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Abstract. In this work, we derive a novel extension of Chen distribution. Some statistical propertiesof the new model are derived. Numerical analysis for mean, variance, skewness and kurtosis ispresented. Some characterizations of the proposed distribution are presented. Different classicalestimation methods under uncensored schemes such as the maximum likelihood, Anderson-Darling,weighted least squares and right-tail Anderson–Darling methods are considered. Simulation studiesare performed in order to compare and assess the above-mentioned estimation methods. For comparingthe applicability of the four classical methods, two application to real data set are analyzed.

1. Introduction
Let X be a non-negative random variable (RV) with an Exponentiated Chen (EC) distribution(see Chaubey and Zhang (2015)), then its cumulative distribution function (CDF) is given by

Gα,γ,β (x) =
(

1− exp
{
γ
[
1− exp

(
xβ
)]})α

, (1)
where x > 0, α > 0, γ > 0 and β > 0. Chaubey and Zhang (2015) presented two propositionsstudying probability density function (PDF) and hazard rate function (HRF). The first propositionshows that the PDF shapes are either "decreasing" or "unimodal". The second proposition concludesthat the HRF shapes are either "increasing" or "bathtub". Chaubey and Zhang (2015) also addressed
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Eur. J. Stat. 10.28924/ada/stat.2.1 2the problem of estimation of parameters of the EC distribution, focusing on the maximum likelihoodestimation method. The shape of the PDF of the EC distribution may be characterized as follows:for α < 1, 1 > β, gα,γ,β (x) is a decreasing density, for α > 1, β > 1, gα,γ,β (x) = dGα,γ,β (x) /dxis a unimodal density and for 1 > α, β > 1 and for α > 1, 1 > β, gα,γ,β (x) may be unimodalor decreasing density (see Due to Dey et al. (2017)). Chaubey and Zhang (2015) presented aproof that the failure behavior of the EC distribution are, respectively, bathtub (1 > α, β < 1),increasing (α > 1, β > 1), increasing or bathtub (1 > α, 1 < β and α > 1, β < 1). For α = 1, theEC distribution reduces to Chen (C) distribution (Chen (2000)) with Gγ,β (x) = 1−∇γ,β (x) where
∇γ,β (x) = exp

{
γ
[
1− exp

(
xβ
)]}

.

Dey et al. (2017) addressed various mathematical properties and estimation methods for the ECmodel. They described different estimation methods such as the method of maximum likelihood,percentile estimation, ordinary least square and weighted least square, maximum product of spac-ings estimation, Cramér-von Mises, Anderson–Darling and right-tail Anderson–Darling estimationmethods. For more Chen models see Khan et al. (2013 and 2016), Korkmaz et al. (2021) andAlmazah et al. (2021). In this work, we shall use the Burr X generator (BX-G) (Yousof et al. (2017))to derive a new version of the Chen distribution called the Burr type X exponentiated Chen (BXEC)distribution. The CDF of the BX-G is defined as
Fθ,ξ (x) =

{
1− exp

[
−O2

ξ (x)
]}θ
|x∈R, (2)

where
Oξ(x) =

Gξ (x)

Gξ (x)
.

Inserting (1) into (2), the CDF of the BXEC distribution can be expressed as
FΨ (x) =

{
1− exp

[
−O−2

α,γ,β(x)
]}θ
|x>0, (3)

where
Oα,γ,β(x) =

{[
1−∇γ,β (x)

]−α − 1
}
|x>0.The corresponding PDF of the BXEC can be derived as (for x ∈ R+)

fΨ (x) = 2θαγβ
xβ−1 exp

(
xβ
)
∇γ,β (x) exp

[
−O−2

α,γ,β(x)
] [

1−∇γ,β (x)
]2α−1

{
1−

[
1−∇γ,β (x)

]α}3
{

1− exp
[
−O−2

α,γ,β(x)
]}1−θ |x>0, (4)

where Ψ = (θ, α, γ, β). The bivariate BXEC (B-BXEC) type extensions can be derived usingsome copulas such as the Farlie-Gumbel-Morgenstern copula (Morgenstern (1956), Gumbel (1960),Gumbel (1961), Johnson and Kotz (1975) and Johnson and Kotz (1977)), modified Farlie-Gumbel-Morgenstern copula (Rodriguez-Lallena and Ubeda-Flores (2004)), Renyi entropy (Pougaza andDjafari (2011)) and Clayton copula. Different classical estimation methods under uncensored
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Eur. J. Stat. 10.28924/ada/stat.2.1 3schemes are considered, such as the maximum likelihood (ML), Anderson–Darling (AD), weightedleast squares (WLS) and right-tail Anderson–Darling (RTAD) methods (see Ibrahim et al. (2019and 2020), Mansour et al. (2020d), Ibrahim and Yousof (2020) and Yousof et al. (2021a) for moredetails). Numerical simulations are performed for comparing the estimation approaches using dif-ferent sample sizes for three different combinations of parameters (see Section 6). Although allestimation methods perform well, the ML method is the best method among all estimation tech-niques in modeling the uncensored relief times data and the WLS method is the best method amongall estimation techniques in modeling the uncensored minimum flow data (see Section 7).
We are motivated to introduce and study the BXEC model for the following reasons:
• The BXEC model is recommended for modeling the relief times. However, the BXEC modelis recommended for modeling the minimum flow data.
• The range of the skewness of the BXEC model is falling in the interval(−0.1151715,27.99215). The wide range of the skewness gives the priority to the BXECmodel in modeling and future prediction since many real-life datasets are negatively skewed.The kurtosis of the BXEC model is located between 0.674322 and 853.3517.
• The estimation persuaders of the BXEC model can be performed under many estimationmethods such as the maximum likelihood (ML), Anderson–Darling (AD), weighted leastsquares (WLS) and right-tail Anderson–Darling (RTAD) methods. Although all estimationmethods perform well in simulations, the ML method is recommended for modeling the relieftimes data and the ML method is recommended for modeling the minimum flow data.

2. Linear representation
In this section, we provide a very useful linear representation for the BXEC density function.Consider the power series

(
1−

ζ1

ζ2

)ζ3

=

+∞∑
l1=0

(−1)l1 Γ (1 + ζ3)

l1! Γ (1 + ζ3 − l1)

(
ζ1

ζ2

)l1
|∣∣∣ ζ1
ζ2

∣∣∣<1, ζ3>0
. (5)

Applying (5) to (4) we have
fΨ (x) = 2θαγβxβ−1 exp

(
xβ
)
∇γ,β (x)(

1−∇γ,β (x)
)1−α

(
1−∇γ,β (x)

)α{
1−

[
1−∇γ,β (x)

]α}3

×
+∞∑
l1=0

(−1)l1 Γ (θ)

l1! Γ (θ − l1)
exp

[
− (l1 + 1) O−2

α,γ,β(x)
]
. (6)
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Applying the power series to the term exp
{
− (l1 + 1) O−2

α,γ,β(x)
}, equation (6) becomes

fΨ (x) = 2θαγβxβ−1 exp
(
xβ
)
∇γ,β (x)(

1−∇γ,β (x)
)1−α (7)

×
+∞∑
l1,l2=0

(−1)l1+l2 (l1 + 1)l2 Γ (θ)

l1! l2!Γ (θ − l1)

[
1−∇γ,β (x)

](2l2+1)α{
1−

[
1−∇γ,β (x)

]α}2l2+3
.

Consider the series expansion(
1−

ζ1

ζ2

)−ζ3

=

+∞∑
l3=0

Γ (ζ3 + l3)

l3!Γ (ζ3)

(
ζ1

ζ2

)l3
|∣∣∣ ζ1
ζ2

∣∣∣<1, ζ3>0
. (8)

Applying the expansion in (8) to (7) for the term [1− (1−∇γ,β (x)
)α]2l2+3, equation (7) becomes

fΨ (x) =

+∞∑
l2,l3=0

ς l2,l3 πα·(x)|(α·=(2l2+1)α+l3+1), (9)
where

ς l2,l3 =
2θ (−1)l2 Γ (θ) Γ (2l2 + l3 + 3)

l2!l3!Γ (2l2 + 3)α·

+∞∑
l1=0

(−1)l1 (l1 + 1)l2

l1! Γ (θ − l1)and
πα·(x) = α·gγ,β (x)

[
Gγ,β (x)

]α·−1
.

Equation (9) reveals that the density of X can be expressed as a linear mixture of EC densities.So, several mathematical properties of the new family can be obtained by knowing those of theEC distribution. Similarly, the CDF of the BXEC family can also be expressed as a mixture of ECCDFs given by
FΨ (x) =

+∞∑
l2,l3=0

ς l2,l3 Πα· (x) (10)
where Πα·(x) =

[
Gγ,β (x)

]α· is the CDF of the EC family with power parameter α·.
3. Mathematical and statistical properties

3.1. Moments and generating function. Following Dey et al. (2017), we can extract two theorems(see Appendix A). Based on Theorem 1, the r th ordinary moment of the BXEC model can then beexpressed as
µ′r = E [Xr ] = α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
q

(
r

β

)
α·q

(
r

β
+ ρ

)
(−1)

2r
β

+ρ

γ
2r
β

+ρ [β (α· + ρ+ q) + r ]
. (11)

In particular,
µ′1 = E [X] = α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
q

(
1

β

)
α·q

(
1

β
+ ρ

)
(−1)

2
β

+ρ

γ
2
β

+ρ [β (α· + ρ+ q) + 1]
,
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µ′2 = E
[
X2
]

= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
q

(
2

β

)
α·q

(
2

β
+ ρ

)
(−1)

2
β

+ρ

γ
2
β

+ρ [β (α· + ρ+ q) + 2]
,

µ′3 = E
[
X3
]

= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
q

(
3

β

)
α·q

(
3

β
+ ρ

)
(−1)

6
β

+ρ

γ
6
β

+ρ [β (α· + ρ+ q) + 3]
,

and
µ′4 = E

[
X4
]

= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
q

(
4

β

)
α·q

(
4

β
+ ρ

)
(−1)

8
β

+ρ

γ
8
β

+ρ [β (α· + ρ+ q) + 4]
.

The variance (V(Y )), cumulants, nth central moment, skewness (S(Y )), kurtosis (K(Y )) and Indexof dispersion of the variance to mean ratio (ID(Y )) measures can be calculated from the ordinarymoments using well-known relationships.
3.2. Conditional moments. For the increasing failure rate models, it is also of interest to knowwhat E (Xr |X > x) is. It can be easily seen that

E (Xr |X > x) = α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
r
β

)
α·q

(
r
β + ρ

)
(−1)

2r
β

+ρ (∇γ,β (x)
)

γ
2r
β

+ρ [β (α· + ρ+ q) + r ]
[

1−
(

1−∇γ,β (x)
)α·] . (12)

In particular,
E (X|X > x) = α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
1
β

)
α·q

(
1
β + ρ

)
(−1)

2
β

+ρ (∇γ,β (x)
)

γ
2
β

+ρ [β (α· + ρ+ q) + 1]
[

1−
(

1−∇γ,β (x)
)α·] ,

E
(
X2|X > x

)
= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
2
β

)
α·q

(
2
β + ρ

)
(−1)

4
β

+ρ (∇γ,β (x)
)

γ
4
β

+ρ [β (α· + ρ+ q) + 2]
[

1−
(

1−∇γ,β (x)
)α·] ,

E
(
X3|X > x

)
= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
3
β

)
α·q

(
3
β + ρ

)
(−1)

3
β

+ρ (∇γ,β (x)
)

γ
3
β

+ρ [β (α· + ρ+ q) + 3]
[

1−
(

1−∇γ,β (x)
)α·] ,

and
E
(
X4|X > x

)
= α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
4
β

)
α·q

(
4
β + ρ

)
(−1)

8
β

+ρ (∇γ,β (x)
)

γ
8
β

+ρ [β (α· + ρ+ q) + 4]
[

1−
(

1−∇γ,β (x)
)α·] .

3.3. Mean residual life. The mean residual life (MRL) is the expected remaining life, X− x , giventhat the item has survived to time x . Thus, in life testing situations, the expected additional lifetimegiven that a component has survived until time x is called the MRL. Since the MRL function is theexpected remaining life, x must be subtracted, yielding
M1 = E (X − x |X > x) =

1

1− FΨ (x)

 +∞∫
x

yfΨ (y) dy

− x.
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M1 = α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
1
β

)
α·q

(
1
β + ρ

)
(−1)

2
β

+ρ (∇γ,β (x)
)

γ
2
β

+ρ [β (α· + ρ+ q) + 1]
[

1−
(

1−∇γ,β (x)
)α·] − x.

3.4. Mean past lifetime. In a real life situation, where systems often are not monitored continu-ously, one might be interested in getting inference more about the history of the system, for example,when the individual components have failed. Assume now that a component with lifetime X hasfailed at or some time before x , x ≥ 0. Consider the conditional random variable x−X|X ≤ x . Thisconditional random variable shows, in fact, the time elapsed from the failure of the component giventhat its lifetime is less than or equal to x . Hence, the mean past lifetime (MPL) of the componentcan be defined as
M1 = E (x −X|X ≤ x) = x −

1

FΨ (x)

t∫
0

yfΨ (y) dy.

Then using (11) and (12), we get
M1 = x − α·β

+∞∑
l2,l3,ρ,q=0

ς l2,l3 α
·
ρ

(
1
β

)
α·q

(
1
β + ρ

)
(−1)

2
β

+ρ

γ
2
β

+ρ [β (α· + ρ+ q) + 1]

(
1−∇γ,β (x)

) β(ρ+q)+1
β .

3.5. Numerical analysis for mean, V(X), S(X), K(X) and DisIx(X). Table 1 gives Numericalanalysis for the mean, V(X), S(X), K(X) and DisIx(X). Based on Table 1, we note that: 1-Theskewness of the BXEC distribution can range in the interval (−0.1151715, 27.99215). 2-The spreadfor the BXEC kurtosis is much larger ranging from 0.674322 to 853.3517. 3-ID(X) can be "between
0 and 1" and "more than 1".
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Table 1: Mean, variance, skewness and kurtosis.
θ α γ β E (X) V(X) S(X) K(X) ID(X)0.001 0.25 1.15 0.5 0.004704 0.0065858 22.86888 602.2104 1.4001100.01 0.046359 0.0634222 7.113755 59.83784 1.3680820.05 0.217748 0.2696108 2.950300 11.75074 1.2381770.1 0.404606 0.4452129 1.888049 5.880733 1.1003610.5 1.280745 0.6754974 0.263415 2.166524 0.5274251 1.752028 0.5140454 −0.1151715 2.44533 0.2934005 2.571438 0.1700379 −0.1185289 2.977865 0.06612650 3.191300 0.0498866 0.2802537 3.108527 0.015632150 3.382794 0.0330405 0.4045376 3.244357 0.009767500 3.552790 0.0227708 0.5052380 3.396144 0.006409

0.5 0.001 1 0.25 0.0161660 0.099236 22.90835 569.8220 6.1385790.25 1.6983920 3.633604 1.388534 4.517459 2.1394380.5 0.3211543 0.172874 1.879163 6.956402 0.5382890.75 0.1052558 0.021496 2.143353 8.516228 0.2042231 0.0449386 0.004308 2.331145 9.772082 0.0958561.5 0.0125201 0.000376 2.623065 10.14921 0.030045
1.5 1.5 0.5 0.5 0.037479 0.00089046 1.1555660 0.674322 0.023758941 0.149247 0.00542029 0.4019048 2.784748 0.036317685 0.729749 0.02153580 −0.3031202 2.94796 0.0295112410 1.049247 0.02424775 −0.4039516 3.119624 0.0231096720 1.377546 0.02477488 −0.4555275 3.223266 0.0179847950 1.807956 0.02377759 −0.4866825 3.291349 0.01315164150 2.305916 0.02169227 −0.4999334 3.322090 0.00940722500 2.823258 0.01930193 −0.5031953 3.330685 0.00683676
1.75 0.25 2 0.05 0.010810 0.065244 27.99215 853.3517 6.0358290.10 0.055959 0.375494 12.16822 158.7941 6.7101350.15 0.241225 1.698862 5.68209 35.08007 7.0426540.35 5.303015 2.012257 −0.1814966 2.806119 0.3794550.5 3.188738 0.381287 −0.4362321 3.145548 0.1195730.65 2.431359 0.136769 −0.5923569 3.475648 0.056252
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To understand the behavior of the data obtained through a given process, we need to be ableto describe this behavior via its approximate probability law. This, however, requires to establishconditions which govern the required probability law. In other words we need to have certain con-ditions under which we may be able to recover the probability law of the data. So, characterizationof a distribution is important in applied sciences, where an investigator is vitally interested to findout if their model follows the selected distribution. Therefore, the investigator relies on conditionsunder which their model would follow a specified distribution. A probability distribution can becharacterized in different directions one of which is based on the truncated moments. This sectionis devoted to the characterizations of the BXEC distribution based on: (i) a simple relationshipbetween two truncated moments and (i i) the hazard function.

4.1. Characterizations based on two truncated moments. This subsection deals with the charac-terizations of BXEC distribution in terms of a simple relationship between two truncated moments.We will employ Theorem of Glänzel (1987) (see Appendix A). As shown in Glänzel (1990), thischaracterization is stable in the sense of weak convergence.
Proposition 4.1.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

[A (x)]−1 and
q2 (x) = q1 (x) exp

[
γ
(

1− exp
(
xβ
))]
|x>0.Then X has pdf (4) if and only if the function η defined in Theorem 3 is of the form

η (x) =
1

2
exp

[
γ
(

1− exp
(
xβ
))]
|x>0,where

A (x) =

[
1− exp

{
γ
(

1− exp
(
xβ
))}]2α−1

exp

[
−
{[

1− exp
{
γ
(

1− exp
(
xβ
))}]−α − 1

}−2
]

{
[1− [1− exp {γ (1− exp (xβ))}]α

}3
{

1− exp

[
−
{

[1− exp {γ (1− exp (xβ))}]−α − 1
}−2

]}1−θ .

Proof. If X has pdf (4), then(
1− FΨ

−
(x)

)
E [q1 (X) | X ≥ x ] = 2θα exp

[
γ
(

1− exp
(
xβ
))]
|x>0,and (

1− FΨ
−

(x)

)
E [q2 (X) | X ≥ x ] = θα exp

[
2γ
(

1− exp
(
xβ
))]
|x>0,and hence

η (x) =
1

2
exp

[
γ
(

1− exp
(
xβ
))]
|x>00.We also have
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η (x) q1 (x)− q2 (x) = −
q1 (x)

2
exp

[
γ
(

1− exp
(
xβ
))]

< 0|x>0.Conversely, if η is of the above form, then
s ′ (x) =

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= γβxβ−1 exp

(
xβ
)
|x>0,and

s (x) = γ exp
(
xβ
)
.Now, according to Theorem 3, X has density (4) .

Corollary 4.1.1. Suppose X is a continuous random variable. Let q1 (x) be as in Proposition4.1.1. Then X has density (4) if and only if there exist functions q2 and η defined in Theorem 3for which the following first order differential equation holds
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= γβxβ−1 exp

(
xβ
)
|x>0.

Corollary 4.1.2. The differential equation in Corollary 4.1.1 has the following general solution
η (x) = exp

[
−γ
(

1− exp
(
xβ
))] [

−
∫
γβxβ−1 exp

(
xβ
)

exp
[
γ
(

1− exp
(
xβ
))]

(q1 (x))−1 q2 (x) +D

]
,

where D is a constant. A set of functions satisfying the above differential equation is given inProposition 4.1.1 with D = 0. Clearly, there are other triplets (q1, q2, η) satisfying the conditionsof Theorem 3.
4.2. Characterization based on hazard function. The hazard function, hF , of a twice differentiabledistribution function, F with the pdf f , satisfies the following trivial differential equation

f ′(y)

f (y)
=
h′F (y)

hF (y)
− hF (y).The following proposition establishes a non-trivial characterization of BXEC distribution, for thecase θ = 1, based on the hazard function.

Proposition 4.2.1. Suppose X is a continuous random variable. Then, X has density (4),for θ = 1, if and only if its hazard function hFΨ
−

(x) satisfies the following first order differentialequation
h′FΨ
−

(x)− βxβ−1hFΨ
−

(x)

= 2αγβ exp
(
xβ
) d
dx

{
xβ−1{exp[γ

(
1− exp

(
xβ
))

]}[1− exp
{
γ
(

1− exp
(
xβ
))}

]2α−1{
[1− [1− exp {γ (1− exp (xβ))}]α

}3

}
|x>0.

Proof. Is straightforward and hence omitted. See Hamedani et al. (2018a, 2018b, 2019 and2021) for more details.
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5.1. The ML method. The method of maximum likelihood is the most frequently used method ofparameter estimation. Its success stems from its many desirable properties including consistency,asymptotic efficiency, invariance property as well as its intuitive appeal. Let x1, ..., xn be a randomsample of size n from (4), then the log-likelihood function of (4) without constant terms is given by

` (Ψ) = n log 2 + n log θ + n logα+ n log γ + n logβ

+ (β − 1)

n∑
i=1

log x[i :n] +

n∑
i=1

xβi + γ

n∑
i=1

[
1− exp

(
xβi

)]
− (1− θ)

n∑
i=1

{
1− exp

[
−O−2

α,γ,β(x[i :n])
]}
−

n∑
i=1

O−2
α,γ,β(x[i :n])

+ (2α− 1)

n∑
i=1

(
1−∇γ,β

(
x[i :n]

))
+

n∑
i=1

[
1−

(
1−∇γ,β

(
x[i :n]

))α]
.

The components of the score vector, U (Ψ) = ∂`(Ψ)
∂Ψ = (U (θ) ,U (α) ,U (γ) ,U (β))ᵀ. The MLestimates (MLEs) θ̂, α̂, γ̂ and β̂ of θ, α, γ and β are obtained by solving the following nonlinearsystems of equations

∂

∂θ
` (Ψ) = 0,

∂

∂α
` (Ψ) = 0,

∂

∂γ
` (Ψ) = 0,

∂

∂β
` (Ψ) = 0.

5.2. The WLS method. The WLS estimates (WLSE) are obtained by minimizing the function
WLSE(Ψ) WRT θ, α, γ and β

WLSE (Ψ) =

n∑
i=1

W(i ,n)

[
FΨ

(
x[i :n]

)
−Υ(i ,n)

]2
,

where
Υ(i ,n) =

ς

n + 1
,

and
W(i ,n) =

[
(1 + n)2(2 + n)

]
/ [i(1 + n − i)] .

The WLSEs are obtained by solving
0 =

n∑
i=1

W(i ,n)

({
1− exp

[
−O−2

α,γ,β(x[i :n])
]}θ
−Υ(i ,n)

)
∇(θ)

(
x[i :n]; Ψ

)
,

0 =

n∑
i=1

W(i ,n)

({
1− exp

[
−O−2

α,γ,β(x[i :n])
]}θ
−Υ(i ,n)

)
∇(α)

(
x[i :n]; Ψ

)
,

0 =

n∑
i=1

W(i ,n)

({
1− exp

[
−O−2

α,γ,β(x[i :n])
]}θ
−Υ(i ,n)

)
∇(γ)

(
x[i :n]; Ψ

)
,
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0 =

n∑
i=1

W(i ,n)

({
1− exp

[
−O−2

α,γ,β(x[i :n])
]}θ
−Υ(i ,n)

)
∇(β)

(
x[i :n]; Ψ

)
,

where
∇(·)

(
x[i :n]; Ψ

)
= ∂FΨ

(
x[i :n]

)
/∂ · .

5.3. The AD method. The AD estimates (ADE) are obtained by minimizing the function
ADE (Ψ) = −n −

1

n

n∑
i=1

(2i − 1)

{
logF(Ψ)(x[i :n])

+ log
[
1− F(Ψ)(x[−i+1+n:n])

] } .
The parameter estimates follow by solving the nonlinear equations

0 = ∂
[
AD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂θ,

0 = ∂
[
AD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂α,

0 = ∂
[
AD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂γ,

and
0 = ∂

[
AD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂β.

5.4. The RTAD method. The RTAD estimates (RTADE) are obtained by minimizing
RTADE (Ψ) =

1

2
n − 2

n∑
i=1

F(Ψ)(x[i :n])−
1

n

n∑
i=1

(2i − 1)
{

log
[
1− F(Ψ)(x[−i+1+n:n])

]}
.

The estimates follow by solving the nonlinear equations
0 = ∂

[RTAD(x[i :n],x[−ς+1+n:n])
(Ψ)

]
/∂θ,

0 = ∂
[RTAD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂α,

0 = ∂
[RTAD(x[i :n],x[−ς+1+n:n])

(Ψ)
]
/∂γ,

and
0 = ∂

[RTAD(x[i :n],x[−ς+1+n:n])
(Ψ)

]
/∂β.

6. Simulation for comparing estimation methods
The estimation persuaders of the BXEC model is performed under the ML, AD, WLS and RTADEmethods. Simulation studies are performed in order to compare and assess the above mentionedestimation methods. The simulation studies are based on N = 1000 generated data sets from theBXEC version where n = 20, 50, 100, 200, 300, 500 and θ = 2, α = 0.7, γ = 0.6 and β = 0.2.The performance of the different estimators are compared in terms of the average of its bias androot mean square error (RMSE). Table 2 and Table 3 list the simulation results. From Table 2 andTable 3, it is noted that the RMSE(Ψ) tend to zero as n→∞ and the bias tends to zero as n→∞.
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θ

under the ML method stared with 0.11064 for n = 20 and reached ' 0 for n =500.The Biasα under the ML method stared with 0.00083 for n = 20 and reached ' 0 for n =500. TheBiasγ under the ML method stared with 0.00665 for n = 20 and reached 0.00020 for n =500. TheBIASβ under the ML method stared with 0.00260 for n = 20 and reached 0.00003 for n =500. TheBias
θ

under the WLS method stared with 0.38705 for n = 20 and reached 0.03783 for n =500. TheBiasα under the WLS method stared with 0.02353 for n = 20 and reached 0.00148 for n =500. TheBiasγ under the WLS method stared with 0.01697 for n = 20 and reached 0.00050 for n =500. TheBIASβ under the WLS method stared with 0.01535 for n = 20 and reached 0.00153 for n =500.The Bias
θ

under the ADE method stared with 0.07513 for n = 20 and reached 0.00675 for n =500.The Biasα under the ADE method stared with 0.00303 for n = 20 and reached 0.00050 for n =500.The Biasγ under the ADE method stared with 0.00021 for n = 20 and reached 0.00038 for n =500.The BIASβ under the ADE method stared with 0.00220 for n = 20 and reached 0.00030 for n =500.The Bias
θ

under the RTAD method stared with 0.15966 for n = 20 and reached 0.00695 for n =500.The Biasα under the RTAD method stared with 0.00545 for n = 20 and reached ' 0 for n =500.The Biasγ under the RTAD method stared with 0.00197 for n = 20 and reached ' 0 for n =500.The BIASβ under the RTAD method stared with 0.00443 for n = 20 and reached ' 0 for n =500.For all parameters under all estimation methods the RMSE started with small values and endedwith a very small value as n→ ∞. The values of the Dabs and the Dmax also decreases n→ ∞.The values of the difference between the Dabs and the Dmax also decreases n→∞.
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Table 2: Simulation results.
n Bias

θ
Biasα BiasγML 20 0.11064 0.00083 0.00665WLS 0.38705 0.02353 0.01697ADE 0.07513 0.00303 0.00021RTAD 0.15966 0.00545 0.00197

ML 50 0.04575 0.00050 0.00290WLS 0.17185 0.00906 0.00552AD 0.02678 0.00044 0.00092RTAD 0.05382 0.00108 0.00041
ML 100 0.02966 0.00064 0.00064WLS 0.11129 0.00560 0.00304ADE 0.02024 0.00074 0.00002RTADE 0.03021 0.00078 000002
ML 200 0.01770 0.00061 0.00005WLS 0.06027 0.00276 0.00132AD 0.00256 0.00015 0.00042RTAD 0.00874 0.00013 0.00016

MLE 300 0.00377 0.00004 0.00017WLS 0.05551 0.00272 0.001443ADE 0.00847 0.00054 0.00034RTADE 0.01446 0.00072 0.00046
ML 500 0.00047 0.00009 0.00020WLS 0.03783 0.00148 0.00050AD 0.00675 0.00050 0.00038RTAD 0.00695 0.00018 0.0000004
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Table 3: Simulation results.
n BIASβ RMSEθ RMSEα RMSEγ RMSEβ Dabs DmaxML 20 0.00260 0.51751 0.04488 0.04389 0.02541 0.01012 0.01765WLS 0.01535 0.75360 0.05136 0.04496 0.03107 0.13726 0.19605AD 0.00220 0.51977 0.04416 0.04313 0.02471 0.01936 0.02770RTAD 0.00443 0.70782 0.04474 0.04146 0.02783 0.04081 0.05825

ML 50 0.00103 0.30783 0.02815 0.02688 0.01553 0.00382 0.00690WLS 0.00679 0.37844 0.03059 0.02752 0.01811 0.05823 0.08267AD 0.00063 0.32719 0.02935 0.02859 0.01619 0.00430 0.00650RTAD 0.00127 0.39436 0.02920 0.02713 0.01755 0.01086 0.01577
ML 100 0.00097 0.20805 0.02029 0.01895 0.01114 0.00619 0.00910WLS 0.00450 0.25537 0.02212 0.02009 0.01281 0.03723 0.05277AD 0.00064 0.22365 0.02043 0.01987 0.01117 0.00519 0.00743RTAD 0.00080 0.26729 0.02055 0.01915 0.01218 0.00687 0.00987
ML 200 0.00065 0.14244 0.01377 0.01287 0.07644 0.00467 0.00672WLS 0.00242 0.16259 0.01443 0.01321 0.00841 0.01938 0.02758AD 0.00003 0.15217 0.01413 0.01377 0.00772 0.00054 0.00086RTAD 0.00015 0.17741 0.01406 0.01313 0.00829 0.00145 0.00214

MLE 300 0.00005 0.11686 0.011422 0.01064 0.00636 0.00044 0.00071WLS 0.00231 0.13620 0.01204 0.01091 0.00709 0.01858 0.02643ADE 0.00033 0.12715 0.01177 0.01141 0.00645 0.00312 0.00442RTADE 0.00050 0.14905 0.01169 0.01087 0.00693 0.00472 0.00669
ML 500 0.00003 0.08851 0.00878 0.00820 0.004776 0.00042 0.00062WLS 0.00153 0.10132 0.00922 0.00845 0.00532 0.01140 0.01626AD 0.00030 0.09572 0.00889 0.00863 0.00485 0.00281 0.00397RTAD 0.00020 0.11233 0.00898 0.00840 0.00526 0.00164 0.00237
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For comparing the four classical methods, two application to real data set are presented. Thefirst subsection is related to studying the data set (Gross and Clark (1975)) on the relief times oftwenty patients receiving an analgesic: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5,1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. The second subsection is related to studying the minimum flow datawhich was presented by Cordeiro and Castro (2011) that include 38 observations. The data setis the following: 43.86, 44.97, 46.27, 51.29, 61.19, 61.20, 67.80, 69.00, 71.84, 77.31,85.39, 86.59,86.66, 88.16, 96.03, 102.00, 108.29, 113.00, 115.14, 116.71, 126.86, 127.00, 127.14, 127.29, 128.00,134.14, 136.14, 140.43, 146.43, 146.43,148.00, 148.43, 150.86, 151.29, 151.43, 156.14, 163.00,186.43.

7.1. Analyzing the uncensored relief times data. For comparing the four estimation methods underuncensored relief times data, we consider the Cramér-Von Mises (W∗) and the Anderson-Darling(A∗) statistics. Table 4 lists the different estimators as well as W∗ and A∗ statistics. From Table4, the ML method is the best method among all estimation techniques with W∗ =0.07043 andA∗ =0.41643. However, the AD performes well with W∗ =0.1148 and A∗ =0.68175. The other twomethods can be used in some particular cases.
Table 4: Comparing methods under uncensored relief times data.Method θ̂ α̂ γ̂ β̂ W∗ A∗

ML 20.88487 6.70450 1.47856 0.09324 0.07043 0.41643WLS 4.48989 1.35147 0.44386 0.37917 0.20960 1.23874AD 6.32523 2.08544 0.74377 0.19106 0.11485 0.68175RTAD 2.89731 0.81886 0.27949 0.33959 0.16896 0.99760
7.2. Analyzing the minimum flow data. For comparing the four estimation methods under uncen-sored minimum flow data, , we consider the W∗ and the A∗ statistics. Table 4 lists the differentestimators as well as W∗ and A∗ statistics. From Table 5, the WLS method is the best methodamong all estimation techniques with W∗ =0.06896 and A∗ =0.46616. However, all other methodsperforme well.

Table 5: Comparing methods under uncensored minimum flow data.Method θ̂ α̂ γ̂ β̂ W∗ A∗ML 1.07468 0.85091 0.00735 0.30655 0.07033 0.47072
WLS 1.20261 0.90472 0.00811 0.30645 0.06896 0.46616AD 1.20715 0.92018 0.01436 0.27936 0.08041 0.51378RTAD 1.39542 0.95907 0.01855 0.26968 0.08431 0.53262
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In this paper, we derived a new four-parameter Chen model based on the the Burr type X gen-erator. Some statistical properties of the new model such as a linear representation, moments,moment generating function, conditional moments, mean residual life and mean past lifetime arederived. Numerical analysis for mean, variance, skewness and kurtosis is presented.Some char-acterizations of the novel distribution based on: (i) a simple relationship between two truncatedmoments and (i i) the hazard function are presented. Different classical estimation methods underuncensored schemes are considered, such as the maximum likelihood, Anderson-Darling, weightedleast squares and right-tail Anderson–Darling methods are considered. Simulation studies are per-formed in order to compare and assess the above-mentioned estimation methods. The applicabilityof the four classical methods is assessed based on two application to real data sets.As future potential works, we can apply many new useful goodness-of-fit tests for right censor-ing distributional validation such as the Nikulin-Rao-Robson goodness-of-fit test, Bagdonavicius-Nikulin goodness-of-fit test, modified Nikulin-Rao-Robson goodness-of-fit test and modifiedBagdonavicius-Nikulin goodness-of-fit test to the new model as performed by Goual et al. (2019,2020), Mansour et al. (2020a-f), Yadav et al. (2020), Goual and Yousof (2020), Ibrahim et al (2021)and Yousof et al. (2021b), among others.

Appendix A

Theorem 1. Let X be a RV with the EC distribution. Then using the transformation t =[
Gα,γ,β (x)

] 1
α , the r th ordinary moment of X is given by
µ′r = E [Xr ] = αβ

+∞∑
ρ,q=0

αρ

(
r

β

)
αq

(
r

β
+ ρ

)
(−1)

2r
β

+ρ

γ
2r
β

+ρ [β (α+ ρ+ q) + r ]
,

where αρ ( rβ) is the coefficient of [ 1
γ log (1− t)

] 2r
β

+ρ in the expansion of
+∞∑
j1=1

1

j1

[
1

γ
log (1− t)

]
r
β

and αq ( rβ + ρ
) is the coefficient of tρ+q+ r

β in the expansion of
+∞∑
j2=1

t j2

j2

 r
β

+ρ

(see Balakrishnan and Cohen (2014) for more details).
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Theorem 2. Let X be a RV with the EC distribution. Then, the r th conditional moment can bederived as
E (Xr |X > x) = αβ

+∞∑
ρ,q=0

αρ

(
r

β

)
αq

(
r

β
+ ρ

)
(−1)

2r
β

+ρ (∇γ,β (x)
)

γ
2r
β

+ρ [β (α+ ρ+ q) + r ]
{

1−
[
1−∇γ,β (x)

]α}
Theorem 3. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval forsome d < b (a = −∞, b =∞ might as well be allowed) . Let X : Ω → H be a continuousrandom variable with the distribution function F and let q1 and q2 be two real functions definedon H such that

E [q2 (X) | X ≥ x ] = E [q1 (X) | X ≥ x ] η (x) , x ∈ H,

is defined with some real function ξ. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twicecontinuously differentiable and strictly monotone function on the set H. Finally, assume that theequation ηq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by thefunctions q1, q2 and η , particularly
F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s ′ = η′ q1

ηq1−q2
and C is the normal-ization constant, such that ∫H dF = 1.

Note: The goal is to have the function η (x) as simple as possible.We like to mention that this kind of characterization based on the ratio of truncated moments isstable in the sense of weak convergence (see, Glänzel, 1990), in particular, let us assume that thereis a sequence {Xn} of random variables with distribution functions {Fn} such that the functions
q1n , q2n and ηn (n ∈ N) satisfy the conditions of Theorem 3 and let q1n → q1 , q2n → q2 forsome continuously differentiable real functions q1 and q2 . Let, finally, X be a random variablewith distribution F . Under the condition that q1n (X) and q2n (X) are uniformly integrableand the family {Fn} is relatively compact, the sequence Xn converges to X in distribution ifand only if ηn converges to η, where

η (x) =
E [q2 (X) | X ≥ x ]

E [q1 (X) | X ≥ x ]
.

This stability theorem makes sure that the convergence of distribution functions is reflected bycorresponding convergence of the functions q1 , q2 and η , respectively. It guarantees, forinstance, the ’convergence’ of characterization of the Wald distribution to that of the Lévy-Smirnovdistribution if α→∞.A further consequence of the stability property of Theorem 3 is the application of this theorem tospecial tasks in statistical practice such as the estimation of the parameters of discrete distributions.
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Eur. J. Stat. 10.28924/ada/stat.2.1 18For such purpose, the functions q1, q2 and, specially, η should be as simple as possible. Sincethe function triplet is not uniquely determined it is often possible to choose η as a linear function.Therefore, it is worth analyzing some special cases which helps to find new characterizationsreflecting the relationship between individual continuous univariate distributions and appropriatein other areas of statistics.In some cases, one can take q1 (x) ≡ 1, which reduces the condition of Theorem 3 to
E [q2 (X) | X ≥ x ] = η (x) , x ∈ H. We, however, believe that employing three functions q1 ,

q2 and η will enhance the domain of applicability of Theorem 3.
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