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ABSTRACT. In this work, we derive a novel extension of Chen distribution. Some statistical properties
of the new model are derived. Numerical analysis for mean, variance, skewness and kurtosis is
presented. Some characterizations of the proposed distribution are presented. Different classical
estimation methods under uncensored schemes such as the maximum likelihood, Anderson-Darling,
weighted least squares and right-tail Anderson—-Darling methods are considered. Simulation studies
are performed in order to compare and assess the above-mentioned estimation methods. For comparing

the applicability of the four classical methods, two application to real data set are analyzed.

1. INTRODUCTION

Let X be a non-negative random variable (RV) with an Exponentiated Chen (EC) distribution
(see Chaubey and Zhang (2015)), then its cumulative distribution function (CDF) is given by

Goyp () = (1 —exp{y[1 —exp (Xﬁ)]})a' (1)
where x > 0, > 0,y > 0 and B > 0. Chaubey and Zhang (2015) presented two propositions
studying probability density function (PDF) and hazard rate function (HRF). The first proposition
shows that the PDF shapes are either "decreasing” or "unimodal”. The second proposition concludes
that the HRF shapes are either "increasing" or "bathtub". Chaubey and Zhang (2015) also addressed
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the problem of estimation of parameters of the EC distribution, focusing on the maximum likelihood
estimation method. The shape of the PDF of the EC distribution may be characterized as follows:
fora <1,1>p, garyp(x)is adecreasing density, fora > 1, 8 > 1, ga v g (X) = dGa~p (X) /dx
is a unimodal density and for 1 > o, 8 > 1 and for & > 1, 1 > 3, gy (X) may be unimodal
or decreasing density (see Due to Dey et al. (2017)). Chaubey and Zhang (2015) presented a
proof that the failure behavior of the EC distribution are, respectively, bathtub (1 > o, 8 < 1),
increasing (o > 1, B > 1), increasing or bathtub (1 > o, 1 <Band a > 1,8 < 1). For aa =1, the
EC distribution reduces to Chen (C) distribution (Chen (2000)) with Gy g (x) =1 — V., g (x) where

Vys (x) =exp{y[1l—exp(xF)]}.

Dey et al. (2017) addressed various mathematical properties and estimation methods for the EC
model. They described different estimation methods such as the method of maximum likelithood,
percentile estimation, ordinary least square and weighted least square, maximum product of spac-
ings estimation, Cramér-von Mises, Anderson—Darling and right-tail Anderson-Darling estimation
methods. For more Chen models see Khan et al. (2013 and 2016), Korkmaz et al. (2021) and
Almazah et al. (2021). In this work, we shall use the Burr X generator (BX-G) (Yousof et al. (2017))
to derive a new version of the Chen distribution called the Burr type X exponentiated Chen (BXEC)
distribution. The CDF of the BX-G is defined as

Foe () ={1- e [-02 ()]} er. )
where Ge (%)
%)= 500

Inserting (1) into (2), the CDF of the BXEC distribution can be expressed as

Fu ()= {1 -en[-0.2,500]} leso. 6)
where
Oao(x) = {[1 = Vg (0] = 1} oo,
The corresponding PDF of the BXEC can be derived as (for x € RT)

o,v.6

3 B 1-6
{1-[1-V,5 (x)]a} {1 —exp [—Oa%ﬁ(x)]}
where W = (6,a,7,8). The bivariate BXEC (B-BXEC) type extensions can be derived using

p-l B v 02 1_v 201
fo () = 29afyﬁx exp (X ) ~B (x)exp [ (x)] [ v (x)]

|X>Or (4)

some copulas such as the Farlie-Gumbel-Morgenstern copula (Morgenstern (1956), Gumbel (1960),
Gumbel (1961), Johnson and Kotz (1975) and Johnson and Kotz (1977)), modified Farlie-Gumbel-
Morgenstern copula (Rodriguez-Lallena and Ubeda-Flores (2004)), Renyi entropy (Pougaza and

Djafari (2011)) and Clayton copula. Different classical estimation methods under uncensored
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schemes are considered, such as the maximum likelihood (ML), Anderson—Darling (AD), weighted
least squares (WLS) and right-tail Anderson-Darling (RTAD) methods (see Ibrahim et al. (2019
and 2020), Mansour et al. (2020d), Ibrahim and Yousof (2020) and Yousof et al. (2021a) for more
details). Numerical simulations are performed for comparing the estimation approaches using dif-
ferent sample sizes for three different combinations of parameters (see Section 6). Although all
estimation methods perform well, the ML method is the best method among all estimation tech-
niques in modeling the uncensored relief times data and the WLS method is the best method among

all estimation techniques in modeling the uncensored minimum flow data (see Section 7).

We are motivated to introduce and study the BXEC model for the following reasons:

e The BXEC model is recommended for modeling the relief times. However, the BXEC model
is recommended for modeling the minimum flow data.

e The range of the skewness of the BXEC model is falling in the interval
(—0.1151715,27.99215). The wide range of the skewness gives the priority to the BXEC
model in modeling and future prediction since many real-life datasets are negatively skewed.
The kurtosis of the BXEC model is located between 0.674322 and 853.3517.

e The estimation persuaders of the BXEC model can be performed under many estimation
methods such as the maximum likelihood (ML), Anderson—-Darling (AD), weighted least
squares (WLS) and right-tail Anderson—Darling (RTAD) methods. Although all estimation
methods perform well in simulations, the ML method is recommended for modeling the relief

times data and the ML method is recommended for modeling the minimum flow data.

2. LINEAR REPRESENTATION

In this section, we provide a very useful linear representation for the BXEC density function.

Consider the power series

Cl C3_+OO(_1)/1 F(1+C3) Cl h
(1_62) _/IZoll!r(l"'Czs—/l) (Cz) |’%‘<1,c3>0' ()

Applying (5) to (4) we have

L ex XB)V, (x) (1—V ,g(x))a

t(X) = 29@’)’,5)(5 15 p( b —a - a

* (1= Vo 00) {1 = [1 = Vo 0]}
(D" 10)

I1:0m exp [— (/1 + 1) O;EY,B(X)] . (6)
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Applying the power series to the term exp{ (h+1)0, 'YB(X)}' equation (6) becomes
L &b (x7) Yy (x)
1—
(1-Vap ()

400 (_1)/1+/2 (/1 + 1)/2 r (9) [1 _ V’y,ﬁ (X)](2/2+1)a
Pt /1! /2”_ (9 — /1) {1 . [1 _ v’y,ﬁ (X)]a}2/2+3

Consider the series expansion

fu(x) = 20ayBxP~ (7)

X

G} M(¢z+h) Cl
(1 &y 3Z KT (C3) |‘ <1 ¢>0° (8)
Applying the expansion in (8) to (7) for the term [1 — (1 - Viyp (X))a]2/2+3, equation (7) becomes
+00
fu (X) = Y Sy Ta ()|(am(@btD)athr). 9)
b,l3=0
where
o (—1)2r @) (2b + 1 +3) *i (—D)" (h +1)"
bk LUBIT (25 + 3) a ANCEN
and

Tor (x) = &'y () [Gyp ()]
Equation (9) reveals that the density of X can be expressed as a linear mixture of EC densities.
So, several mathematical properties of the new family can be obtained by knowing those of the
EC distribution. Similarly, the CDF of the BXEC family can also be expressed as a mixture of EC
CDFs given by

+o0
v ()= spp Mo (x) (10)

h,k=0

where Mg (x) =[Gy g (X)]al is the CDF of the EC family with power parameter o'

3. MATHEMATICAL AND STATISTICAL PROPERTIES

3.1. Moments and generating function. Following Dey et al. (2017), we can extract two theorems
(see Appendix A). Based on Theorem 1, the r'" ordinary moment of the BXEC model can then be

expressed as

+oo
M;:E[Xr]:aﬁ Z Sh.ls Ol'q (

k.h,p,g=0

. r (_1)%+P
r _ SNEE
) 5+ P Batprard

D~

In particular,

1y (1 (—1)6+°
=E[X]=ap Shs @ () (+P) 3 v
,2,3% o INBI TN T s+ p+ )+ 1]
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! 271 . - & .
/J’2 _E[X ] _aﬁ Z g/g,/g aq

. (_1)%+P
o) s
/2,/3,p,q=0 ,Yﬁ [5 (a + ,0 + Q) + 2]

L IE[X3] a g io Sl 1 O ( 3 ) a ( +p) (—1)g+"
3= - bis®q | 5| % |3 3 '
b.ls.0.G=0 s & ¥ P[B (o +p+ q) + 3]

and
+00 gip
. (4N . [4 (—-1)5

,L(,Z:E[XLL]:OLﬁ Z <,2,/3aq()aq(+p) 5 .
b lap g0 b B ys™ B +p+q) +4]

The variance (V(Y)), cumulants, n'" central moment, skewness (S(Y)), kurtosis (K(Y)) and Index
of dispersion of the variance to mean ratio (ID(Y)) measures can be calculated from the ordinary

moments using well-known relationships.

3.2. Conditional moments. For the increasing failure rate models, it is also of interest to know

what E (X"|X > x) is. It can be easily seen that

+oo - r - r 1 2o v
E(X'|X>x)=aB )_ ;li/3 ap(ﬁ)aq(ﬁ+p)( )7 W,B(X)C)!. |
itramor? P o+ a) 11 (1= ¥y (0)7]

(12)

In particular,

o= o3 . 1 -1 %—H) v'y X
EXIX>x)=aB y_ :f'/3a/’(ﬁ)aq(6 +p)( )8 (Vs ( )L |
biira=oe P B+ p+ ) + 11— (1= Vi (0)* ]

E(X2X > x) = a8 f Sb % (3) o (3+0) (15 (Vs (X)L- |
bspa=0Y? B (a + 0+ q) +2] [1 — (1= Vap () ]

E (XX >x) =ap io :I2'l3 % (%) % (% J”O) (=127 (Vo (X)L |
bispa=07P P B + o+ q) +3][1— (1= Vap ()" |

and

E(X*X > x) =afB io Sk Xp (%) g (% + p) (—1)87° (Vs (%))
>X) =« - _
bhpa=0Y? P B ( + o+ q) +4] [1 —(1-V,p (X))a ]

3.3. Mean residual life. The mean residual life (MRL) is the expected remaining life, X — x, given
that the item has survived to time x. Thus, in life testing situations, the expected additional lifetime
given that a component has survived until time x is called the MRL. Since the MRL function is the
expected rematining life, x must be subtracted, yielding

“+oo

[yfw(y) dy | —x.

X

1
M]_ :E(X—X|X>X):m
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Then using (12), we get

e e [ e I

bl 0,q= o’Y’j p[ﬁ(a +P+Q)+1][1—(1— Vg (X)) ]

3.4. Mean past lifetime. In a real life situation, where systems often are not monitored continu-

ously, one might be interested in getting inference more about the history of the system, for example,
when the individual components have failed. Assume now that a component with lifetime X has
failed at or some time before x, x > 0. Consider the conditional random variable x — X|X < x. This
conditional random variable shows, in fact, the time elapsed from the failure of the component given
that its lifetime is less than or equal to x. Hence, the mean past lifetime (MPL) of the component

can be defined as
1
=Ex-—XIX<Xx)=x— —— fi )
My (x = XX < x) =x Fw(x)ofyw(y)dy

Then using (11) and (12), we get

o 1 s _1\a+e
aﬁ +Z Sh.ls A ( ) a ( + p) ( 1)6 (1 _ V,Yﬁ (X))ﬁ(p%q)ﬂ -
b.ls.0.g=0 ‘3+p[5(a +po+q)+1]

3.5. Numerical analysis for mean, V(X), S(X), K(X) and Dislx(X). Table 1 gives Numerical
analysis for the mean, V(X), S(X), K(X) and DisIx(X). Based on Table 1, we note that: 1-The
skewness of the BXEC distribution can range in the interval (—0.1151715, 27.99215). 2-The spread
for the BXEC kurtosis is much larger ranging from 0.674322 to 853.3517. 3-ID(X) can be "between

0 and 1" and "more than 1".
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Table 1: Mean, variance, skewness and kurtosis.

0 a ¥ 6] E(X) V(X) S(X) K(X) ID(X)

0.001 025 1.15 05 0.004704 0.0065858 22.86888  602.2104 1.400110
0.01 0.046359 0.0634222 7113755 59.83784  1.368082
0.05 0.217748  0.2696108 2950300 11.75074 1.238177
0.1 0.404606  0.4452129 1.888049 5.880733 1.100361
0.5 1.280745  0.6754974 0.263415 2166524  0.527425
1 1.752028 0.5140454 —-0.1151715 2.44533  0.293400
5 2571438 0.1700379 —0.1185289 2.977865 0.066126
50 3.191300 0.0498866  0.2802537 3.108527  0.015632
150 3.382794 0.0330405 0.4045376  3.244357  0.009767
500 3.552790 0.0227708  0.5052380 3.396144  0.006409
05 0001 1 025 0.0161660 0.099236 2290835 569.8220 6.138579
0.25 1.6983920 3.633604 1.388534 4517459 2.139438
0.5 0.3211543 0.172874 1.879163  6.956402 0.538289
0.75 0.1052558  0.021496 2143353 8516228 0.204223
1 0.0449386  0.004308 2331145  9.772082  0.095856
15 0.0125201  0.000376 2623065 10.14921  0.030045

15 15 05 05 0.037479 0.00089046 1.1555660 0.674322 0.02375894

1 0.149247 0.00542029 0.4019048 2.784748 0.03631768

5 0.729749 0.02153580 —0.3031202 2.94796 0.02951124

10 1.049247 0.02424775 —0.4039516 3.119624 0.02310967

20 1.377546  0.02477488 —0.4555275 3.223266 0.01798479

50 1.807956 0.02377759 —0.4866825 3.291349 0.01315164

150 2.305916 0.02169227 —0.4999334 3.322090 0.00940722

500 2.823258 0.01930193 —0.5031953 3.330685 0.00683676
1.75 025 2 005 0.010810 0.065244 2799215 853.3517  6.035829
0.10 0.055959  0.375494 1216822  158.7941 6.710135
0.15 0.241225  1.698862 5.68209 35.08007  7.042654
0.35 5303015  2.012257 —0.1814966 2.806119 0.379455
05 3.188738 0381287 —0.4362321 3.145548 0.119573
065 2431359 0136769 —0.5923569 3.475648 0.056252
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4. CHARACTERIZATIONS OF THE BXEC DISTRIBUTION

To understand the behavior of the data obtained through a given process, we need to be able
to describe this behavior via its approximate probability law. This, however, requires to establish
conditions which govern the required probability law. In other words we need to have certain con-
ditions under which we may be able to recover the probability law of the data. So, characterization
of a distribution is important in applied sciences, where an investigator is vitally interested to find
out if their model follows the selected distribution. Therefore, the investigator relies on conditions
under which their model would follow a specified distribution. A probability distribution can be
characterized in different directions one of which is based on the truncated moments. This section
is devoted to the characterizations of the BXEC distribution based on: (i) a simple relationship

between two truncated moments and (//) the hazard function.

4.1. Characterizations based on two truncated moments. This subsection deals with the charac-
terizations of BXEC distribution in terms of a simple relationship between two truncated moments.
We will employ Theorem of Glanzel (1987) (see Appendix A). As shown in Glanzel (1990), this
characterization is stable in the sense of weak convergence.

Proposition 4.1.1. Let X : Q — (0,00) be a continuous random variable and let ¢ (x) =
[A(x)]* and

2 (x) = a1 () exp [v (1 = exp (x°) )] |xso-

Then X has pdf (4) if and only if the function n defined in Theorem 3 is of the form

1) = 5 e[y (1= 0 ()] Lo,

where
[1- e fr (1 - o0 () en |~ {[1- oo {r(1-en ()} -1} |

ISTEEE
(- t-entra-en@Y {1-eo[- {u-eotra-evrem=-1} 7|}
Proof. If X has pdf (4), then

Ax) =

(1 - Fu <x>) E a1 (X) | X2 x] = 26cexp [ (1 = exp (7))] x>,

and

(1- 7 00) €061 1221~ daep 21 (- 9 (] o

and hence

1(x) = 5 exp [v (1 —exp (x7))] 1x=00.

We also have
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q1 (x)
> e

n(x)qu(x) — g (x) = — xp [v (1 —exp (x°))] < Olxso.

Conversely, if n is of the above form, then

_ "))
n(x) g1 (x) — g2 (x)

s’ (x) = BxP L exp (xP) |x>o0,

and

s(x) =yexp (Xﬁ) :
Now, according to Theorem 3, X has density (4).
Corollary 4.1.1. Suppose X is a continuous random variable. Let g1 (x) be as in Proposition
41.1. Then X has density (4) if and only if there exist functions g» and 7 defined in Theorem 3

for which the following first order differential equation holds

' (x) a1 (x)
7 (x) a1 (x) = G2 (x)
Corollary 4.1.2. The differential equation in Corollary 4.1.1 has the following general solution

= BxP L exp (xP) |x>o0.

n(x) =exp[—y (1 —exp(x°))] [— /Wﬁxﬁ‘l exp (xF) exp [ (1 —exp (X)) ] (a1 (x)) " a2 (x) + D] .

where D is a constant. A set of functions satisfying the above differential equation is given in
Proposition 4.1.1 with D = 0. Clearly, there are other triplets (g1, g2, n) satisfying the conditions
of Theorem 3.

4.2. Characterization based on hazard function. The hazard function, hg, of a twice differentiable

distribution function, F with the pdf f, satisfies the following trivial differential equation

f'ly) _ he(y)
f(y)  he(y) he(y):

The following proposition establishes a non-trivial characterization of BXEC distribution, for the

case 8 = 1, based on the hazard function.
Proposition 4.2.1. Suppose X is a continuous random variable. Then, X has density (4),
for 8 = 1, if and only if its hazard function hr, (x) satisfies the following first order differential

equation

o () = X5, ()

d | xP~{exply (1 —exp (xP))]}1 — exp {7 (1 — exp (xP)) }]>> 1
dx{ {[1- 11— exp{y(1-exp (BN} }|X>O'

Proof. Is straightforward and hence omitted. See Hamedani et al. (2018a, 2018b, 2019 and
2021) for more details.

= 2ayB exp (xﬁ)


https://doi.org/10.28924/ada/stat.2.1

Eur. J. Stat.

5. ESTIMATION METHODS

5.1. The ML method. The method of maximum likelihood is the most frequently used method of
parameter estimation. Its success stems from its many desirable properties including consistency,
asymptotic efficiency, invariance property as well as its intuitive appeal. Let x1, ..., x, be a random

sample of size n from (4), then the log-likelihood function of (4) without constant terms is given by

L(W) = nlog2+nlog®+ nloga+ nlogy + nlogpB

n n n
+ (B8 — 1)Z log X(j.n) +Z xP +’yZ [1 —exp (x/ﬁ)]
i—1 P i—1

-0y {1-e0[-022 50|} - 502 5(xm)
i=1 i=1

£ (a-1) Z (1= Vs () + 3 [1 = (1= Vi ()]

i=1
The components of the score vector, U (W) = % = (U@®),U(x),U(y),U(B))". The ML
estimates (MLEs) 6, @, and B of 6, a,«y and 8 are obtained by solving the following nonlinear

systems of equations
0 0 0 0
%K (W) =0, afaf (W) =0, ae (W) =0, %6 (W) =0.

5.2. The WLS method. The WLS estimates (WLSE) are obtained by minimizing the function
WLSE(W) WRT 0, o,y and B

n
WLSE (W) = Z Wiim [Fu (i) — T(/,n)]2 :
i=1

where
S

n+1'

T =
and
Wim =[@+n*Q2+n]/li(1+n-1)].

The WLSEs are obtained by solving

n - 119
0=2 Win ({1 —exp | =043 5(Xien)) } - T(m)) Vo) (Xin: ¥)
=1

n - 116
0= Win ({1 —exp | =07 5(Xi:n) } - T(f.n)) Vi) (ieng ¥)
i=1 i )

n - 116
0=) Win ({1 —exp | =07 5(xgin) | } - T(fm)) Viy (i ¥)
i=1


https://doi.org/10.28924/ada/stat.2.1

Eur. . Stat.
and )
0= Z W(i.n ({1 — exp [—Ogﬁ,ﬁ(X[/;n])]}e T ,,)) Vi) (X W)
where -
Ve (X W) = 0Fy (X(ion) /0

5.3. The AD method. The AD estimates (ADE) are obtained by minimizing the function

1y log Feuy (xgin)
ADE (W) = —n— =Y (2 —1) { W) (in) } |
L +10g [1 — Foy (X is14m)]

The parameter estimates follow by solving the nonlinear equations

0 =29 [A (x[, ) X[—s+1+n: n]) ( )] /69'
0 =29 [AD(X[i:n]vX[—chHn:n]) (E)] /6,
0 =29 [AD(X[f:n]vX[—chHn:n]) (E)] /97,

and
0=0 [AD( )(y)] /86.

5.4. The RTAD method. The RTAD estimates (RTADE) are obtained by minimizing

Xi:n]  X[—s+1+n:n]

1
RTADE (W) = 5n — 2Z Fw)y (Xiin)) Z (21 = 1) {log [1 = Fru) (i 1nm)] }-
The estimates follow by solving the nonlinear equations
0 = o[RTAD . . (w)] /o0,
X[i:n]vx[—§+1+n:n]) (E):I /aa’

O - 8 [RTAD(X[i:n]vX[7<+1+n:n]) (!):l /@’Y,

0 = a[RTAD(

and

0=08[RTAD(, . .. (W)]/eB
6. SIMULATION FOR COMPARING ESTIMATION METHODS

The estimation persuaders of the BXEC model is performed under the ML, AD, WLS and RTADE
methods. Simulation studies are performed in order to compare and assess the above mentioned
estimation methods. The simulation studies are based on N = 1000 generated data sets from the
BXEC version where n = 20, 50, 100,200, 300,500 and 8 = 2,aa = 0.7, = 0.6 and 8 = 0.2.
The performance of the different estimators are compared in terms of the average of its bias and
root mean square error (RMSE). Table 2 and Table 3 list the simulation results. From Table 2 and

Table 3, it is noted that the RMSE(E) tend to zero as n— oo and the bias tends to zero as n— oo.
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The Bias, under the ML method stared with 0.11064 for n = 20 and reached ~ 0 for n =500.
The Bias, under the ML method stared with 0.00083 for n = 20 and reached ~ 0 for n =500. The
Bias, under the ML method stared with 0.00665 for n = 20 and reached 0.00020 for n =500. The
BIASg under the ML method stared with 0.00260 for n = 20 and reached 0.00003 for n =500. The
Bias, under the WLS method stared with 0.38705 for n = 20 and reached 0.03783 for n =500. The
Bias, under the WLS method stared with 0.02353 for n = 20 and reached 0.00148 for n =500. The
Bias, under the WLS method stared with 0.01697 for n = 20 and reached 0.00050 for n =500. The
BIASg under the WLS method stared with 0.01535 for n = 20 and reached 0.00153 for n =500.
The Bias, under the ADE method stared with 0.07513 for n = 20 and reached 0.00675 for n =500.
The Bias, under the ADE method stared with 0.00303 for n = 20 and reached 0.00050 for n =500.
The Bias, under the ADE method stared with 0.00021 for n = 20 and reached 0.00038 for n =500.
The BIASg under the ADE method stared with 0.00220 for n = 20 and reached 0.00030 for n =500.
The Bias, under the RTAD method stared with 0.15966 for n = 20 and reached 0.00695 for n =500.
The Bias, under the RTAD method stared with 0.00545 for n = 20 and reached ~ 0 for n =500.
The Bias, under the RTAD method stared with 0.00197 for n = 20 and reached ~ 0 for n =500.
The BIASg under the RTAD method stared with 0.00443 for n = 20 and reached ~ 0 for n =500.
For all parameters under all estimation methods the RMSE started with small values and ended
with a very small value as n— oo. The values of the Dabs and the Dmax also decreases n— oc.

The values of the difference between the Dabs and the Dmax also decreases n— oo.
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Table 2: Simulation results.

n Bias, Biasg Biasy
ML 20 0.11064 0.00083 0.00665
WLS 0.38705 0.02353 0.01697
ADE 0.07513 0.00303  0.00021
RTAD 0.15966 0.00545 0.00197
ML 50 0.04575 0.00050 0.00290
WLS 0.17185 0.00906  0.00552
AD 0.02678 0.00044 0.00092
RTAD 0.05382 0.00108 0.00041
ML 100 0.02966 0.00064 0.00064
WLS 0.11129 0.00560 0.00304
ADE 0.02024 0.00074  0.00002
RTADE 0.03021 0.00078 000002
ML 200 0.01770 0.00061 0.00005
WLS 0.06027 0.00276  0.00132
AD 0.00256 0.00015 0.00042
RTAD 0.00874 0.00013  0.00016
MLE 300 0.00377 0.00004 0.00017
WLS 0.05551 0.00272 0.001443
ADE 0.00847 0.00054 0.00034
RTADE 0.01446 0.00072  0.00046
ML 500 0.00047 0.00009 0.00020
WLS 0.03783 0.00148  0.00050
AD 0.00675 0.00050 0.00038
RTAD 0.00695 0.00018 0.0000004
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Table 3: Simulation results.

n  BIASg RMSEs RMSE, RMSE, RMSEg Dabs Dmax

ML 20 0.00260 0.51751 0.04488 0.04389 0.02541 0.01012 0.01765

WLS 0.01535 0.75360 0.05136 0.04496 0.03107 0.13726 0.19605
AD 0.00220 0.51977 0.04416 0.04313 0.02471 0.01936 0.02770
RTAD 0.00443 0.70782 0.04474 0.04146 0.02783 0.04081 0.05825

ML 50 0.00103 0.30783 0.02815 0.02688 0.01553 0.00382 0.00690

WLS 0.00679 0.37844 0.03059 0.02752 0.01811 0.05823 0.08267
AD 0.00063 0.32719 0.02935 0.02859 0.01619 0.00430 0.00650
RTAD 0.00127 0.39436 0.02920 0.02713 0.01755 0.01086 0.01577

ML 100 0.00097 0.20805 0.02029 0.01895 0.01114 0.00619 0.00910

WLS 0.00450 0.25537 0.02212 0.02009 0.01281 0.03723 0.05277
AD 0.00064 0.22365 0.02043 0.01987 0.01117 0.00519 0.00743
RTAD 0.00080 0.26729 0.02055 0.01915 0.01218 0.00687 0.00987

ML 200 0.00065 0.14244 0.01377 0.01287 0.07644 0.00467 0.00672

WLS 0.00242 0.16259 0.01443 0.01321 0.00841 0.01938 0.02758
AD 0.00003 0.15217 0.01413 0.01377 0.00772 0.00054 0.00086
RTAD 0.00015 0.17741 0.01406 0.01313 0.00829 0.00145 0.00214

MLE 300 0.00005 0.11686 0.011422 0.01064 0.00636 0.00044 0.00071

WLS 0.00231 0.13620 0.01204 0.01091 0.00709 0.01858 0.02643
ADE 0.00033 0.12715 0.01177 0.01141 0.00645 0.00312 0.00442
RTADE 0.00050 0.14905 0.01169 0.01087 0.00693 0.00472 0.00669

ML 500 0.00003 0.08851 0.00878 0.00820 0.004776 0.00042 0.00062
WLS 0.00153 0.10132 0.00922 0.00845 0.00532 0.01140 0.01626
AD 0.00030 0.09572 0.00889 0.00863 0.00485 0.00281 0.00397
RTAD 0.00020 0.11233 0.00898 0.00840 0.00526 0.00164 0.00237
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7. APPLICATIONS FOR COMPARING METHODS UNDER UNCENSORED DATA

For comparing the four classical methods, two application to real data set are presented. The
first subsection is related to studying the data set (Gross and Clark (1975)) on the relief times of
twenty patients receiving an analgesic: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 41, 1.8, 1.5,
1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. The second subsection is related to studying the minimum flow data
which was presented by Cordeiro and Castro (2011) that include 38 observations. The data set
is the following: 43.86, 44.97, 46.27, 51.29, 61.19, 61.20, 67.80, 69.00, 71.84, 77.31,85.39, 86.59,
86.66, 88.16, 96.03, 102.00, 108.29, 113.00, 115.14, 116.71, 126.86, 127.00, 127.14, 127.29, 128.00,
134.14, 136.14, 140.43, 146.43, 146.43,148.00, 148.43, 150.86, 151.29, 151.43, 156.14, 163.00,
186.43.

7.1. Analyzing the uncensored relief times data. For comparing the four estimation methods under
uncensored relief times data, we consider the Cramér-Von Mises (W*) and the Anderson-Darling
(A*) statistics. Table 4 lists the different estimators as well as W* and A* statistics. From Table
4, the ML method is the best method among all estimation techniques with W* =0.07043 and
A* =0.41643. However, the AD performes well with W* =0.1148 and A* =0.68175. The other two

methods can be used in some particular cases.

Table 4: Comparing methods under uncensored relief times data.

~

Method 9 a 5 B W A*
ML 20.88487 6.70450 1.47856 0.09324 0.07043 0.41643
WLS 448989 135147 0.44386 0.37917 0.20960 1.23874
AD 6.32523 2.08544 0.74377 019106 0.11485 0.68175
RTAD 289731 0.81886 0.27949 0.33959 0.16896 0.99760

7.2. Analyzing the minimum flow data. For comparing the four estimation methods under uncen-
sored minimum flow data, , we consider the W* and the A* statistics. Table 4 lists the different
estimators as well as W* and A* statistics. From Table 5, the WLS method is the best method
among all estimation techniques with W* =0.06896 and A* =0.46616. However, all other methods

performe well.

Table 5: Comparing methods under uncensored minimum flow data.

~ —~

Method 0 a v 6] W A*
ML 1.07468 0.85091 0.00735 0.30655 0.07033 0.47072
WLS 1.20261 0.90472 0.00811 0.30645 0.06896 0.46616
AD 1.20715 092018 0.01436 0.27936 0.08041 0.51378
RTAD 139542 0.95907 0.01855 0.26968 0.08431 0.53262
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8. CoNcLUSION

In this paper, we derived a new four-parameter Chen model based on the the Burr type X gen-
erator. Some statistical properties of the new model such as a linear representation, moments,
moment generating function, conditional moments, mean residual life and mean past lifetime are
derived. Numerical analysis for mean, variance, skewness and kurtosis is presented.Some char-
acterizations of the novel distribution based on: (/) a simple relationship between two truncated
moments and (/i) the hazard function are presented. Different classical estimation methods under
uncensored schemes are considered, such as the maximum likelthood, Anderson-Darling, weighted
least squares and right-tail Anderson—Darling methods are considered. Simulation studies are per-
formed in order to compare and assess the above-mentioned estimation methods. The applicability
of the four classical methods is assessed based on two application to real data sets.

As future potential works, we can apply many new useful goodness-of-fit tests for right censor-
ing distributional validation such as the Nikulin-Rao-Robson goodness-of-fit test, Bagdonavicius-
Nikulin goodness-of-fit test, modified Nikulin-Rao-Robson goodness-of-fit test and modified
Bagdonavicius-Nikulin goodness-of-fit test to the new model as performed by Goual et al. (2019,
2020), Mansour et al. (2020a-1), Yadav et al. (2020), Goual and Yousof (2020), Ibrahim et al (2021)
and Yousof et al. (2021b), among others.

Appendix A

Theorem 1. Let X be a RV with the EC distribution. Then using the transformation t =
1
[Gays (x)]*, the r'" ordinary moment of X is given by

+o00 2o

(-1)8
b =EX=a8 3 ay (L] (540) ,
Lo \6) N6 ) e s g

p.q=0

x+

0
where o, (é) is the coefficient of [% log (1 — t)] ? " in the expansion of

r
400 s

Ll

a=1
and agq (é + p) is the coefficient of t°975 in the expansion of

L+p
2

=1

(see Balakrishnan and Cohen (2014) for more details).
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Theorem 2. Let X be a RV with the EC distribution. Then, the r'" conditional moment can be

derived as

r e r r (—1)%+p(vvﬁ ()
E(XX>x)=af ) o (5) % ([3+p) VBB (a+p+q) + {1 - [1 - Vyp (0]}

Theorem 3. Let (2, F,P) be a given probability space and let H = [a, b] be an interval for

p.q=0

some d < b (a=—o0, b=o00 might as well be allowed). Let X : 2 — H be a continuous
random variable with the distribution function F and let g; and g> be two real functions defined

on H such that

El2(X) [ X =2 x]=E[q1 (X) [ X =x]n(x), x€H,

is defined with some real function £&. Assume that g1, g2 € C!(H), n € C?(H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation mq; = g2 has no real solution in the interior of H. Then F is uniquely determined by the

functions g1, g2 and n , particularly

[ n' (u) B
F(X)‘/a C'n(mql(u)—qz(u) & (=s(u)) du,

where the function s is a solution of the differential equation s’ =

ization constant, such that fH dF = 1.

' q

T —— and C is the normal-

Note: The goal is to have the function 7 (x) as simple as possible.

We like to mention that this kind of characterization based on the ratio of truncated moments is
stable in the sense of weak convergence (see, Glanzel, 1990), in particular, let us assume that there
is a sequence {X,} of random variables with distribution functions {F,} such that the functions
G1in, @2n and 7m, (n € N) satisfy the conditions of Theorem 3 and let g1, — g1, g2n — @2 for
some continuously differentiable real functions g1 and g» . Let, finally, X be a random variable
with distribution F . Under the condition that g1, (X) and gz, (X) are uniformly integrable
and the family {F,} is relatively compact, the sequence X, converges to X in distribution if

and only if n, converges to 7, where

Elg: (X) | X=X
Elg (X) [ X =x]
This stability theorem makes sure that the convergence of distribution functions is reflected by

n(x) =

corresponding convergence of the functions g1 , go and 7, respectively. It guarantees, for
instance, the ‘convergence’ of characterization of the Wald distribution to that of the Lévy-Smirnov
distribution if o — oc.

A further consequence of the stability property of Theorem 3 is the application of this theorem to

special tasks in statistical practice such as the estimation of the parameters of discrete distributions.
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For such purpose, the functions g1, g» and, specially, 1 should be as simple as possible. Since
the function triplet is not uniquely determined it is often possible to choose 7) as a linear function.
Therefore, it is worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions and appropriate
in other areas of statistics.

In some cases, one can take g1 (x) = 1, which reduces the condition of Theorem 3 to
E[gx(X) | X >x] =n(x), x € H. We, however, believe that employing three functions q; ,

g> and m will enhance the domain of applicability of Theorem 3.
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