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Abstract. This article investigates the T-X class of Topp Leone- G family of distributions. Some
members of the new family are discussed. The exponential-Topp Leone-exponential distribution
(ETLED) which is one of the members of the family is derived and some of its properties which
include central and non-central moments, quantiles, incomplete moments, conditional moments,
mean deviation, Bonferroni and Lorenz curves, survival and hazard functions, moment generating
function, characteristic function and R'enyi entropy are established. The probability density
function (pdf) of order statistics of the model is obtained and the parameter estimation is
addressed with the maximum likelihood method (MLE). Three real data sets are used to

demonstrate its application and the results are compared with two other models in the literature.

1. Introduction

In recent times, the focus of many researchers has been drawn to the significance of
introducing additional parameters into the existing probability models. This has brought
about a huge breakthrough in the analysis of some complex data arising from various
disciplines including financial management, insurance, economics and reliability
analysis. Many methods have been proposed by different authors over the decades
which include the exponentiated- G family of distributions introduced by Lehmann (1953)
which became popular in the last two decades by Gupta et al. (1998) and Gupta and
Kundu (1999, 2001 and 2002). The cdf (cumulative distribution function) of his type | is
given by

F(x) =G*(x), a>0,
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where G is the cdf (cumulative distribution function) of any random variable. Suppose X
is a continuous random variable, its corresponding pdf is
flx) =ag)G**(x) .

The cdf of his type Il is defined by

Fx)=1-(1-G6(x)% a>0.

Its corresponding pdf is

fG) = agx)(1-6@).

Eugene et al (2002) proposed beta-G family of distributions with the cdf defined as

1 G _ . .
F(x) = o) Jy P x2=1 (1 — x)f~1dx and its pdf is

f@) = 5056 = 6@)FLa> 08>0,

where B(a, ) is the beta function. Some of the members in the literature include beta
Frechet distribution by Nadarajah andGupta (2004), the beta-Weibull distribution by
Famoye et al. (2005), the beta-Pareto distribution by Akinsete et al. (2008) and other

generalizations.

Jones (2009) and Cordeiro and de Castro (2011) obtained Kumaraswamy-G family of
distributions. Its cdf which is obtained from the distribution of Kumaraswamy (1980) is
Flx)=1—-(1-G6*(x)P,a>0, >0

and its pdf is

f@) = apg6 @ (1 - 6(x)

Shaw and Buckley (2009) proposed quadratic rank transmutation map (QRTM) and the
technique has been applied by many authors including Aryal and Tsokos (2011) on the
transmuted Weibull distribution, Merovci (2014) on transmuted generalized Rayleigh
distribution, Rahman et al. (2018) on general transmuted family of distributions and
others. The cdf of transmuted distribution is defined as

F(x) = (1+1D)G(x) —AG%*(x), |1 <1

with the corresponding pdf defined by

f(x)=g)[1+ 1 —2AG(x).

Alzaatreh et al. (2013b) suggested T-X family of distributions which is the extension of

beta-G family of distributions and it is obtained by replacing beta random variable with
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any non-negative continuous random variable T while random variables T and X are
termed “transformed” and “transformer” respectively. Its cdf is defined as
vix) = [V de = R{W(F () (1)
with corresponding pdf
v(x) = {(SW(F@)}{ w(F@)} 2)
where r(t) is the pdf of random variable T € [a, b] such that —o0o < a < b < o and
W(F(x)) is a function of cdf F(x) for any random variable X that satisfies the
following conditions:

) W(F()) € [a,b]

(i) W(F(x)) is differentiable and monotonically non-decreasing

(iit) W(F(x)) —a as x - —oo and

(iv) W(F(x)) > basx—> oo
Aljarrah et al. (2014) extended the work of Alzaatreh et al. (2013b) by introducing a
wider class of W (.) function defined as
W:(0,1) - (a,b) for that —c0o < a < b <00 is right continuous and non-decreasing
function such that
]}Lr{l W:(y)=a andyl_i)rlr_l W:(y) =b.
Therefore, V(x),x € (—o, ) is a distribution function that satisfies the required
conditions of a distribution function:
V(x) is a non-decreasing
V(x) is right continuous and
V(x) > 0asx—> —oand V(x) > 1 as x - oo.
Alzaghal et al. (2013) considered exponentiated T-X family of distributions. Alzomarani
et al. (2016) suggested Topp Leone-G family of distributions with the cdf defined as

Frig(x) = (G(x))*(2 = G(x))? xeR, a >0 (3)
and its corresponding pdf given by
fric(®) = 2ag ()G (x)(G())* (2 = G(x))*7, (4)

where G(x) and g(x) are the cdf and pdf of any continuous random variable X, G(x) =
1—G(x) and ais the shape parameter. This was derived from Topp Leone (1955)
distribution with the cdf
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Frp(x) =x*Q2—-x)% 0<x<1, a>0.

Jayakumar and Babu (2017) studied T-X transmuted family of distributions. Reyad et al.
(2019) considered the exponentiated generalized Topp Leone —G family of distributions
while Ibrahim et al. (2020) worked on Topp Leone exponentiated-G family of
distributions.

In this paper, a new class of Topp Leone-G family of distributions is investigated with
the introduction of additional parameter which makes the distributions from this family
more flexible. Section 2 of this paper presents T-X Topp Leone-G family of distributions
and some of its properties. Some members of the new family with different T
distributions are discussed in section 3. In Section 4, some members of exponential Topp
Leone-G family are obtained with graphical illustrations. Section 5 contains exponential
Topp Leone exponential distribution (ETLED) and some of its properties which include
moments, moment generating function, hazard function and order statistics. The

application of ETLED is presented in section 6 and conclusion in section 7.

2. T-X Topp Leone-G family of distributions (TXTLG)
Suppose R(t) and r(t) are the cdf and pdf of non-negative continuous random variable
T defined on [0, ) and F(x) denotes the cdf of Topp Leone-G family of distributions as
defined in (3). Let W(F(x)) be the hazard function of Topp Leone -G family defined as
W(F(x)) = —In[1 - (G(x))*(2 — G(x))*].

Using (1) and (2), the cdf of T-X Topp Leone —G family of distributions is

Vesrig(x) = J; MO CTEO (g = R{—In[1 - ()2 - () (5)

with the corresponding pdf

2ag()G(x)(6()) " (2-6(0)) !
1-(6(0) " (2-6(x))"

r{=In[1 - (G(x)*(2 = G(x))"]}. (6)

VrxrLg(X) =

Its survival function is
Stxric(X) = 1= Vrxre(x) = 1= R{=In[1 - (G(x))*(2 — G(x))*]}
and its hazard function is

vrxrLg(®) Zag(x)E(x)(G(x))a_l(Z—G(x))a_lr{— ln[l—(G(x))a(Z—G(x))a]}
1-Vrxre()  {1-R[-In(1-(60(0)*(2-6(0)")|J[1-(6(0)*(2-6(x)“]

hrxrie(x) =
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3. Some members of T-X Topp Leone-G family of distributions with different T
distributions.

Some members of TXTLG are discussed in this section for different distributions of
random variable T. These members include

3.1 Gompertz-Topp Leone-G family of distributions (GTLGD)
If a continuous random variable T follows a two parameter Gompertz distribution having
its cdf and pdf given by R(t) =1 — e BE-D and r(t) = Lkekte —B*-1) 5 0, B>
0,k > 0, where 8 and k are the parameters, the cdf of GTLGD is

Verson (1) = 1 — ¢ Pl- 0@ @06 -1}

and its corresponding pdf is

2aBkg ()G () (6(0)) " (2-6(x))*
[1-(600) " (2-6(0)"| " eBlli-(EENaE-GE) -1}

Veriep (X) =

3.2 Rayleigh-Topp Leone-G family of distributions (RTLGD)

If a continuous random variable T follows Rayleigh distribution having its cdf and
t2 t2

pdf given by R(t) =1 —e 202 and r(t) = %e_m,t > 0,0 > 0, where o is the

parameter, the cdf of RTLGD is

VerLep(x) =1—e

and its corresponding pdf is

—55zn [1-(6()*2-6(x)*]} ?

—Zag(x)E(x)(G(x)) (2 G(x)) ln 1-(G(x))*(2-G(x))*

a an 2
o2[1-(6(0) (2-6(0) ez 20200 (-(EEE -6

VrrLp (X) =

3.3 Lomax-Topp Leone-G family of distributions (LTLGD)

If a continuous random variable T follows a two parameter Lomax distribution

having its cdf and pdf given by R(t) =1 — (14 bt)™* and r(t) = LSNPS

(1+bt)A+1’
0, >0, b >0, where b and A are the parameters , the cdf of LTLGD is
V() irep = 1= {1 =bIn[1 = (G(x))*(2 — G(x)*]}™
and its corresponding pdf is

v (x) = Zabxlg(x)E(x)(G(x))a_l(Z—G(x))a_1
FILEDRES ™ [1-(6@) *(2-6(0)“[(1-bln [1-(6 ()4 (2- G (x)) 4 pA+1

3.4 Weibull-Topp Leone-G family of distributions (WTLGD)
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If a continuous random variable T follows a two parameter Weibull distribution
. . . _(L)e gtf-1 _(L)B
having its cdf and pdf given by R(t) =1—e " and r(t) = —5e ™, t>
0, 8 >0, m >0, where m and 6 are the parameters, the cdf of WTLGD is
1 a an®

VwrLep(x) =1 - e_m{_ln[l_(c(x)) (2-60)"]}

and its corresponding pdf is

6+1

2a0g(N)G(G6) " (2-60))* ™ {- In[1-(6(0))*(2-6)"]}

]e#{— 1“[1-(G(x))a(2-c(x))a]}9

Vyriep(X) =
mf[1-(6(x))*(2-6(x))"

3.5 Exponential-Topp Leone-G family of distributions (ETLGD)

4.1

If @ continuous random variable T follows an exponential distribution having its
cdf and pdf given by  R(t) =1—e " and r(t) =ce ™, t >0, ¢ > 0 where ¢
is the parameter, the cdf of ETLGD is

Verion(0) = 1= [1= (6(0)" (2= 6) ]

and its corresponding pdf is

Varnen () = 2acg(DE(60)) (2 - 6(0)) 1 - (600)) (2 - 6())] .

Some members of exponential-Topp Leone-G family of distributions (ETLGD).
Here, some members of ETLGD are obtained and the graphical illustrations of
their cdfs and pdfs are displayed in Figure 1 to 4.

Exponential-Topp Leone-Lomax distribution (ETLLD).

If a continuous random variable X follows a two parameter Lomax distribution

having its cdf and pdf given by G(x) =1 -1+ kx)™ and g(x) =

pk
(1+kx)pt1’

ETLLD is

x>0, p>0, k>0, where k and B are the parameters, the cdf of

1+k0)?P-1\%1°
Verep(x) =1 — [1 - (ﬂﬂiw) ]

and its corresponding pdf is

c-1

2acpk((1+kx)2p—1)a_1[(1+kx)2ap—((1+kx)2p—l)a]
Verpep (X) = (1+kx)2acp+1
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The graphs of cdf and pdf of ETLLD for different selected values of parameters a,
¢, p and k are displayed in Figure 1.
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Figure 1: The graphs of cdf and pdf of ETLLD

4.2 Exponential-Topp Leone-uniform distribution (ETLUD).
If a continuous random variable X has uniform distribution having its cdf and pdf

given by G(x) =% and g(x) = %, 0 < x < b, where b is the parameter, the cdf
of ETLUD is

VerLup(x) =1 — [1 - (%)a (2 B %)a]

and its corresponding pdf is

v =2 (1-3) )" (-3 [1-() (-]

The graphs of cdf and pdf of ETLUD for different selected values of parameters

Cc

c-1

a, b and c are displayed in Figure 2.
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Figure 2: The graphs of cdf and pdf of ETLUD

4.3 Exponential-Topp Leone-Rayleigh distribution (ETLRD).

If a continuous random variable X has Rayleigh distribution having its cdf and
2 2

pdf given by G(x) =1—e 2 and g(x) = ;—ze_m, x>0, p>0,wherepis

the parameter, the cdf of ETLRD is
%2\ ¢ ¢
VerLrp(x) =1 — Il - <1 - e_p_2> l

and its corresponding pdf is

a-¢c—1

xz xz a-1 XZ
Verirp (X) = %xe_ll_z (1 - e_P_z) ll - <1 - e_P_2> l

The graphs of cdf and pdf of ETLRD for different selected values of parameters a,
c and p are displayed in Figure 3.
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Figure 3: The graphs of cdf and pdf of ETLRD

4.4 Exponential-Topp Leone-exponential distribution (ETLED).
If a continuous random variable X has exponential distribution having its cdf and
pdf given by G(x) =1—e™™* and g(x) =me™*, x >0, m > 0, where m is
the parameter. The cdf of ETLRD is

Vertep () =1 —[1 — (1 — e™2mx )a]c 7)
and its corresponding pdf is
Veriep(x) = 2acme 2 (1 — e"2MN)AL[] — (1 — g~2m¥)afet, (8)

The graphs of cdf and pdf of ETLED for different selected values of parameters q,

c and m are displayed in Figure 4.


https://doi.org/10.28924/ada/stat.2.2

Eur. J. Stat. 2 (2022) 10.28924/ada/stat.2.2 108

a=2.0,m=1.0 a=2.0,m=1.0

s

< |

e I I I I I I I I I I I I

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
X X
Figure 4: The graphs of cdf and pdf of ETLED

5. Some properties of exponential-Topp Leone-exponential distribution (ETLED)

5.1 Moments

The pth non-central moment of ETLED is

E[X?] = 2acm fooo xPe™2M¥ (1 — e 72Mx)a-1[1 — (1 — e~2MX)a]¢~ 1y, (9)
Using series expansion, (9) becomes,

E[X?] = zacngozo 2?:0 (c;l) (a(q-l;l)—l)(_l)qﬂ' J'0°° xPe—2mr+Dx g,
On integration,

E[X?] = wzgozozﬁozo (C;l) (a(qtl)—l)(_l)qw (r + 1)—(p+1)_ (10)

(2m)P

The mean of ETLED is obtained when p =1 in (10) and it is given as

EIX] = 2250 o 552, (1) (“HD T (- (r 4+ 1) (1)
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The sth central moment of ETLED is

E[X —ul® = 55 (5) (—)* P E[x?] (12)
Where E[XP] is given in (10) and u is the mean of ETLED. On substitution,

0 o - - _ r(p+1
E[X —pl® = 2acm Y5 o Xo-0 Xrzo (;) (qu) (@D (— )T (—p) pﬁ. (13)

By setting s = 2 in (13), the variance of ETLED is obtained as

EIX — u? = 2aem X2 Do B0 (2) (71) (“U DT (-1 (2P

@m(r+1))p+1’
Other higher moments such as kurtosis and skewness of ETLED can be derived from
(13).
5.2 Quantiles
The kth quantile W(k) of ETLED is defined as

1—[1—-(1—e 2m% )a]¢ = k. (14)
On solving for x; in (14),
1
1 IN\Ta
W) =x=——n|1-(1-@—kye)|" (15)
The median M is obtained by setting k = 0.5 in (15) to have
1
1 IN\Ta
M=x5=—--In[1-(1-(05))|" (16)
5.3  Incomplete Moments

The pth incomplete moment of ETLED is defined as
Jp(@) = JF F)dx = 2acm B T2 (1) (KDY (- 13T [ xpetmrebx g, (17)

But the integrand in (17) is a lower incomplete gamma. This implies that

_ _ac oo o [c-1) (alg+D)-1\,_1\g+r Y@+1[2m(r+1)]z)
]p(z) T (2m)p Zq=0 Zr=0( q )( r )( DT (r+1)p+1 ' (18)
The first incomplete moment is obtained by setting p=1 in (18) to have
ac woo . - - y(2,[2m(r+1)]z)
J1(2) = 5= e 2o (1) (DT (e LRI (19)

5.4 Moment generating function and characteristic function

The moment generating function of ETLED is

o tP oo oo oo - - tPr(p+1)
My (t) = Z;;:oEE[Xp] = 2acm Yy o Xgzo Xr=o (qu) (a(qtl) D=1t M)

Its corresponding characteristic function is

Qx(it) = 2acm B o o T (1) (“Ot D) (- 1)e

(iH)Pr(p+1)
p!(2m(r+1))P+1
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5.5 Random number generation

Random numbers can be generated from ETLED by using the method of inversion. This

implies that

VerLep(x) = u, (20)
where random variable u~U(0,1) i.e. u is uniformly distributed on zero and unity. This
implies

1—[1—(1—e™2mx )a]¢ =y, (21)
Solving for x in (21) gives

1
x=-tn[1-(1-@a- u))] (22)
Random numbers can be generated from (22) when the values of parameters a,c and m
are known.

5.6  Mean Deviation

The mean deviation about the mean of ETLED is defined by

8,(x) = [ 1x — pulf ()dx = 24 F(ui) — 2J1(up)

and the mean deviation about the median M of ETLED is given by

8,(x) = [l — MIf(x)dx = 2u5 F(u) — 2J3 (1)),

Where p; is the first non-central moment of ETLED given in (11), F(u;) can be
obtained from the cdf of ETLED and J;(uj) can be calculated from the first incomplete
moment in (19) .

5.7 Bonferroni and Lorenz Curves

Bonferront and Lorenz curves of ETLED are defined by

B(m) = —’1(”) and L(m) =272

1

respectivelg, where b = W (m) which can be determined from the quantile function in (15)
and J;(b) can be obtained from (19).
5.8  Conditional Moments
The pth conditional moment of ETLED is defined as
E[XP/X > t] f xP f(x)dx.

= 2acm ¥ Y, (C;l) (a(q+rl)—1)(_1)q+r ft°° xPe—2mIr+1x gy (23)

F(t)

where F(t) = 1 — F(t). The integrand in (23) is an upper incomplete gamma. Therefore,
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ac . o - - r(p+1)-y(p+1,[2m(r+1)]z)
BIXP/X > ] = o amo Bimo (1) (0T (- e (24)

The mean residual lifetimes of ETLED which is given by E[XP/X > t] —t can be
determined from the conditional moment in (24).

5.9 R enyi Entropy

The R*enyi entropy is defined as

1x(8) = —log [1(8)] ,

where § >0and 6 # 1

If f(x) is the pdf of ETLED then I(&) is given by

16) = [, fé(x)dx

— (zacm)S 220=0 Z?:O (5(Cq—1)) (a(CI+r5)—5) (_1)q+r fooo xPe2mr+8)x 4, (25)

By integrating the integrand in (25),

1) = acm)® 5o 22, (P70) (“HD) (= 1) [2m(r + )] (26)
Therefore, the Re " nyi entropy of ETLED is

Ir(8) = {5log [ 2aem)® T30 B (P70) (D) D) 2mr + )71 (27)
5.10 Reliability Analysis

The survival function of ETLED is

serLep(0) = 1= Verppp(x) = [1 — (1 — e72™ )a°

and its hazard function is

Rervep () = ~ZEERO) - 9qeme=2m(] — g=2mx)a-1[] _ (1 — g=2mx)a]-1,
1-VEerLED (X)

The graphs of survival and hazard function of ETLED are displayed in Figure b.
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Figure 5: The survival and hazard function of ETLED

5.11  Order Statistics

Let Xi,X; ..X, be independent random variables with size n. The arrangement X(;) <
X(2) <+ < X(n) s called order statistics. The pdf of order statistics X of ETLED,
where j=1,2,3,...,n, is given by David (1970) as

: VerLep GOV M1 = Verwep GO verpep (x). (28)

VerLepx, () = G55

On substitution,

v (x) — 2acme”2¥ (1 _ e—me)a—l[l _ (1 _ e—2mx)a]c(n—j+1)—1{1 _ [1 _ (1 _ e—me)a]C}j—l
ETLEDX ) B(jn—j+1) '

On expansion,

2acme™ ™ (i1 v woo i— —j+2)— - i _
UETLEDXU.)(x) =mz{=0 Zl=02w=0(1i1)(c(n Jl+2) 1)(a(l+‘;) 1) (_1)l+l+we 2mwx (29)

The pdf of the smallest order statistics is obtained by setting j = 1 in (29) to give

— 0 © _ l _ . 3
vETLEDX(l) (X) = 2acmne 2mx Zl:oZWzo(C(n-'-ll) 1)(61( +V:) 1) (_1)l+l+we 2mwx
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while pdf of the largest order statistics is obtained by setting j =n in (29) and the

result is

Verus () = 2aemne = 5 S Ko () (1)

5.12 Parameter Estimation
Suppose sample xq,x, ... X, of size n is drawn from ETLED with pdf vgr gp (%) given in
(8), its likelihood function is
L(x; a,c,m) = (2acm)"e " 2MEiz1 % [T (1 — e 2M¥i)a-1[] — (1 — g~2mAi)aje—1,
Its log likelihood function is
InL(x; a,c,m) = nIn(2acm) —2m Y, x; + (a — D) X, In(1 — e~2™%)

+He - DXL, In[1 - (1 —e?™¥0)4]. (30)
The estimate of each inherent parameter is obtained by differentiating (30) with respect
to each parameter and equates it to zero. The following non-linear system of equations

is obtained.

dlnL(x,acm) _ o —2mx n  (Q—e 2MXHaIn (1—e M%)
da + 2 =1 ln(l e l) (C 1) Zi:l [1—(1—6_2mxi)a] - 0;
6lTlL(J;;1CTn) Z a ln[l _ (1 _ e—mel) ]
and
dlnL(x,a,c,m) n —2mx; x,e~2MXi(1 — g~2mar)a-1
T am m ZZ’“ 2= “Z ey ~ 2006 - ”Z —(— e 2]
= 0.

The log-likelihood function in (30) can be maximized using non-linear optimization
algorithms such as Particle Swarm Optimization (PSO), Broyden-Fletcher-Goldfarb-
Shanno (BFGS), Nelder-Mead (NM), Conjugate Gradient (CG) and Simulated-
Annealing (SANN) in Adequacy model which can be implemented in R package.

6. Applications
In this section, three real data sets are presented to illustrate the application of the
exponential-Topp Leone-exponential distribution (ETLED). The first data is obtained
from Gupta and Kundu (2010). It is a strength data originally considered by Badar and

Priest (1982). The data which represent the strength measured in GPA for single carbon


https://doi.org/10.28924/ada/stat.2.2

Eur. |. Stat. 2 (2022) 10.28924/ada/stat.2.2 16l

fibers and impregnated 1000-carbon fiber tows. Single fibers were tested under tension
at gauge lengths of 1, 10, 20 and 50 mm. Impregnated tows of 1000 fibers were tested
at gauge lengths of 20, 50, 150 and 300 mm. The single fibers data set of 10 mm in
gauge lengths with sample size 63 is considered in this work. The second and third data
sets are extracted from Tahir et al. (2015). They represent the failure and service times
for a particular model. The data consist of 153 observations, of which 88 are classified
as failed windshields, and the remaining 65 are service times of windshields that had
not failed at the time of observation. The unit for measurement is 1000 h. The second
and third data sets have 84 and 63 observations respectively.

6.1 The strength of single carbon fibers data

The data on the strength of single fibers of 10 mm in gauge lengths with 63
observations is presented as follows:

1.901, 2132, 2203, 2.228, 2.257, 2350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,
2.518, 2522, 2525, 2.532, 2575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740,
2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223,
3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537,
3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

6.2 The failure times of 84 Aircraft Windshield data

The data on the failure times of 84 Aircraft Windshield is presented as follows:

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557,
1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890,
4121, 1.303, 2.089, 2.902, 4167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
2.223, 3114, 4.449, 1.619, 2.224, 3117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

6.3 The service times of 63 Aircraft Windshield data

The data on the service times of 63 Aircraft Windshield is presented as follows:

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 150.280,
1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978,
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3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500,
1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183,
2.341, 4.628, 1.244, 2.435, 4.8006, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

The maximum likelihood using SANN method is implemented in R to obtain the
maximum likelthood estimates with the corresponding standard errors of the inherent
parameters in the fitted distributions which are reported alongside with the negative
maximum log-likelihood (-LL), Akaike Information Criterion (AlC), Bayesian Information
Criterion (BIC), Kolmogorov Smirnov (K-S) and the corresponding p-value for each data
set as shown in Table 1, 2 and 3. The results in Table1, 2 and 3 reveal that the
exponential-Topp Leone-exponential distribution (ETLED) has the smallest -LL value,
AIC, BIC and K-S statistics followed by Topp Leone-exponential distribution (TLED)
considered by Al-Shomrani et al. (2016) and exponential distribution (ED), which
indicate that ETLED gives the best fit for all the data sets. Figure 6 displays the
estimated pdfs of the strength of single carbon fibers data while Figure 7 and Figure 8
display the estimated pdfs for the failure times and service times of the Aircraft

Windshield data respectively.

Table1. The MLEs with corresponding standard errors (in parentheses) and statistics for
the strength of single carbon fibers data
Model | Estimates -LL AIC BIC K-S | p-value

ETLED | @ = 13.651(3.990) | 58.250 | 122.501 | 128.930 | 0.076 | 0.861
= 9.382 (4.566)

¢
M = 0.286(0.064)

TLED |a=25.261(6.015) | 66.728 |137.457 | 141.743 | 0.142 | 0.159
i = 0.606(0.046)

ED m = 0.327(0.041) | 133.446 | 268.892 | 271.035 | 0.486 | 2.378e-13
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Figure 6: The fitted pdfs for the strength of single carbon fibers data

Table 2: The MLEs with corresponding standard errors (in parentheses) and statistics

for the failure times of 84 Aircraft Windshield data

Model | Estimates -LL AIC BIC K-S | p-value
ETLED | @ = 2.982(0.893) | 133.396 | 272.792 | 280.085 | 0.078 | 0.682
¢ = 6.826(17.802)
M = 0.129(0.192)
TLED | @=3.558(0.611) | 139.841 | 283.681 | 288.543 | 0.121 | 0.172
i = 0.379(0.038)
ED m = 0.391(0.043) | 162.877 | 327.754 | 330.185 | 0.303 | 4.085e-07
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Figure 7: The fitted pdfs for the failure times of 84 Aircraft Windshield data

for the service times of 63 Aircraft Windshield data

Model | Estimates -LL AIC BIC K-S | p-value
ETLED | a = 1.818(0.201) | 101.972 | 209.943 | 216.372 | 0.132 | 0.204
¢ =3.660(— — —)
m = 0.136(— — —-)
TLED | @ = 1.893(0.340) | 103.547 | 211.094 | 215.380 | 0.143 | 0.138
M = 0.345(0.047)
ED m = 0.480(0.060) | 109.299 | 220.597 | 222.740 | 0.208 | 7.291e-03
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Figure 8: The fitted pdfs for the service times of 63 Aircraft Windshield data

7. Conclusion

A new family of Topp Leone-G family which is called T-X Topp Leone-G family of
distributions with some of its properties is discussed. Some members of the family
for different T distributions are derived. One of the members of exponential-Topp
Leone-G family which is exponential-Topp Leone-exponential distribution (ETLED)
is studied with some of its properties such as moments, quantiles, incomplete
moments, conditional moments, mean deviation, Bonferroni and Lorenz curves,
survival and hazard functions, moment generating function, characteristic function
and R enyt entropy are established. The model is applied to three data sets and the
(TLED)
exponential distribution (ED). It is established that ETLED provides better fit than

TLED and ED.

results are compared with Topp Leone-exponential distribution and
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