6. The cumulative hazard rate function (chf) of the DHEIE distribution is given by,

H(x) =

x∑
t=0

h(t) =

x∑
t=0

(1− q1/t)
(

1− ᾱ(1− q1/(t+1))β
)1/β

(1− q1/(t+1))
(

1− ᾱ(1− q1/t)β
)1/β − 1, x = 0, 1, 2, ...

where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.
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Definition 7. The mean residual life function, L(x) = E [(X − x)/X ≥ x ] of the DHEIE distribution
is given by,

L(x) =

∞∑
j=x

j∏
i=x

[
2−

(1− q1/i)
(

1− ᾱ(1− q1/(i+1))β
)1/β

(1− q1/(i+1))
(

1− ᾱ(1− q1/i)β
)1/β

]
, x = 0, 1, 2, ...

where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.

3.5. Reverse hazard rate function.

Definition 8. The Reverse hazard rate function, h∗(y) = P (Y = y | Y ≤ y) of the DHEIE
distribution is given by,

h∗(x) =

α
1
β

[(
1− q

1
x+1

)(
1 + ᾱ

(
1− q

1
x+1

)β)− 1β
−
(

1− q
1
x

)(
1 + ᾱ

(
1− q

1
x

)β)− 1β ]
1 + α

1
β

(
1− q

1
x+1

)(
1 + ᾱ

(
1− q

1
x+1

)β)− 1β ,

where q = e−θ , 0 < q < 1, ᾱ = 1− α, α > 0 and β > 0.

3.6. Quantile function and median. The DHEIE distribution can be simulated using inverse cdfmethod,
Q(u) = dxue =


 log

[
1− (1− u)

(
α+ ᾱ (1− u)β

)−1/β]−1
log q

− 1

 , (11)
where dxue denotes the smallest integer greater than or equal to xu and 0 < u < 1. By utilizingequation (13), we can compute the first and third quartiles by substituting q = 0.25 and q = 0.75,respectively.In particular, median is given by,

Q(u) = dxue =


 log

[
1− 0.5

(
α+ ᾱ (0.5)β

)−1/β]−1
log q

− 1

 .
3.7. Skewness and kurtosis. By utilizing equation (13), we can compute Galton’s skewness (Sk)and Moor’s Kurtosis (Kr ) using the formulae given by

Sk =
Q(6/8)− 2Q(4/8) +Q(2/8)

Q(6/8)−Q(2/8)
,

and the measure of Kurtosis, Kr
Kr =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,
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Eur. J. Stat. 10.28924/ada/stat.5.15 83.8. Moments. Let X ∼ DHEIE(α, β, q), then the r th moment of the random variable X can begiven by
E(Xr ) =

∞∑
x=1

(x r − (x − 1)r )S(x),

Using the expression of Equation (9), the mean can be given by,
E(X) =

∞∑
x=1

α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β , (12)
Using the expression of Equation (9), variance can be given by,

V ar(X) =

∞∑
x=1

(2x − 1)
α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β − (E(X))2. (13)
The dispersion index (DsI) is defined as the var iance/|mean|, it determines whether a givendistribution is suitable for equi - dispersed (DsI = 1), under-dispersed (DsI < 1) or over -dispersed ((DsI > 1) datasets. DsI is widely used in ecology as a standard measure for measuringrepulsion (under dispersion) or clustering (over dispersion).

The numerical values of mean and variance of the DHEIE(α, β, q) distribution for different valuesof α, β, and q are calculated in Table 1 by using R statistical software. From these values, wecompute the dispersion index (DsI), defined as variance/|mean|, to assess the degree of dispersionin the distribution.
• As the parameters α, β, and q increase, the mean, variance, and DsI of the DHEIE distri-bution increase significantly.
• The variance shows a rapid increase with respect to parameter values, indicating a widespread in the distribution as parameters grow.
• Dispersion Index (DsI) increases with parameters, reflecting growing overdispersion in thedata, especially for higher values of α, β, and q.
• The relationship between the parameters and the statistical measures is non-linear, espe-cially for mid to high values of parameters.
• The DHEIE distribution is highly sensitive to small changes in parameter values; evenslight increases in α, β, or q can cause substantial changes in output statistics.
• At low parameter values, especially (α, β) = (0.05, 0.1), the mean and variance approachzero, indicating that the distribution is concentrated near zero.
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Table 1. Mean, Variance, and DsI of DHEIED for various combinations of α, β,and q
α β q Mean Variance DsI

0.1 0.0431 0.0525 1.21810.2 0.0714 0.1501 2.10240.3 0.1126 1.1138 9.8941
↑ 0.4 ↑ 0.1764 6.4705 36.6880.05 0.5 0.03 0.2742 22.150 80.784
↓ 0.6 ↓ 0.4139 53.369 128.9390.7 0.5976 102.629 171.7240.8 0.8227 169.725 206.3080.9 1.0834 252.662 233.2100.1 0.1117 0.1588 1.42160.2 0.5184 1.4789 2.85300.3 1.1091 8.1576 7.35500.4 ↑ ↑ 1.9186 39.8566 20.77360.5 0.05 0.05 3.0427 150.9535 49.61130.6 ↓ ↓ 4.6035 436.6224 94.84580.7 6.7220 1016.7723 151.2600.8 9.4964 2010.2609 211.6870.9 12.9904 3513.5358 270.4720.05 0.1 0.0000 0.0000 1.70010.10 0.2 0.0026 0.0746 28.23750.15 0.3 0.0366 4.1021 112.0250.20 0.4 ↑ 0.1579 29.6045 187.4380.25 0.5 0.5 0.3922 92.3997 235.6080.30 0.6 ↓ 0.7185 190.0621 264.5420.35 0.7 1.0973 309.4172 281.9720.40 0.8 1.4930 436.9089 292.6400.45 0.9 1.8805 562.7938 299.277
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• The maximum dispersion (highest DsI) occurs when all three parameters are large, sug-gesting that the DHEIE model is suitable for modeling heavy-tailed or highly variable data.
Therefore, the DHEIE(α, β, q) distribution is highly flexible to model a wide range of dispersionbehaviors from repulsion (under-dispersion) to clustering (over-dispersion) through appropriatetuning of its parameters.
3.9. Probability generating function. The probability generating function (pgf) of the DHEIE dis-tribution is obtained as,

PX(s) = 1 + α
1
β (s − 1)

∞∑
x=1

sx−1
α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β .
3.10. Moment generating function. The moment generating function (mgf) of the DHEIE is givenby,

MX(t) =

∞∑
x=0

∞∑
m=0

(xt)m

m!

α 1β
 1− q

1
x(

1− ᾱ
(

1− q
1
x

)β) 1β − 1− q
1
x+1(

1− ᾱ
(

1− q
1
x+1

)β) 1β

 .

The first four partial derivatives of MX(t), with respect to t at t = 0, produce the first fourraw moments about the origin. The coefficient of skewness and kurtosis can be computed basedon moments. If the pdf given by a random variable X in equation (7) , then the corresponding
r th moments can be computed, the behavior of mean, variance, skewness and kurtosis for selectedvalues of α, β, q using R software when the upper limit is finite.
3.11. Shannon entropy. Shannon entropy is a way to measure how unpredictable or uncertain asituation is when dealing with probabilities. If you have a random variable X that can take onseveral values with certain probabilities, the Shannon entropy tells you how much “surprise” isinvolved. The formula looks like this:

SH(X) = −
∑
x

p(x) log p(x).

Here, p(x) represents the probability that X takes the value x . The more evenly spread theprobabilities are, the higher the entropy, meaning more uncertainty and less information.
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S(X) = −
∞∑
x=0

 α
1
β

(
1− q

1
x

)
(

1− ᾱ
(

1− q
1
x

)β) 1β − α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β


× log

 α
1
β

(
1− q

1
x

)
(

1− ᾱ
(

1− q
1
x

)β) 1β − α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β
 .

The numerical illustration of Shannon entropy for various parameter combinations is presented inTable 2. From this we can infer the following points.
Table 2. Entropy of DHEIED for various combinations of α, β, and q.

α β q = 0.02 q = 0.1 q = 0.9
0.1 2.415336 1.762221 0.0843930.2 2.477083 1.825203 0.112271

↑ 0.3 2.532580 1.882129 0.1383940.5 0.4 2.582587 1.933579 0.162281
↓ 0.5 2.627805 1.980160 0.1838340.6 2.668832 2.022428 0.2031420.7 2.706172 2.060876 0.2203790.8 2.740256 2.095936 0.2357550.1 1.186696 0.770590 0.0154640.2 1.730851 1.169968 0.0477730.3 ↑ 2.106373 1.488284 0.0888460.4 0.5 2.393948 1.753656 0.1349200.6 ↓ 2.825191 2.177171 0.2342560.7 2.996012 2.351164 0.2853340.8 3.146500 2.506733 0.336512

• Shannon entropy increases as either α or β increases, indicating that both parameterscontribute positively to the uncertainty or disorder in the system.
• For any fixed pair of α and β, the entropy decreases as the entropic index q increases.This reflects the property that higher q values in Tsallis or Rényi like frameworks give moreweight to the dominant probabilities, thus lowering the entropy.
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• The rate of increase in entropy with respect to α or β is more pronounced when q is small,suggesting that lower q values are more sensitive to parameter changes.
• When either α or β is small, entropy values tend to be low, especially for larger q, implyingreduced uncertainty in more concentrated or less spread-out distributions.
• The entropy surface (over α, β, and q) appears smooth and monotonic, with no irregular ornon-monotonic behavior, which is consistent with well behaved parametric models.
• In summary, both parameters α and β enhance entropy, while increasing q suppressesit, indicating a clear and consistent interaction between shape/scale parameters and theentropy index.

3.12. Order statistics. Order statistics (OS) play a significant role in various areas of statisticaltheory and practice. Consider a random sample X1, X2, . . . , Xn drawn from the DHEIE(α, β, q)model, and let X1:n, X2:n, . . . , Xn:n represent the corresponding order statistics. The cdf for the i thorder statistic Xi :n, for an integer value of x , can be expressed as follows:
Fi :n(x ;α, β, q) =

n∑
k=i

(
n

k

)
[F (x ;α, β, q)]k [1− F (x ;α, β, q)]n−k ,

=

n∑
k=i

n−k∑
j=0

∆j(n, k)[F (x ; θ, α, β)]k+j ,

=

n∑
k=i

n−k∑
j=0

∆j(n, k)

1−
α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β

k+j

,

where ∆j(n, k) = (−1)j
(
n
k

)(
n−k
j

)
.The pmf of the k th order statistic is given by:
fX(x) = FX(x)− FX(x − 1).

fX(x) =

n∑
k=i

n−k∑
j=0

∆j(n, k)


1−

α
1
β

(
1− q

1
x+1

)
(

1− ᾱ
(

1− q
1
x+1

)β) 1β

k+j

−

1−
α
1
β

(
1− q

1
x

)
(

1− ᾱ
(

1− q
1
x

)β) 1β

k+j ,

=

n∑
k=i

n−k∑
j=0

∆j(n, k)

[(
1 + α

1
β (q

1
x+1 − 1)

(
1− ᾱ (1− q

1
x+1 )β

)− 1
β

)j+k
−
(

1 + α
1
β (q

1
x − 1)

(
1− ᾱ (1− q

1
x )β
)− 1

β

)j+k]
.

https://doi.org/10.28924/ada/stat.5.15


Eur. J. Stat. 10.28924/ada/stat.5.15 133.13. Stress-strength parameter. The stress-strength parameter R serves as a key metric for as-sessing component reliability. It is defined in the context of a random variable Y , representing thestrength of a component, subjected to a random stress X . The estimation of R has been extensivelyexplored in statistical literature, particularly under the assumption that X and Y are independentand identically distributed (i.i.d.). Numerous researchers have contributed to this area of study,with extensive discussions available in the literature. it has been widely applicable in diverse fieldssuch as medicine, engineering, and psychology. In the discrete case, the stress-strength model isdefined as
R = P (Y > X) =

∞∑
x=0

pY (x)FX(x),

where pY (x) is the pmf of Y and FX(x) is the cdf of X .Let Y ∼ DHEIE(γ1) and X ∼ DHEIE(γ2), where γ1 = (α1, β1, q1)
T and γ2 = (α2, β2, q2)

T .Then, using equations (7) and (8), we have
R =

∞∑
x=0

(
(q

1
1+x

1 − 1)

(
1− ᾱ1 (1− q

1
1+x

1 )β1
)− 1

β1

− (q
1
x
1 − 1)

(
1− ᾱ1 (1− q

1
x
1 )β1

)− 1
β1

)

× α
1
β1
1

(
1 + α

1
β2
2 (q

1
1+x

2 − 1)

(
1− ᾱ2 (1− q

1
1+x

2 )β2
)− 1

β2

)
.

The stress-strength reliability parameter for different parameter values is numerically computed andpresented in Table 3. From this, we can infer that the reliability (R value) improves significantlywhen the strength distribution dominates the stress distribution, particularly when q2 > q1.
4. Estimation

In the following section, we employ five estimation methods namely, maximum likelihood (ML), Or-dinary least squares (OLS), Weighted least squares (WLS), Cramér–von Mises (CM), and Anderson–Darling (AD) to estimate the parameters of the proposed distribution.
4.1. Maximum likelihood estimation. Let X1, X2, . . . , Xn be a random sample from the DHEIEdistribution with parameters α, β, q. The log-likelihood function is given by:

`(α, β, q) =

n∑
i=1

log [p(xi ;α, β, q)] .

Which is obtained as,
`(α, β, q) =

n

β
logα+

n∑
i=1

log


(

1− q
1
xi

)
(

1− ᾱ
(

1− q
1
xi

)β) 1β −
(

1− q
1

xi+1

)
(

1− ᾱ
(

1− q
1

xi+1

)β) 1β
 .
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Table 3. Combined Table of R Values with Grouped q1 and q2
q1 = 0.5, q2 = 0.9

α1 β1 α2 β2 R Value

0.2 0.1 0.4 0.3 0.045920.4 0.5 0.8 0.6 0.228370.6 1.0 1.2 0.9 0.346530.8 1.5 1.6 1.2 0.41322
q1 = 0.3, q2 = 0.6

α1 β1 α2 β2 R Value

0.2 0.1 0.4 0.3 0.164660.4 0.3 0.8 0.6 0.327640.6 1.0 1.2 0.9 0.419800.8 1.5 1.6 1.2 0.45779
q1 = 0.9, q2 = 0.5

α1 β1 α2 β2 R Value

0.2 0.1 0.4 0.3 0.000190.4 0.3 0.8 0.6 0.010490.6 1.0 1.2 0.9 0.039060.8 1.5 1.6 1.2 0.05015
Hence, the likelihood equations of α, β, q is obtained by solving the following non-linear equations,

∂`

∂q
=

n∑
i=1

1
Ai
Di
− Ai+1

Di+1

[
Di

∂Ai
∂q − Ai

∂Di
∂q

D2i
−
Di+1

∂Ai+1
∂q − Ai+1

∂Di+1
∂q

D2i+1

]
, (14)

∂`

∂α
=

n

βα
−

n∑
i=1

[
Aβ+1i

βD2i

(
1− ᾱAβi

) 1
β
−1
− Aβ+1i+1

βD2i+1

(
1− ᾱAβi+1

) 1
β
−1
]

(
Ai
Di
− Ai+1

Di+1

) , (15)
∂`

∂β
= −

n

β2
logα+

n∑
i=1

1
Ai
Di
− Ai+1

Di+1

[
−
Ai

D2i

∂Di
∂β

+
Ai+1

D2i+1

∂Di+1
∂β

]
. (16)

Where,
Ai = 1− q

1
xi , Ai+1 = 1− q

1
xi+1 ,
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Di =
(

1− ᾱAβi
)1/β

, Di+1 =
(

1− ᾱAβi+1
)1/β

.The maximum likelihood estimators (MLEs) of Θ = (α, β, q)T , denoted by Θ̂ = (α̂, β̂, q̂)T , can beobtained by numerically solving the likelihood equations (14)– (14)–(20). A suitable approach forthis is a multivariable optimization method, such as the four-parameter Newton-Raphson algorithm.
4.2. Ordinary least square and Weighted least square estimation. The method of Least squareestimation was proposed by [18] to determine the unknown parameters by minimizing the distancebetween uniformized order statistics vector and the corresponding vector of expected values. Given
X1, X2, X3, ..., Xn, as the random sample of size n, taken from a continuous distribution function,then let X(1) ≤ X(2) ≤ X(3) ≤ ... ≤ X(n) be its corresponding order statistics. Then the expectedvalue and variance of the empirical cumulative distribution function (ecdf) are defined as follows,

E
(
F (X(i)

)
=

i

n + 1
, i = 1, 2, ..., n (17)

V ar
(
F (X(i)

)
=

i(n − i + 1)

(n + 1)2(n + 2)
, i = 1, 2, ..., n. (18)

From the above equation, we can derive the OLS and the WLS estimators of the unknown parameters
α, β and q.The OLSE and WLSE method for estimating the unknown parameters, (α, β, q) of the DHEIEcan be obtained by minimising the following equation,

S(α, β, q) =

n∑
i=1

Wi

(
F (X(i);α, β, q)−

i

n + 1

))2
, (19)

where Wi = 1 for all i = 1, 2, ..., n in the case of OLSE method which results in estimators α̂OLSE ,
β̂OLSE and q̂OLSE and Wi = 1

V ar
(
F (X(i)

) in Equation (19) in the WLSE method that produceestimators α̂WLSE , β̂WLSE and q̂WLSE . Further the estimation of parameters α, β and q of theDHEIE is obtained by solving the following non-linear equations.
∂S

∂α
= 2

n∑
i=1

Wi

(
F (X(i);α, β, q)−

i

n + 1

)
∂F (X(i);α, β, q)

∂α
= 0,

∂S

∂β
= 2

n∑
i=1

Wi

(
F (X(i);α, β, q)−

i

n + 1

)
∂F (X(i);α, β, q)

∂β
= 0,

∂S

∂q
= 2

n∑
i=1

Wi

(
F (X(i);α, β, q)−

i

n + 1

)
∂F (X(i);α, β, q)

∂q
= 0.

where,
∂F (X(i);α, β, q)

∂α
=

α−1+1/β
[

1− ᾱ
(

1− q
1
x+1

)β]−1/β (
1− q

1
x+1

)
β

, (20)
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∂F (X(i);α, β, q)

∂β
= −

α1/β
[

1− ᾱ
(

1− q
1
x+1

)β]−1/β (
1− q

1
x+1

)
β2

×
(

log(α)− log

(
1− ᾱ

(
1− q

1
x+1

)β))
, (21)

∂F (X(i);α, β, q)

∂q
=

α1/β
[

1− ᾱ
(

1− q
1
x+1

)β]−1/β
q−1+

1
x+1

x + 1
. (22)

4.3. Anderson-Darling estimation. The Anderson-Darling estimation (ADE) is based on Anderson-Darling statistic proposed by [19]. The estimator ˆqADE , ˆαADE and ˆβADE , can be obtained byminimizing following equation with respect to α, β, q. parameter.
A(α, β, q) = −n −

1

n

n∑
i=1

(2i − 1)
(

log(F (X(i))) + log(1− F (X(n+1−i)))
)
. (23)

Furthermore, these estimation of unknown parameters are done by solving the following non-linearequations,
∂A(α, β, q)

∂α
=

n∑
i=1

(2i − 1)

[
φ1i

F (X(i))
−

φ1(n+1−i)
1− F (X(n+1−i))

]
= 0,

∂A(α, β, q)

∂q
=

n∑
i=1

(2i − 1)

[
φ2i

F (X(i))
−

φ2(n+1−i)
1− F (X(n+1−i))

]
= 0,

∂A(α, β, q)

∂β
=

n∑
i=1

(2i − 1)

[
φ3i

F (X(i))
−

φ2(n+1−i)
1− F (X(n+1−i))

]
= 0,

where
φ1i =

∂F (X(i);α, β, q)

∂α
, φ2i =

∂F (X(i);α, β, q)

∂β
, φ3i =

∂F (X(i);α, β, q)

∂q
,

has similiar expression as (20)-(22).
4.4. Cramér-von Mises estimation. Similar to ADE method the Cramér-von Mises estimator (CME)is a type of minimum distance estimator, also known as maximum goodness-of fit estimators. Thisestimator is based on the difference between the estimate of cdf and the ecdf. The CME of ˆαCME ,

ˆβCME and ˆqCME , are resulted from minimizing the equation in (24) with respect to α, β and q.
C(α, β, q) =

1

12n
+

n∑
i=1

(
F (X(i))−

2i − 1

2n

)2 (24)
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∂C

∂α
= 2

n∑
i=1

(
F (X(i);α, β, q)−

2i − 1

2n

)
∂F (X(i);α, β, q)

∂α
= 0, (25)

∂C

∂β
= 2

n∑
i=1

(
F (X(i);α, β, q)−

2i − 1

2n

)
∂F (X(i);α, β, q)

∂β
= 0, (26)

∂C

∂q
= 2

n∑
i=1

(
F (X(i);α, β, q)−

2i − 1

2n

)
∂F (X(i);α, β, q)

∂q
= 0. (27)

where the partial derivatives of the equation (25)-(27) are obtained in (20)-(22).
5. Simulation

In this section, we will go over simulation studies for various parameter combinations in or-der to assess the performance of the five different parameter estimation methods, including MLE,OLSE, WLSE, ADE and CME. We generated 1000 simulations for different choices of size, n(n = 20, 100, 500). In each simulated data a n observations/sample data points are gener-ated from the DHEIE distribution for different combination of parameters such as (α, β, q) =

{(0.5, 0.5, 0.5), (1.5, 1, 0.8)}. Each sample observations are generated from the inverse cdf ofDHEIE distribution. Using the five estimation methods, we estimated parameter values of eachsimulated data by applying numerical algorithm to solve the non-linear equations given for all thefive methods.The bias and mean squared error (MSE) were computed and depicted in Table 4 and 5 to analysethe performance of the five methods, simulated for different sample sizes(n) and for various choicesof parameters. Table 4 and 5 shows that all the estimation techniques perform effectively for variousparameter selections, and the bias and MSE decrease as the sample size increases.
6. Applications

This section discusses the advantages of the newly proposed DHEIE distribution over somecommonly used discrete distributions. The performance of the DHEIE distribution is comparedwith the following competitive distributions such as the discrete Burr XII distribution (DBXII), thediscrete Bilal distribution (DB), the discrete Burr-Hatke distribution (DBH), the discrete exponen-tiated Rayleigh distribution (DER), the discrete length-biased exponential distribution (DLBE), thediscrete Pareto distribution (DPr) and the Poisson distribution (P).
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Table 4. Bias and MSE of (α, β, q) for various parameter values obtained usingfive estimation methods with different sample sizes.
Parameters Bias MSE

Setting n Method α̂ β̂ q̂ α̂ β̂ q̂

α = 0.5, β = 0.5, q = 0.5

20
MLE 0.040 0.048 0.421 0.024 0.036 0.0410CME 0.032 0.027 0.039 0.034 0.067 0.074ADE -0.007 -0.017 0.022 0.022 0.050 0.063OLSE 0.044 -0.045 -0.043 0.037 0.074 0.069WLSE 0.046 -0.044 -0.051 0.040 0.076 0.063

100
MLE 0.006 0.002 0.003 0.004 0.011 0.014CME 0.004 0.003 0.006 0.006 0.013 0.017ADE -0.003 -0.005 0.004 0.005 0.011 0.013OLSE 0.006 -0.012 -0.003 0.006 0.014 0.012WLSE 0.007 -0.011 -0.012 0.006 0.014 0.021

500
MLE 0.003 0.002 0.002 0.001 0.002 0.003CME 0.003 0.003 0.002 0.001 0.003 0.002ADE 0.001 0.001 0.001 0.001 0.003 0.005OLSE 0.004 0.001 0.001 0.003 0.004 0.002WLSE 0.004 0.001 0.002 0.001 0.003 0.004

Data set I: Deaths due to coronavirus in China. The first data set consists of the daily number ofdeaths due to coronavirus (COVID-19) in China from 23 January to 28 March 2020. The data werecollected from the website https://www.worldometers.info/coronavirus/country/china/.The recorded number of daily deaths is as follows:
Data: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143,142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22,17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5.The MLEs, along with their corresponding standard errors and goodness of fit measures for thefitted models, are presented in Table 6. From Table 6, it is evident that the DHEIE distributionyields the lowest values of AIC, BIC, and KS statistic, along with the highest p-value. Theseresults indicate that the DHEIE distribution provides a better fit compared to the other competingdistributions. The fitted pdf and cdf plots of the DHEIE distribution for COVID-19 deaths in Chinaare shown in Figure 3.

Data set II: Daily deaths due to coronavirus in Pakistan. The second data set consists of the dailynumber of deaths due to coronavirus (COVID-19) in Pakistan from 18 March to 30 June 2020. The
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Table 5. Bias and MSE of (α, β, q) for various parameter values obtained usingfive estimation methods with different sample sizes
Parameters Bias MSE

Setting n Method α̂ β̂ q̂ α̂ β̂ q̂

α = 1.5, β = 1.0, q = 0.8

20
MLE 0.101 0.084 0.071 0.086 0.061 0.055CME 0.085 0.052 0.049 0.064 0.049 0.031ADE -0.016 -0.028 0.031 0.038 0.020 0.023OLS 0.096 -0.068 -0.052 0.097 0.084 0.071WLS 0.121 -0.091 -0.065 0.096 0.092 0.087

100
MLE 0.019 0.017 0.009 0.028 0.017 0.014CME 0.009 0.006 0.008 0.011 0.019 0.022ADE -0.008 -0.011 0.012 0.009 0.018 0.017OLS 0.011 -0.019 -0.011 0.008 0.018 0.019WLS 0.017 -0.023 -0.018 0.009 0.018 0.019

500
MLE 0.007 0.004 0.004 0.005 0.004 0.004CME 0.004 0.005 0.003 0.003 0.003 0.002ADE 0.002 0.003 0.002 0.003 0.005 0.004OLS 0.006 0.004 0.004 0.008 0.006 0.005WLS 0.008 0.006 0.004 0.003 0.004 0.004

Figure 3. Fitted pdf and cdf plots of COVID-19 deaths in China.
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Table 6. MLEs, standard errors, and model comparison criteria for COVID-19deaths in China
Model β̂ γ̂ θ̂ − logL AIC BIC KS (p-value)DHEIED 18.8417 0.0398 28.291 328.63 663.26 669.83 0.1290 (0.2104)(9.751) (0.067) (6.448)DBXII 0.9788 6.3999 – 374.49 752.99 757.38 0.3607 (0.0000)(0.0389) (17.562)DER 34.054 0.5246 – 347.23 698.45 702.83 0.2932 (0.0000)(169.93) (5.2344)DPr 0.2863 – – 379.07 760.14 762.33 0.3816 (0.0000)(0.0352)DLBE 25.122 – – 330.52 663.03 665.22 0.1718 (0.0407)(2.1866)DB 0.9834 – – 330.07 662.14 664.33 0.1655 (0.0538)(12.114)DBH 0.9998 – – 461.02 924.04 926.23 0.8119 (0.0000)(0.0019)P 49.737 – – 1409.8 2821.6 2823.7 0.4975 (0.0000)(0.8681)

data were collected from the website https://www.worldometers.info/coronavirus/country/
Pakistan. The recorded number of daily deaths is as follows:

Data: 1, 6, 6, 4, 4, 4, 1, 20, 5, 2, 3, 15, 17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 20, 31, 42, 32,23, 17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 30, 28, 35,57, 78, 88, 60, 78, 67, 82, 68, 97, 67, 65, 105, 83, 101, 107, 88, 178, 110, 136, 118, 136, 153,119, 89, 105, 60, 148, 59, 73, 83, 49, 137, 91.The MLEs, corresponding standard errors, and model comparison metrics are reported in Table 7.From Table 7, it is evident that the DHEIE distribution yields the lowest values of AIC, BIC, andKS statistic, along with the highest p-value. These results indicate that the DHEIE distributionprovides a better fit compared to the other competing distributions. The fitted pdf and cdf plots ofthe DHEIE distribution for COVID-19 deaths in Pakistan are shown in Figure 4.

https://doi.org/10.28924/ada/stat.5.15
https://www.worldometers.info/coronavirus/country/Pakistan
https://www.worldometers.info/coronavirus/country/Pakistan


Eur. J. Stat. 10.28924/ada/stat.5.15 21

Table 7. MLEs, standard errors, and model comparison criteria for COVID-19deaths in Pakistan
Model β̂ γ̂ θ̂ − logL AIC BIC KS (p-value)DHEIED 5.1674 0.9999 16.0114 451.76 909.53 916.93 0.1826 (0.2426)(7.7459) (0.01001) (0.0001)DBXII 0.9816 15.499 – 497.12 998.24 1003.2 0.3500 (0.0000)(0.0227) (19.249)DER 33.716 0.5293 – 452.54 909.09 914.02 0.2473 (0.0000)(228.83) (7.1851)DPr 0.2834 – – 503.61 1009.2 1011.6 0.3556 (0.0000)(0.03038)DBH 0.9997 – – 613.80 1229.6 1232.1 0.7876 (0.0000)(0.0016)DP 50.057 – – 1713.0 3428.1 3430.5 0.4579 (0.0000)(1713.0)

Figure 4. Fitted pdf and cdf plots of COVID-19 deaths in Pakistan.
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In this paper, we introduce a novel discrete distribution called the Harris extended inverseexponential distribution. We examine several key structural properties of the proposed distributionand provide a detailed analysis of its mean and variance, supported by numerical illustrations. Themodel parameters are estimated using various methods, including MLE, ADE, CME, OLSE, andWLSE. To evaluate the performance of these estimation techniques, we conduct a comprehensivesimulation study. In addition, we demonstrate the practical relevance and flexibility of theproposed distribution by analyzing two real-world data sets related to COVID-19 from China andPakistan. This new model can serve as a viable alternative to the existing discrete distributionsin the statistical literature.
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