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ABSTRACT. In this paper, we introduce a novel discrete probability distribution, referred to as the
discrete Harris extended inverse exponential distribution, and explore its fundamental properties. We
demonstrate that the proposed model serves as a generalization of the discrete Marshall-Olkin in-
verted exponential distribution. Key theoretical characteristics of the proposed model are derived,
including its probability generating function, moments, hazard rate function, cumulative hazard rate
function, reversed hazard rate function, mean residual life, and quantile function. Parameter estima-
tion is performed using various estimation techniques, including the maximum likelihood estimation,
Anderson-Darling, Cramér-von Mises, ordinary least squares, and weighted least squares. In addi-
tion, a simulation study is conducted to evaluate the performance of the estimators. The applicability
of the proposed distribution is further illustrated through its fit to two discrete real-world data sets
of COVID-19 from China and Pakistan.

1. INTRODUCTION

In scientific studies, discrete variables are common, particularly in reliability or life testing ex-
periments where measuring a device's lifespan on a continuous scale is often impractical. For
example, the durability of an on/off switch is typically quantified by counting its operational cycles,
making its lifespan a discrete random variable. In survival analysis, researchers may record the
number of days a patient survives post-treatment or the time from remission to relapse, relying on
counts rather than continuous measurements. By discretizing continuous distributions, researchers
have developed various discrete lifetime distributions. These include the discrete Weibull distribu-
tion introduced by Nakagawa and Osaki [1], a second type by Stein and Dattero [2], a third type
by Padgett and Spurrier [3], the discrete exponential distribution by Sato et al. [4], the discrete
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normal distribution by Roy [5], the discrete Rayleigh distribution by Roy [6], the discrete Laplace
distribution by Inusah and Kozubowski [7], the discrete skew-Laplace distribution by Kozubowski
and Inusah [8], the discrete Burr and Pareto distributions by Krishna and Pundir [9], and the dis-
crete inverse Weibull distribution by Jazi et al. [10], among others, are notable contributions to
the literature. Discretization is vital in variable selection techniques, extending beyond the mere
transformation of continuous variables into discrete forms. It can significantly improve the efficacy
of classification algorithms applied to high-dimensional biomedical data analysis. When construct-
ing a discrete counterpart of a continuous distribution, preserving key properties of the original
distribution is often a priority. The literature presents various approaches to discretization, as
explored by different authors, including Bracquemond and Gaudoin [11] and Chakraborty [12].

In this study, we introduce a novel discrete Harris extended inverted distribution, termed the
discrete Harris extended inverse exponential distribution. This family enhances modeling flexibility
for non-monotonic and heavy-tailed datasets. Aly and Benkherouf [13] generalized the Marshall-
Olkin (MO) distribution to introduce a more flexible model using the pgf of the Harris distribution
(Harris, 1948) for generating new distributions. Cordeiro et al. [14] introduced Harris extended
Lindley distribution. Tomy et al. [15] Harris extended modified Lindley. Jabir and Bindu [16,20]
proposed the Harris extended inverted Kumaraswamy and Harris extended Dagum distributions.
Sophia et al. [17] introduced the discrete Harris extended Weibull distribution. The survival function

of Harris family of distribution is given by
afl?G(x)

l:_HE(X) = — 1
[1—aG(x)s]?

x>0, (1)

where & = 1—a, @ > 0, and B > 0. The newly introduced parameters o and 3 represent additional
shape parameters that allow for enhanced flexibility. The survival function and probability density

function of the inverse exponential distribution are provided below.
Ge(x)=1-e*, x>0, 6>0, (2)

and
1 e
gie(x) = 5 5€7 7,

The remaining part of the paper is organized in the following order : Section 2 describes the Harris

x>0, 0>0. (3)

extended inverse exponential distribution. In Section 3, we defined the discrete Harris extended
inverse exponential distribution with its associated statistical properties, such as quantile function,
median, skewness and kurtosis, moments and moment generating function. The estimation of the
parameters by using different estimation methods such as maximum likelihood, Anderson-Darling,

Ordinary Least Squares, Weighted Least Squares and Cramer-von Mises, is discussed in Section 4.
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In Section 5, certain simulated data sets are provided to understand the behavior of the proposed
model in a large sample. Two real datasets related to COVID-19 are analyzed using the proposed

distribution in Section 6. Finally, the study is concluded in Section 7.

2. HARRIS EXTENDED INVERSE EXPONENTIAL DISTRIBUTION

Definition 1. A random variable X is said to have Harris extended inverse exponential distribution
(HEIE) with parameters 0, o, B, denoted by X ~ HEIE(8, a, 3) if its probability density function
(pdf) is given by,

gHEIE(X) = . x>0, (4)

where >0, a=1—a,a>0and B > 0.
Definition 2. If X ~ HEIE(0, o, B) then its cumulative distribution function (cdf) is given by,

1 0
ab (1—67)

(1—&(1—e—§)6)

where >0, a=1—a,a>0and B > 0.

Freie(x) =1— , x>0, (5)

=

e The general approach of discretizing a continuous variable is to introduce a floor function
or greatest integer function of X t.e., [X] (the greatest integer less than or equal to X till it
reaches the integer), in order to introduce grouping on a time axis.

o A discrete HEIE variable Xy, can be viewed as the discrete concentration of the continuous
HEIE variable X. where the corresponding probability mass function of Xy can be written
as:

P(Xg=x)=p(x) =5(x)—-S(x+1), x>0, (6)

where, S(x) is the survival function of HEIE distribution.

3. DISCRETE HARRIS EXTENDED INVERSE EXPONENTIAL DISTRIBUTION

Definition 3. If Xqy ~ DHEIE(a, B, q) then its probability mass function (pmf) and cumulative

distribution function (cdf) are given by,

1 1
1 1—gx 1— gx+
p(x) = a” - — ., x=0,1,2,... (7)

(1—&(1_qi)5)5 (1_&(1_qxil)ﬁ)r]é
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and

F(x)=1-— -, x=0,1,2,... (8)
_ 1 \B\#B
1-a (1 — gx+ )
whereg=e % 0<qg<l,a=1—a a>0andp > 0.
e When B8 = 1 the distribution reduces to discrete Marshall-Olkin inverse exponential
(DMOIE) distribution.
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Ficure 1. Plot of pmf of DHEIE for various values of o, B and q.

3.1. Survival function.
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Definition 4. The survival function (sf) of the DHEIE distribution is given by,

1 1
ab (1—qm)

(1—&(1—qxil)ﬁ)é

whereg=e % 0<qg<l,a=1—a a>0andpB > 0.

S(x) = , x=0,1,2,... (9)

3.2. Hazard function.

of the DHEIE

Definition 5. The failure rate function (or hazard rate function) (hrf), h(x) = g(( ))

X
distribution is given by,

(1-¢)(1-al - ql/(X+1))B)l//3
(1— q/0D) (1 - &(1— gi/)8) P

h(x) = 1, x=0,1,2,... (10)

whereg=e % 0<qg<l,a=1—a a>0andfB >0.

Figures 1 and 2 depict the pmf and hrf of the DHEIE distribution for varying parameter values.
As illustrated, The pmf of the DHEIE distribution is a versatile statistical tool capable of modeling
a wide range of discrete data behaviors. As illustrated across the plots, the distribution can take
on different shapes depending on its parameters ranging from sharply right-skewed to symmetric
or even slightly left-skewed forms. It can capture unimodal patterns where the probability mass
is concentrated around a central value, as well as distributions where the mass is heavily skewed
toward one end of the support. This flexibility allows the DHEIE distribution to accurately repre-
sent real-world scenarios where data may be clustered, dispersed, or asymmetrically distributed.
The ability to control the peak location, spread, and skewness through its parameters makes it
particularly well-suited for applications involving complex, non-uniform data, such as those found
in environmental monitoring, resource usage, or other sustainability-related fields. Its adaptability
enhances the modeler’s ability to capture true variability in observed phenomena, supporting more
precise analysis and more reliable decision-making.

Furthermore, the hrf of the DHEIE distribution is a powerful tool for modeling time-to-event
data across diverse applications. This function quantifies the conditional probability of an event
occurring at a specific time, given it has not yet occurred. As shown in the accompanying plots,
the hrf of the DHEIE distribution can exhibit decreasing or upside-down bathtub (UBT) shapes,
depending on parameter values. This versatility enables the DHEIE distribution to capture a wide
range of real-world phenomena. A decreasing hrf is well-suited for scenarios where the risk of
an event-such as failure-diminishes over time, as seen in reliability studies of robust systems like

industrial machinery. In contrast, a UBT-shaped hrf, characterized by an initially high risk that
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Ficure 2. Plot of the hrf of DHEIE for various values of o, G, and q.

decreases to a minimum before rising again, is ideal for modeling systems with early vulnerabilities
followed by a stable period and later wear-out, such as electronic components or certain biological
processes. The flexibility of the DHEIE hrf makes it particularly valuable for sustainability-focused
modeling, where understanding the timing and risk of events—such as equipment failure, resource
depletion, or environmental incidents—is critical. By accurately capturing these dynamic risk pro-
files, the DHEIE hrf supports precise predictions and informed decision-making in domains like

engineering, environmental management, and resource planning.

3.3. Cumulative hazard function.

Definition 6. The cumulative hazard rate function (chf) of the DHEIE distribution is given by,

< (1-qgYty(1-a(1 - ql/(t+1))ﬁ)1/ﬁ

Hx)=) h(t)y=>_
t=0

5 (1— qU/(+) (1 a(1 - gi/t)p) P

whereg=e % 0<qg<l,a=1—a a>0andfB >0.

1, x=0,1,2,..
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3.4. Mean residual life function.
Definition 7. The mean residual life function, L(x) = E[(X — x)/X > x| of the DHEIE distribution

is given by,

o J
L)=>[] 2—E

J=X iI=x

1—q/)(1-al- ql/(f+1))ﬁ)1/fj

) 1P , x=0,1,2,..
1— ql/(/+1)) (1 _ &(1 _ ql/l)ﬁ)

whereg=e % 0<qg<l,a=1—a a>0andp > 0.
3.5. Reverse hazard rate function.

Definition 8. The Reverse hazard rate function, h*(y) = P(Y = y | Y < y) of the DHEIE

distribution is given by,

oo e oot e [ree o))

h*(x) = —
1+aé(1_qxﬂ)(1+a(1_q@)ﬁ) ’

whereg=e % 0<qg<l,a=1—a a>0andpB > 0.

3.6. Quantile function and median. The DHEIE distribution can be simulated using inverse cdf

method,

log [1 —(1-uv)(a+a(l- u)ﬁ)*l/ﬁ]_1
log g

Qu) = [xu] = -1, (11)
where [x,| denotes the smallest integer greater than or equal to x, and 0 < u < 1. By utilizing
equation (13), we can compute the first and third quartiles by substituting ¢ = 0.25 and g = 0.75,
respectively.

In particular, median is given by,

og[1-05(a+a (o.5)ﬁ)*1/5]_1

Qu) =[xyl = g q -1

3.7. Skewness and kurtosis. By utilizing equation (13), we can compute Galton's skewness (Sk)
and Moor’s Kurtosis (K;) using the formulae given by

_ Q(6/8) —2Q(4/8) + Q(2/8)
B Q(6/8) — Q(2/8)

Sk

and the measure of Kurtosis, K,
_ Q(7/8) —Q(5/8) + Q(3/8) — R(1/8)

K= Q(6/8) - Q(2/8) |
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3.8. Moments. Let X ~ DHEIE(a, 3, q), then the rth moment of the random variable X can be
given by

E(XT) =) (X' = (x=1))S(x),
x=1
Using the expression of Equation (9), the mean can be given by,

1 1
o i f1g)

E(X)=)_ T (12)
x=1 (1—6[(1—qxi1)6)6
Using the expression of Equation (9), variance can be given by,
1 1
oy o)
Var(X) =) (2x—1) - — (E(X))>. (13)
x=1 — 1 \B\#B
1-a& (1 — g+t )

The dispersion index (Dsl) is defined as the variance/|mean|, it determines whether a given
distribution is suitable for equi - dispersed (Ds/ = 1), under-dispersed (Ds/ < 1) or over -
dispersed ((Ds/ > 1) datasets. Dsl is widely used in ecology as a standard measure for measuring

repulsion (under dispersion) or clustering (over dispersion).

The numerical values of mean and variance of the DHEIE(, 3, q) distribution for different values

of o, B, and g are calculated in Table 1 by using R statistical software. From these values, we

compute the dispersion index (Dsl), defined as variance/|mean|, to assess the degree of dispersion

in the distribution.

e As the parameters o, 3, and ¢ increase, the mean, variance, and Dsl of the DHEIE distri-
bution increase significantly.

e The variance shows a rapid increase with respect to parameter values, indicating a wide
spread in the distribution as parameters grow.

e Dispersion Index (Dsl) increases with parameters, reflecting growing overdispersion in the
data, especially for higher values of , 3, and gq.

e The relationship between the parameters and the statistical measures is non-linear, espe-
cially for mid to high values of parameters.

e The DHEIE distribution is highly sensitive to small changes in parameter values; even
slight increases in o, 3, or g can cause substantial changes in output statistics.

e At low parameter values, especially (a,3) = (0.05,0.1), the mean and variance approach

zero, indicating that the distribution is concentrated near zero.
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TABLE 1. Mean, Variance, and Dsl of DHEIED for various combinations of o, 3,

and g

a I6} q Mean Variance Dsl

0.1 0.0431 0.0525 1.2181
0.2 0.0714 0.1501 21024
0.3 0.1126 1.1138 9.8941

+ 04 1t 01764 6.4705 36.688
005 05 003 0.2742 22150 80.784
06 | 04139 53369  128.939

0.7 05976  102.629 171.724
0.8 0.8227 169.725 206.308
0.9 1.0834 252662 233.210
0.1 0.1117 0.1588 1.4216
0.2 0.5184 1.4789 2.8530
0.3 1.1091 8.1576 7.3550

04 1 0 19186  39.8566 20.7736
05 005 005 3.0427 1509535 49.6113
06 | 46035 436.6224 94.8458

0.7 6.7220 1016.7723 151.260
0.8 9.4964 2010.2609 211.687
09 12.9904 3513.5358 270.472
0.05 01 0.0000 0.0000 1.7001

0.10 0.2 0.0026 0.0746  28.2375
015 03 0.0366 4.1021 112.025

020 04 1t 01579 29.6045 187.438
025 05 05 03922 923997 235.608
030 06 | 07185 190.0621 264.542
035 0.7 1.0973 309.4172 281.972
040 0.8 1.4930 436.9089 292.640
045 09 1.8805 562.7938 299.277
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e The maximum dispersion (highest Dsl) occurs when all three parameters are large, sug-

gesting that the DHEIE model is suitable for modeling heavy-tailed or highly variable data.

Therefore, the DHEIE(a, 3, q) distribution is highly flexible to model a wide range of dispersion
behaviors from repulsion (under-dispersion) to clustering (over-dispersion) through appropriate

tuning of its parameters.

3.9. Probability generating function. The probability generating function (pgf) of the DHEIE dis-

tribution is obtained as,

1
[oe) B 1— X
Px(s)zl—i-od%(s—l)ZsX_l ( i H)

T-
_ B\ B
x=1 (1 _(1 711) )

3.10. Moment generating function. The moment generating function (mgf) of the DHEIE is given

by,

_ (xt)™ o 1—gx B l—qx%1
Ho XZOmZO (1—a(1—qx)6) (1—a(1—qx+1)6)

=
=

The first four partial derivatives of Mx(t), with respect to t at t = O, produce the first four
raw moments about the origin. The coefficient of skewness and kurtosis can be computed based
on moments. If the pdf given by a random variable X in equation (7) , then the corresponding

th

r* moments can be computed, the behavior of mean, variance, skewness and kurtosis for selected

values of o, 3, g using R software when the upper limit is finite.

3.11. Shannon entropy. Shannon entropy is a way to measure how unpredictable or uncertain a
situation is when dealing with probabilities. If you have a random variable X that can take on
several values with certain probabilities, the Shannon entropy tells you how much “surprise” is

involved. The formula looks like this:

Zp ) log p(x

Here, p(x) represents the probability that X takes the value x. The more evenly spread the

probabilities are, the higher the entropy, meaning more uncertainty and less information.


https://doi.org/10.28924/ada/stat.5.15

Eur. J. Stat.

% log

1\B l% 1.\B 113
1—&(1—q;) 1—&(1—qx+1)
The numerical illustration of Shannon entropy for various parameter combinations is presented in

Table 2. From this we can infer the following points.

TasLE 2. Entropy of DHEIED for various combinations of o, 3, and q.

a B q=002 q=01 gq=09

0.1 2415336 1.762221 0.084393

0.2 2477083 1.825203 0.112271

T 03 2532580 1.882129 0.138394
05 0.4 2582587 1.933579 0.162281
4+ 05 2627805 1.980160 0.183834
0.6 2668832 2.022428 0.203142

0.7 2706172 2.060876 0.220379

0.8 2740256 2.095936 0.235755

0.1 1.186696 0.770590 0.015464
0.2 1.730851 1.169968 0.047773
03 1 2106373 1.488284 0.088846
04 05 2393948 1.753656 0.134920
06 | 2825191 2177171 0.234256
0.7 2996012 2.351164 0.285334
0.8 3.146500 2.506733 0.336512

e Shannon entropy increases as either o or B increases, indicating that both parameters
contribute positively to the uncertainty or disorder in the system.

e For any fixed pair of a and (3, the entropy decreases as the entropic index g increases.
This reflects the property that higher g values in Tsallis or Rényi like frameworks give more

weight to the dominant probabilities, thus lowering the entropy.
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e The rate of increase in entropy with respect to o or 3 is more pronounced when g is small,
suggesting that lower g values are more sensitive to parameter changes.

e When either a or G is small, entropy values tend to be low, especially for larger g, implying
reduced uncertainty in more concentrated or less spread-out distributions.

e The entropy surface (over o, 3, and ) appears smooth and monotonic, with no irregular or
non-monotonic behavior, which is consistent with well behaved parametric models.

e |In summary, both parameters o and 8 enhance entropy, while increasing g suppresses
it, indicating a clear and consistent interaction between shape/scale parameters and the

entropy index.

3.12. Order statistics. Order statistics (OS) play a significant role in various areas of statistical
theory and practice. Consider a random sample X1, X2, ..., X, drawn from the DHEIE(o, B, q)
model, and let X1, X2, .. ., Xn:n represent the corresponding order statistics. The cdf for the ith

order statistic Xj.,, for an integer value of x, can be expressed as follows:

n

Fin(x;,B,9) = _ (Z) [F(xi0. B, )]*[L — F(xi o, B, )]"™%,

k=i
n n—k .
=5 Y 8 KIF(x:6,a.B)F,
k=i j=0
k+j
n n—k Clé (1 - CITL)
=Y > Nj(nk)|1- 3
k=i j=0 (1—&(1—qx+11) )
where Aj(n, k) = (—1)1(2)(,7;/()'
The pmf of the k" order statistic is given by:
fx(x) = Fx(x) — Fx(x —1).
) ket k+j
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3.13. Stress-strength parameter. The stress-strength parameter R serves as a key metric for as-
sessing component reliability. It is defined in the context of a random variable Y, representing the
strength of a component, subjected to a random stress X. The estimation of R has been extensively
explored in statistical literature, particularly under the assumption that X and Y are independent
and identically distributed (i.i.d.). Numerous researchers have contributed to this area of study,
with extensive discussions available in the literature. it has been widely applicable in diverse fields
such as medicine, engineering, and psychology. In the discrete case, the stress-strength model is
defined as

R=P(Y>X)=) py(x)Fx(x),
x=0
where py(x) is the pmf of Y and Fx(x) is the cdf of X.
Let Y ~ DHEIE(y;) and X ~ DHEIE(7,), where 71 = (a1,61, q1)" and 75, = (a2, B2, q2)".

Then, using equations (7) and (8), we have

R:i ((qfix_l) (1_d1(1_q11ix)ﬁ1)_511_(q%—1) (1—021(1—615)61)_511)
x=0

1

B1

1 1

1
B2 1+x D 141r>< 62 P2
X Q I+a’ (g™ =1) 1 -0z (1—qg,™) .

The stress-strength reliability parameter for different parameter values is numerically computed and
presented in Table 3. From this, we can infer that the reliability (R value) improves significantly

when the strength distribution dominates the stress distribution, particularly when g» > g;.

4. ESTIMATION

In the following section, we employ five estimation methods namely, maximum likelthood (ML), Or-
dinary least squares (OLS), Weighted least squares (WLS), Cramér—von Mises (CM), and Anderson—
Darling (AD) to estimate the parameters of the proposed distribution.

4.1. Maximum likelihood estimation. Let X7, X5, ..., X, be a random sample from the DHEIE

distribution with parameters o, 3, g. The log-likelihood function is given by:

o, B.q) =) _log[p(xi;a. B, q)].

i=1

Which is obtained as,

n :
n
La,B,q) = =loga+ log —
(a.6.9) = gloga+)_ ; :
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TaBLE 3. Combined Table of R Values with Grouped g; and ¢

g =05 ¢=09

aq ,61 Qo ,62 R Value

02 01 04 03 0.04592
04 05 08 06 0.22837
06 10 1.2 09 0.34653
08 15 16 1.2 041322

g1 =03 ¢=0.6

a1 61 (6%} 52 R Value

02 01 04 03 0.16466
04 03 08 06 032764
06 10 1.2 09 0.41980
08 15 16 1.2 0.45779

g1=0.9, g¢g=05

a7 61 Qo ﬁQ R Value

02 01 04 0.3 0.00019
04 03 08 0.6 0.01049
06 1.0 1.2 09 0.03906
08 15 1.6 1.2 0.05015

Hence, the likelthood equations of o, 3, g is obtained by solving the following non-linear equations,

; ; BA; aD;
oy ! [D’%f\v"Afaa%_Dfﬂ os- — At ‘3(;1] (14)
- A 2 2 '
% So-oh b P
B0tV (L (B
o8 0 [50,.2 (1-aa?)" -5 (1-adl)
o~ fa ¢ (& - 2] (19)
=1 Di Dip
oL n 4 1 A; OD;  Ai110Di4
=——loga+ -—— 16
6~ B ; A fa [ D266 ' D%, OB (10)

Where,
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) 1/B ) 1/B |

D,‘: (1—0_£A§3 Di+1: (1_5‘A,'5+1
The maximum likelihood estimators (MLEs) of © = (o, B, q)7, denoted by & = (&,3, §)", can be
obtained by numerically solving the likelihood equations (14)— (14)—(20). A suitable approach for

this is a multivariable optimization method, such as the four-parameter Newton-Raphson algorithm.

4.2. Ordinary least square and Weighted least square estimation. The method of Least square
estimation was proposed by [18] to determine the unknown parameters by minimizing the distance
between uniformized order statistics vector and the corresponding vector of expected values. Given
X1, X2, X3, ..., Xp, as the random sample of size n, taken from a continuous distribution function,
then let X(l) < X(2) < X(3) < ... < X(n) be its corresponding order statistics. Then the expected

value and variance of the empirical cumulative distribution function (ecdf) are defined as follows,

E(F(X@) = i=1,2..n (17)

n+1'
i(n—i+1)
(n+1)2(n+2)’

From the above equation, we can derive the OLS and the WLS estimators of the unknown parameters

Var(F(X)) = i=1,2,..n. (18)

a, B and q.
The OLSE and WLSE method for estimating the unknown parameters, (o, 3, q) of the DHEIE

can be obtained by minimising the following equation,
2

S(aﬁ,q)=ZW/(F(X(/):aﬁ,q)— ’ ) (19)
i=1

n+1

where W; =1 forall i = 1,2, ..., nin the case of OLSE method which results in estimators &o; sk,
Boise and doisg and W, = —— in Equation (19) in the WLSE method that produce
Var(F(X))

estimators &wse, Bwise and Gwise. Further the estimation of parameters o, B and g of the

DHEIE is obtained by solving the following non-linear equations.

oS 4 . i OF(X(iy: .8, q)
804_2;‘/\/'(':()((")'&'5'67)*/7—1—1) 9 =0,
as L i\ OF(X(y: . B, q)

P oS Wi [ F(xgy; - —
0 ;W,( (X(iy: . B. q) n+1) 0 0,
oS ‘ _ i\ OF(X(i)i . B, q)
Bq_2;W'(F(X(i)'a’6'q)_n+l) aq = 0.

where, )
p]~1/P 1
“11/B |1 g (1 g ] 1— g1
OF (X(iyia.B. q) _ “ [ a( a ) ( g ) 20
oo 6] '
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OF (X(jy: . B, q) o [1_5[(1_qﬁl)ﬁ] 1/6(1_6’;1)

op B B2
X (Iog(a)~|og(1~d(1~qxil)ﬁ)), (21)

1/8 = = e -1+-4
aF(X(,—);ayﬁyq) _a [1_a(1_qx+1) ] q x+1

aq - x+1 (22)

4.3. Anderson-Darling estimation. The Anderson-Darling estimation (ADE) is based on Anderson-
Darling statistic proposed by [19]. The estimator gape, aape and ﬁAADE, can be obtained by

minimizing following equation with respect to o, 3, q. parameter.

n

A@.B.q) = —n— =321 = 1)(Iog(F(X(p)) +log(1 = FX(nin))).  (23)
i=1

Furthermore, these estimation of unknown parameters are done by solving the following non-linear

equations,
3/4(?;:()‘5'(7) N i(z - F(d;(i/)) ! —(pFlér;(:j—/))_ -0
aA(a 5 D ZQ F(d;?(i/)) 1 —¢F28<+(1n+?_/))_ -0
aA(%bﬁ'q) = é(” -1 _F((ii(/,-)) 1 —¢F28<+(:f,->)_ -0
where

OF (X(jy: . B, q) b — OF (X(jy: . B, q) P OF (X(iy: . B, q)
da 2 o8 e aq

has similiar expression as (20)-(22).

b1i =

4.4. Cramér-von Mises estimation. Similar to ADE method the Cramér-von Mises estimator (CME)
is a type of minimum distance estimator, also known as maximum goodness-of fit estimators. This
estimator is based on the difference between the estimate of cdf and the ecdf. The CME of acve,

,BCAME and gcive, are resulted from minimizing the equation in (24) with respect to o, 3 and q.

n

Clapa) =5+ (Fixp) - 252 (24)

i=1
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i.e. the unknown parameters are obtained by solving the following non-linear equations

C - _ 2i—1\ OF( Xy, B.q)
e = 2; (F(X(,-),oz,ﬁ, 9) - ) o =0, (25)
oc n _ 2i—1 3F(X(,-);Ot,5.CI) _
%_2§(F(X(,),a,ﬁ,q)— > ) % =0, (26)
0C & , 2i—1\ OF Xy B.q)
3 = 2y (F(X(,-),a,ﬁ, a0) - = ) 57 =0. (27)

i=1

where the partial derivatives of the equation (25)-(27) are obtained in (20)-(22).

5. SIMULATION

In this section, we will go over simulation studies for various parameter combinations in or-
der to assess the performance of the five different parameter estimation methods, including MLE,
OLSE, WLSE, ADE and CME. We generated 1000 simulations for different choices of size, n
(n = 20,100,500). In each simulated data a n observations/sample data points are gener-
ated from the DHEIE distribution for different combination of parameters such as (a,83,q) =
{(0.5,0.5,0.5),(1.5,1,0.8)}. Each sample observations are generated from the inverse cdf of
DHEIE distribution. Using the five estimation methods, we estimated parameter values of each
simulated data by applying numerical algorithm to solve the non-linear equations given for all the
five methods.

The bias and mean squared error (MSE) were computed and depicted in Table 4 and 5 to analyse
the performance of the five methods, simulated for different sample sizes(n) and for various choices
of parameters. Table 4 and 5 shows that all the estimation techniques perform effectively for various

parameter selections, and the bias and MSE decrease as the sample size increases.

6. APPLICATIONS

This section discusses the advantages of the newly proposed DHEIE distribution over some
commonly used discrete distributions. The performance of the DHEIE distribution is compared
with the following competitive distributions such as the discrete Burr Xl distribution (DBXII), the
discrete Bilal distribution (DB), the discrete Burr-Hatke distribution (DBH), the discrete exponen-
tiated Rayleigh distribution (DER), the discrete length-biased exponential distribution (DLBE), the
discrete Pareto distribution (DPr) and the Poisson distribution (P).
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TaBLE 4. Bias and MSE of (o, 3, q) for various parameter values obtained using

five estimation methods with different sample sizes.

Parameters Bias MSE
Setting n  Method a G G a G G
MLE 0.040 0.048 0.421]0.024 0.036 0.0410
CME 0.032 0.027 0.039 | 0.034 0.067 0.074
20 ADE | -0.007 -0.017 0.022 | 0.022 0.050 0.063
OLSE 0.044 -0.045 -0.043 | 0.037 0.074 0.069
WLSE | 0.046 -0.044 -0.051 | 0.040 0.076 0.063
MLE 0.006  0.002 0.003 | 0.004 0.011 0.014
CME 0.004 0.003 0.006 | 0.006 0.013 0.017
a=05pB3=05¢=05 100 ADE |-0.003 -0.005 0.004|0.005 0.011 0.013
OLSE 0.006 -0.012 -0.003 | 0.006 0.014 0.012
WLSE | 0.007 -0.011 -0.012 | 0.006 0.014 0.021
MLE 0.003 0.002 0.002 | 0.001 0.002 0.003
CME 0.003 0.003 0.002 | 0.001 0.003 0.002
500 ADE 0.001 0.001 0.001 | 0.001 0.003 0.005
OLSE 0.004 0.001 0.001 | 0.003 0.004 0.002
WLSE | 0.004 0.001 0.002 | 0.001 0.003 0.004

Data set I: Deaths due to coronavirus in China. The first data set consists of the daily number of
deaths due to coronavirus (COVID-19) in China from 23 January to 28 March 2020. The data were
collected from the website

The recorded number of daily deaths is as follows:
Data: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143,
142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22,
17,22,11,7,13,10,14,13,11,8,3,7,6,9,7,4,6,5, 3, 5.

The MLEs, along with their corresponding standard errors and goodness of fit measures for the

fitted models, are presented in Table 6. From Table 6, it is evident that the DHEIE distribution
yields the lowest values of AIC, BIC, and KS statistic, along with the highest p-value. These
results indicate that the DHEIE distribution provides a better fit compared to the other competing
distributions. The fitted pdf and cdf plots of the DHEIE distribution for COVID-19 deaths in China

are shown in Figure 3.

Data set lI: Daily deaths due to coronavirus in Pakistan. The second data set consists of the daily
number of deaths due to coronavirus (COVID-19) in Pakistan from 18 March to 30 June 2020. The
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TaBLE 5. Bias and MSE of (o, 3, q) for various parameter values obtained using

five estimation methods with different sample sizes

Parameters Bias MSE
Setting n  Method a G G a 6] G
MLE 0.101 0.084 0.071 | 0.086 0.061 0.055
CME 0.085 0.052 0.049 | 0.064 0.049 0.031
20 ADE | -0.016 -0.028 0.031 | 0.038 0.020 0.023
oLS 0.096 -0.068 -0.052 | 0.097 0.084 0.071
WLS 0.121 -0.091 -0.065 | 0.096 0.092 0.087
MLE 0.019 0.017 0.009 | 0.028 0.017 0.014
CME 0.009 0.006 0.008 | 0.011 0.019 0.022
a=15pB8=10,¢q=08 100 ADE |-0.008 -0.011 0.012|0.009 0.018 0.017
oLS 0.011 -0.019 -0.011 | 0.008 0.018 0.019
WLS 0.017 -0.023 -0.018 | 0.009 0.018 0.019
MLE 0.007 0.004 0.004 | 0.005 0.004 0.004
CME 0.004 0.005 0.003 | 0.003 0.003 0.002
500 ADE 0.002 0.003 0.002 | 0.003 0.005 0.004
oLS 0.006 0.004 0.004 | 0.008 0.006 0.005
WLS 0.008 0.006 0.004 | 0.003 0.004 0.004

O  Observed Data
—+— Fitted PMF

Ficure 3. Fitted pdf and cdf plots

of COVID-19 deaths in China.
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TaBLE 6. MLEs, standard errors, and model comparison criteria for COVID-19
deaths in China

Model B q 5 —logL AIC  BIC  KS (p-value)

DHEIED 18.8417 0.0398 28291 328.63 663.26 669.83 0.1290 (0.2104)
(9.751)  (0.067) (6.448)

DBXIl 09788 63999 - 37449 752.99 757.38 0.3607 (0.0000)
(0.0389) (17.562)

DER 34054 05246 - 34723 69845 702.83 0.2932 (0.0000)
(169.93) (5.2344)

DPr 0.2863 - — 37907 76014 762.33 0.3816 (0.0000)
(0.0352)

DLBE  25.122 - ~ 33052 663.03 66522 0.1718 (0.0407)
(2.1866)

DB 0.9834 - ~ 33007 66214 66433 0.1655 (0.0538)
(12.114)

DBH 0.9998 - —  461.02 92404 926.23 0.8119 (0.0000)
(0.0019)

P 49.737 - ~  1409.8 2821.6 28237 0.4975 (0.0000)
(0.8681)

data were collected from the website

. The recorded number of daily deaths is as follows:
Data: 1,6, 6,4, 4,4, 1,20,5,2 315,17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 20, 31, 42, 32,
23,17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 30, 28, 35,
57,78, 88, 60, 78, 67, 82, 68, 97, 67, 65, 105, 83, 101, 107, 88, 178, 110, 136, 118, 136, 153,

119, 89, 105, 60, 148, 59, 73, 83, 49, 137, 91.
The MLEs, corresponding standard errors, and model comparison metrics are reported in Table 7.

From Table 7, it is evident that the DHEIE distribution yields the lowest values of AIC, BIC, and
KS statistic, along with the highest p-value. These results indicate that the DHEIE distribution
provides a better fit compared to the other competing distributions. The fitted pdf and cdf plots of

the DHEIE distribution for COVID-19 deaths in Pakistan are shown in Figure 4.
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TaBLe 7. MLEs, standard errors, and model comparison criteria for COVID-19

deaths in Pakistan

~

Model B q 0 —logL AIC BIC KS (p-value)

DHEIED 5.1674 09999 16.0114 45176 909.53 916.93 0.1826 (0.2426)
(7.7459)  (0.01001) (0.0001)

DBXII 09816  15.499 — 49712 99824 1003.2 0.3500 (0.0000)
(0.0227)  (19.249)

DER 33716 0.5293 ~ 45254 909.09 914.02 0.2473 (0.0000)
(228.83)  (7.1851)

DPr 0.2834 = —~ 50361 10092 1011.6 0.3556 (0.0000)
(0.03038)
DBH 0.9997 - — 61380 1229.6 12321 0.7876 (0.0000)
(0.0016)
DP 50.057 - — 17130 34281 34305 0.4579 (0.0000)
(1713.0)
3
o O Observed Data
—+ Fitted PMF
g
Q
% 8. o
g g 0
5
g | iiiiin||||iiiiiiiiiiimim:m:m:::mm:vnnumum _____________________________
© I I |
0 100 150
X X

FIGURE 4. Fitted pdf and cdf plots of COVID-19 deaths in Pakistan.
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7. CoNCLUSION

In this paper, we introduce a novel discrete distribution called the Harris extended inverse
exponential distribution. We examine several key structural properties of the proposed distribution
and provide a detailed analysis of its mean and variance, supported by numerical illustrations. The
model parameters are estimated using various methods, including MLE, ADE, CME, OLSE, and
WLSE. To evaluate the performance of these estimation techniques, we conduct a comprehensive
simulation study. In addition, we demonstrate the practical relevance and flexibility of the
proposed distribution by analyzing two real-world data sets related to COVID-19 from China and
Pakistan. This new model can serve as a viable alternative to the existing discrete distributions

in the statistical literature.
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