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ABSTRACT. The study aimed to investigate the impact of count data on bivariate correlation coefficients,
including Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, and Kendall's
correlation coefficient, particularly when the data follows bivariate binomial and Poisson distributions.
The study considered sample sizes of 10, 20, 30, 50, and 100, with correlation levels of 0, 0.2, 0.6,
and 0.8. The study compared the performance of the correlation coefficients based on their ability
to control the probability of type | error and power at a significance level of 0.05. The simulation
results indicated that when the data adhere to bivariate binomial and Poisson distributions, the
Pearson correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s tau correlation
coefficient effectively control the probability of a type | error. Furthermore, when assessing the power
of a test at correlation levels of 0.6 and 0.8, the Pearson’s correlation test statistics demonstrated the

highest power across all scenarios, even with small sample sizes.

1. INTRODUCTION

The correlation coefficient is a statistical measure used to assess the relationship between
two or more quantitative variables. It indicates the strength and direction of the relationship
between the variables. Represented by the symbol p, the correlation coefficient ranges from -1
to +1. A value close to -1 or +1 signifies a strong linear relationship, while a value close to 0
indicates a weak or nonexistent linear relationship. The sign of the correlation coefficient also
carries important information. A positive correlation coefficient suggests that the variables move in
the same direction, whereas a negative correlation coefficient indicates that they move in opposite
directions. The most well-known correlation coefficients include the Pearson correlation coefficient,
Spearman’s rank correlation coefficient, and Kendall's rank correlation coefficient. Each of these
coefficients has specific applications depending on the nature of the data and the assumptions

underlying their use.
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The Pearson correlation coefficient is widely used to measure the linear relationship between
two quantitative variables, assuming that the data follows a normal distribution and is at least
on an interval scale. In contrast, Spearman’s rank correlation coefficient and Kendall's correlation
coefficient are non-parametric statistics suitable for ordinal data and do not require the assumption
of normality. Several studies have examined the effectiveness and robustness of these correlation
coefficients, particularly in the presence of outliers and non-normal data. For example, Pimchan et
al. (2007) [1] studied the impact of outliers on the robustness of different correlation coefficients.
Their findings indicated that with no outliers and a small sample size (n = 20), the robust correla-
tion coefficient was the Spearman rank correlation coefficient. However, with a larger sample size,
the Pearson product-moment correlation coefficient proved to be more robust. Furthermore, when
outliers made up less than 10% of the sample size, the Biweight Midcorrelation and Spearman
rank correlation coefficient exhibited similar robustness properties. In instances where outliers
constituted more than 10% of the sample, the Spearman rank correlation coefficient was deemed
the most robust. Winter et al. (2016) [2] compared the efficiency of Pearson and Spearman cor-
relation coefficients (denoted as r, and rs, respectively) across various distributions and sample
sizes. Their research demonstrated that opting for rs over r, could lower variability in terms of
standard deviations by approximately 20%. Additionally, r, was found to be suitable for light-tailed
distributions, while rs was preferred for heavy-tailed distributions or when outliers were present.
Schober et al. (2018) [3] asserted that the Pearson correlation should be employed to measure
linear relationships between two normally distributed random variables, while the Spearman rank
correlation is more appropriate for non-normally distributed continuous data, ordinal data, and
situations involving outliers. Pruekpramool et al. (2020) [4] investigated the efficiency of Pearson,
Spearman, and Kendall's correlation coefficients in non-normally distributed data. Their results
indicated that Pearson’s correlation coefficients typically provided the most accurate estimates with
the lowest relative bias, whereas Kendall's correlation coefficients tended to have the highest rel-
ative bias. Areechart et al. (2017) [5] explored the robustness of rank correlation coefficients in the
presence of outliers. The findings revealed that the Hoeffding correlation coefficient was the most
robust across almost all sample sizes, particularly when the data contained outliers, and the two
variables were uncorrelated. Conversely, when two variables were highly correlated, the Kendall
tau correlation coefficient and the absolute bias of the Spearman and Blest correlation coefficients
exhibited the smallest mean square error for all sample sizes. Moreover, the mean square error of
the Spearman correlation coefficient was lowest when the correlation between the two variables
was between 0.6 and 0.8 across all sample sizes. Lastly, Raadt et al. (2021) [6] examined reliability
coefficients for ordinal rating scale data. Their results indicated that the differences between qua-
dratic kappa and the Pearson and intraclass correlations increased as the level of agreement among

raters rose. Furthermore, the differences between the three coefficients (Cohen?s kappa, linearly
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weighted kappa, and quadratically weighted kappa) were generally minimal when the differences
in means and variances among raters were small.

This research examines and compares the performance of three correlation coefficients: the Pear-
son correlation coefficient, Spearman’s rank correlation coefficient, and Kendall's rank correlation
coefficient. It specifically focuses on their effectiveness when applied to bivariate binomial and
Poisson data. The study evaluates the efficiency of these statistics based on two criteria: their
ability to control the probability of type | error and their statistical power. The primary aim of this
research is to assist researchers in choosing the appropriate correlation coefficient for their data,

as selecting the wrong one can lead to incorrect conclusions [7].

2. BIvarRIATE DISTRIBUTION

Bivariate distributions are statistical models that describe the probability behavior of two ran-
dom variables simultaneously. These distributions are crucial for understanding the relationship
between these two variables, offering insights into their joint behavior, correlation, and depen-
dence structure. This section presents two important types of bivariate distributions: the bivariate

binomial distribution and the bivariate Poisson distribution.

2.1. Bivariate Binomial distribution. The bivariate binomial distribution expands on the binomial
distribution by considering two related binary outcomes. It is used to analyze the combined
likelthood of two events, both of which follow a binomial distribution and are somewhat correlated.
This distribution is beneficial in fields such as genetics, epidemiology, and quality control, where
outcomes are frequently binary and interdependent.

Let (X,Y) is a pair of random variables with a joint distribution as follow: P(X = 0,Y =
0) = poo, P(X =1,Y =0) = p1o,P(X =0,Y = 1) = po1,P(X = 1,Y = 1) = p11, where
poo + pP1o + po1 + p11 = 1. Therefore, this distribution has bivariate Bernoulli law.

Consider the distribution of the sum of n mutually independent random vectors which have the
same bivariate Bernoulli distribution law: (X1,Y1), (X2,Y2), .., (X5, Yn). We can calculate the
probabilittes P(3_7"; X; = k, > ", Y; = I) for all k and / satisfying 0 < k < n,0 </ < n.
Let o, B, and ¢ are numbers of the events (0,0), (1,0), (0,1) and (1,1) occur respectively, where
a+ B +v+ 38 =n. Then the sum of pairs (3_7; X;, > 1Y) is equal to (B + 6,7+ 6). By the

notion of multinomial distribution, the probability of the event described above is then given by

nl

Pagys = Wpooaploﬁpofypné- (1)

Then the probability P(3_7_; X; = k, Y1, Yi = 1) is given by the sum of the probabilities Pypys,

where o, B,y and § take all over the values of non-negative integral values satisfying the conditions
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B+d=ky+d=/landa+B+v+0d=n, and it is given by

n n
n!
PO Xi=k) Yi=h= ) mpooapw%ﬁpné, (2)
i=1 i=1 5+%=//<
+0=
a+g+'y+6=n

where k and / are non-negative integers satisfying 0 < k,/ < n [8].

2.2. Bivariate Poisson distribution. The bivariate Poisson distribution expands the Poisson dis-
tribution to account for two correlated count variables. It predicts the likelihood of pairs of events
occurring simultaneously, with each event following a Poisson distribution and exhibiting a certain
level of correlation between them. This distribution is commonly used in fields such as insurance,
traffic flow analysis, and epidemiology, where events occur randomly over time or space, and the
number of occurrences is the primary focus of the study.

Consider the bivariate binomial distribution when the probabilities are expressed as pig =
A10/n, po1 = Ao1/n and pi11 = A11/n, we have the joint distribution of the sum vector of n inde-
pendent vectors of bivariate Bernoulli law is given by

min(k,l) |
n:

P(;X"_k';y’_')_ ) (n—(k+1)+08)(k—208)(I—0)d!

d=max(k+/—n,0)

n n
NV IERY:
) ) g

Consider the limiting distribution of the bivariate binomial distribution above as n — oo, the term

(1 ~ A0+ Ao Au ) n=(kt+1)+6 ( A10 ) k=0

of the right side converges to
TR TRRA
(k—0)!(1—9)lo!

[9], and the sum of the right side becomes to § varying 0, 1, 2, .., min(k, ) as n increases to

—(A10+Xo1+A11) (4)

infinity. Then the limiting distribution of the sum vector (X, Y’) of the n vectors is given by the form

min(k,l)

PX=kY=N)= )_ (

0=0

NN
>\10 >\Ol >\11

—(A10+Xo1+A11)
k—0)1(/ - 0)15] ©)

3. CoRRELATION COEFFICIENT

3.1. Pearson’s correlation coefficient. The Pearson correlation coefficient is a widely used sta-
tistical measure that evaluates the linear relationship between two quantitative variables. This
statistic assumes that the data is normally distributed and is measured on at least an interval

scale. The correlation coefficient can be calculated by dividing the sample covariance of the two


https://doi.org/10.28924/ada/stat.5.14

Eur. J. Stat.

variables by the product of their sample standard deviations or by using the specific formula for

this calculation [11]:

n n n
HZX/)// - ZX/Z)//
i=1

i=1 i=1

n n 2 n n 2
I’IZX,-2 — [ZX,‘] nZy,-2 — [Zy/]
i=1 i=1 i=1 i=1

where Y7, x; and )_]; x; are the sum of the data measured by the X variable and the Y variable,
respectively, Y /; x;y; is the sum of the products of the X and Y variables, and } [ ; x? and
Z?Zl y,.2 are the sum of the squares of the data measured by the variable X and the Y variable,

respectively.

3.2. Spearman’s rank correlation coefficient. Spearman’s rank correlation coefficient, also known
as Spearman’s rho, is a practical non-parametric statistic. It is used to measure the relationship
between ordered pairs of variables by using the rank values of the data. In simpler terms, it is a
straightforward tool for measuring the relationship between two sets of data that have been ranked
in order, such as when dealing with ordinal data [12] [13] [14]. However, its practicality extends to
both continuous and discrete variables, as claimed by Lehman (2005) [15].

When calculating Spearman’s rank correlation coefficient, it is essential to note that the under-
lying assumption differs from that of the Pearson correlation coefficient. The data is assumed to be
from a random sample and is at least on an ordinal scale. The coefficient can be calculated using

the following formula [16]:

n n n
n E Xiyi — E Xi E Yi
i=1 i=1 =1

n n 2 n n 2
i | ) (o[
i=1 i=1 i=1 i=1

The formula for calculating Spearman’s rank correlation coefficient is similar to the formula for
calculating Pearson’s correlation coefficient. However, it is calculated using the ranks of the values
of each of the two variables instead of their actual values. Additionally, there is an alternative

formula to obtain Spearman’s rank correlation coefficient as provided below [17][18]:

n
6) (ai— b))
i=1

re=1-—
° n3—n

: (8)

where Y7, (a; — b;)? is the sum of the squares of the difference in rank in each pair, and n is the

sample size.
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3.3. Kendall's correlation coefficient. Kendall's correlation coefficient or Kendall's tau [9] [19] is
similar to Spearman’s rank correlation coefficient. It is a non-parametric statistic used to measure
the relationship between two variables on an ordinal scale without assuming normality. Kendall's
correlation coefficient can be calculated using the following formula [20]:
Ne — N,
T= (9)
(n>—n)/2

where N. is the number of corresponding ranks, Ny is the number of inconsistent ranks, and n is

the sample size.

4. CRITERIA Usep To0 CoMPARE THE PERFORMANCE OF PROPOSED CORRELATION COEFFICIENTS

When evaluating the performance of proposed correlation coefficients, it is crucial to establish
clear and objective criteria that accurately measure their effectiveness. Two key criteria commonly
employed for this purpose are the empirical probability of Type | error and empirical power. These
criteria help evaluate the accuracy and reliability of correlation coefficients across different statis-

tical tests and practical applications.

4.1. Empirical probability of type | error. The empirical probability of a type | error, often referred
to as the false positive rate, indicates the likelihood that a statistical test incorrectly rejects a true
null hypothesis (Hp). When applied to correlation coefficients, this criterion evaluates how often
the proposed coefficient indicates a significant correlation when, in reality, no such correlation
exists.

In this study, the empirical probability of type | error (&) is calculated as the number of times
the null hypothesis is rejected when it is true, divided by the total number of iterations. If any test
statistic gives the empirical probability of a type | error corresponding to Bradley's criteria [22], that
is, the empirical probability of a type | error is in the range [0.025, 0.075] at the 0.05 significance

level, it will be concluded that the test statistic can control the probability of a type | error.

4.2. Empirical power of a test. Empirical power of a test is the probability that a statistical test
correctly rejects a false null hypothesis, thereby identifying a true effect [21]. For correlation coef-
ficients, empirical power assesses the ability of the proposed measure to detect actual correlations
between variables.

In this study, the empirical power (1—03) is calculated from the number of times the null hypothesis
is rejected when the null hypothesis is not true divided by the number of iterations. If any test
statistic can control the probability of type | error and gives the highest power, it will be concluded

that such test statistic is the best.
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5. SIMULATION STUDY

This research is a simulation study using RStudio software. It aims to compare the efficiency
of the three correlation coefficients, including Pearson’s correlation coefficient (P), Spearman’s
rank correlation coefficient (S), and Kendall's correlation coefficient (K), when data follow bivariate

binomial and Poisson distributions.

5.1. Research scopes. The scopes of this study were defined as follows:

1) This study covers a range of sample sizes, including small (10, 20), medium (30), and large
(50 and 100).

2) The distributions of data considered in this study were the bivariate binomial distribution
with different parameter combinations: (n1, p1) = (n2, p2) = (n, p) = (10, 0.3), (10, 0.5), (10, 0.7),
(20, 0.3), (20, 0.5), (20, 0.7), (30, 0.3), (30, 0.5), (30, 0.7), (50, 0.3), (50, 0.5), (50, 0.7), (100, 0.3),
(100, 0.5), (100, 0.7), and the bivariate Poisson distribution with parameters (A1, X\2) = (5, 5), (10,
10), (18, 18) and (30, 30).
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FIGURE 1. Bivariate binomial data with parameters (n;,p1) = (20,0.7) and

(n2, p2) = (20,0.7), and n =100
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FiGURE 2. Bivariate Poisson data with parameter (A1, A2) = (30, 30) and n = 100

3) The population correlation (o) were considered at 0.0, 0.2, 0.6, and 0.8 levels to encompass
all relationship strengths. As depicted in Figure 1-2, p values of 0.0, 0.2, 0.6, and 0.8 represent
no relationship, weak relationship, moderate relationship, and strong relationship between two
variables, respectively.

4) The significance level (@) for the test was set at 0.05.

5) The number of iterations was 10,000 times for each situation.
5.2. Research procedures. The research procedures are divided into two studies as follows:

5.2.1. The study of the probability of type | error. Processes to study the probability of type | error
are shown below.

Step 1: Simulate the data within the research scope and under the null hypothesis (Hp) that is
set to be true. The hypothesis of the test is stated as follows:

Ho :p =0 versus Hy : p # 0.

Step 2: Calculated the test statistics based on the Pearson’s correlation coefficient, Spearman’s
rank correlation coefficient, and Kendall's correlation coefficient.

Step 3: Consider a result of the hypothesis test whether to accept or reject the null hypothesis
(Ho).

Step 4: Repeat Step 1-3 for 10,000 times.

Step 5: Count the number of rejections of the null hypothesis.
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Step 6: Calculate the empirical probability of type | error.

Step 7: Compare the empirical probability of type | error with Bradley?s criterion [22]. If any
test statistic gives the empirical probability of type | error is in the range [0.025, 0.075] at the 0.05
significance level, it will be concluded that the test statistic can control the probability of type |

error.

5.2.2. The study of the power of a test. Processes to study the power of a test are presented below.

Step 1: Simulate the data within the research scope and under the alternative hypothesis (Hop)
that is set to be true. The hypothesis of the test is stated as follows:

Ho : p =0 versus H1 : p = po,

where pg = 0.2,0.6,0.8.

Step 2: Calculated the test statistics based on the Pearson’s correlation coefficient, Spearman’s
rank correlation coefficient, and Kendall's correlation coefficient.

Step 3: Consider a result of the hypothesis test whether to accept or reject the null hypothesis
(Ho)-

Step 4: Repeat Step 1-3 for 10,000 times.

Step 5: Count the number of rejections of the null hypothesis.

Step 6: Calculate the empirical power of the test.

Step 7: Compare the empirical power of the three test statistics. If any test statistic can control
the probability of type | error and gives the highest power, it will be concluded that such test

statistic is the best.

6. REsuLTS

The aim of this study was to compare the effectiveness of three different correlation coefficients,
Pearson’s, Spearman’s rank, and Kendall's, when dealing with data that follows bivariate binomial
and Poisson distributions. The criteria used for the comparison were the ability to control the
probability of type | error and the power. The detailed research results are presented in the

following subsections.

6.1. Results of the ability to control the probability of type | error. In Table 1-2 and Figure 3-4, it
is shown that when analyzing data that adhere to bivariate binomial and Poisson distributions, test
statistics derived from Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, and
Kendall's correlation coefficient can effectively control the probability of a type | error. According
to Bradley’s criterion [22], at a significance level of 0.05, the empirical probabilities of a type |
error typically range from 0.025 to 0.075. Furthermore, it has been observed that the test statistic
based on Kendall's correlation coefficient consistently produces the lowest probability of a type |

error compared to the other methods.
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TaBLE 1. Empirical probabilities of type | error (&) for testing Hp : p = O versus

H1 : p # 0 when data follows bivariate binomial distribution
Parameter  Correlation coefficient
p P S K
10 10 0.3 0.0480 0.0492 0.0447
0.5 0.0501 0.0522 0.0467
0.7 0.0541 0.0577 0.0512
20 03 0.0515 0.0569 0.0500
0.5 00514 0.0522 0.0479
0.7 0.0447 0.0506 0.0464
30 03 0.0532 0.0548 0.0492
0.5 0.0485 0.0511 0.0471
0.7 0.0507 0.0539 0.0465
20 10 03 0.0475 0.0512 0.0484
0.5 0.0487 0.0511 0.0492
0.7 0.0428 0.0458 0.0422
20 03 0.0469 0.0496 0.0471
05 0.0519 0.0538 0.0502
0.7 0.0503 0.0512 0.0490
30 03 0.0494 0.0534 0.0503
0.5 0.0518 0.0546 0.0528
0.7 0.0494 0.0509 0.0503
30 10 03 0.0512 0.0522 0.0504
0.5 0.0490 0.0492 0.0478
0.7 0.0521 0.0527 0.0509
20 03 0.0448 0.0458 0.0446
0.5 0.0486 0.0479 0.0478
0.7 0.0498 0.0474 0.0461
30 03 0.0494 0.0488 0.0472
0.5 0.0527 0.0511 0.0508
0.7 0.0503 0.0520 0.0494
50 10 0.3 0.0520 0.0484 0.0487
0.5 0.0483 0.0514 0.0516
0.7 0.0479 0.0479 0.0479
20 03 0.0507 0.0509 0.0509
0.5 0.0451 0.0480 0.0467
0.7 0.0497 0.0492 0.0472
30 03 0.0489 0.0493 0.0490
0.5 0.0505 0.0505 0.0507
0.7 0.0545 0.0517 0.0520
100 10 0.3 0.0469 0.0473 0.0487
0.5 0.0513 0.0506 0.0505
0.7 0.0524 0.0521 0.0518
20 03 00483 0.0493 0.0485
0.5 0.0474 0.0495 0.0494
0.7 0.0464 0.0501 0.0497
30 03 0.0509 0.0512 0.0507
0.5 0.0510 0.0498 0.0492
0.7 0.0509 0.0501 0.0501

Sample sizes
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TaBLE 2. Empirical probabilities of type | error (&) for testing Hp : p = O versus

H1 : p # 0 when data follows the bivariate Poisson distribution
Correlation coefficient
S K
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FIGURE 3. Scatterplot of sample size versus empirical probability of type | error for
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0.0557
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FIGURE 4. Scatterplot of sample size versus empirical probability of type | error for

bivariate Poisson distribution.

6.2. Empirical power. Regarding Table 3, the results show that for data following a bivariate
binomial distribution with a correlation of 0.2 (p = 0.2) and a sample size of 10, the empirical power
of the test statistics based on Spearman’s rank correlation coefficient and Kendall's correlation
coefficient did not differ from that of the test statistics based on Pearson’s correlation coefficient.
However, as the sample size increased to 20, 30, 50, and 100, the test statistic based on Kendall's
correlation coefficient proved to be the most effective, demonstrating the highest power (see Figure
5). Furthermore, it was observed that at correlation levels of 0.6 and 0.8 (0 = 0.6 and 0.8), the test
statistic based on Pearson’s correlation coefficient outperformed the others in all scenarios, even
with small sample sizes (see Figure 6 as an example).

For data that follows a Poisson distribution, Table 4 and Figure 7 illustrate that with a cor-
relation of 0.2 (0 = 0.2), the test statistics based on Spearman’s rank correlation and Kendall's
correlation coefficients showed similar performance, as indicated by their comparable empirical
power. However, when the correlation level increased to 0.6 and 0.8 (o = 0.6 and 0.8), the test
statistic based on Pearson’s correlation coefficient consistently demonstrated the highest power

across all scenarios, even with small sample sizes.
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TaBLE 3. Empirical power (1 — B) for hypothesis testing Ho : p = 0 versus H; : p =

po when data follows the bivariate binomial distribution
Sample Parameter 00 =0.2 00 =0.6 0o =0.8
size n p P S K P S K P S K
10 10 03 0.087 0.107 0113 0484 0.415 0371 0.870 0.818 0.821
05 0.081 0.095 0.100 0.482 0410 0369 0874 0.826 0.820
0.7 0.085 0.105 0110 0486 0.406 0362 0.871 0.819 0.821
20 03 0.081 0.093 0.093 048 0414 0383 0.869 0.805 0.796
05 0.085 0.093 0.089 0483 0415 0382 0871 0.799 0.790
0.7 0.083 0.095 0.093 0482 0420 0384 0870 0.797 0.79
30 03 0.086 0.096 0.092 0491 0423 0395 0872 0.801 0.791
05 0.087 0.094 0.088 0.481 0418 0.384 0.871 0.796 0.787
0.7 0.081 0.087 0.080 0.482 0417 0388 0.871 0.798 0.784
20 10 03 0133 0153 0189 0835 0.761 0.720 0.996 0.992 0.993
05 0139 0151 0176 0840 0.771 0736 0.997 0.993 0.993
0.7 0130 0452 0.184 0.831 0765 0.725 0996 0.991 0.993
20 03 0128 0135 0450 0.836 0.770 0.747 0995 0.990 0.991
05 0132 0140 0.151 0.837 0772 0.753 0996 0.993 0.993
0.7 0138 0.146 0.157 0.832 0.781 0.754 0995 0.991 0.991
30 03 0132 0137 0141 0.829 0765 0.749 0995 0.989 0.990
05 0132 0136 0.141 0838 0779 0.763 0.996 0.990 0.990
0.7 0134 0142 0148 0835 0.772 0.754 0.997 0.991 0.990
30 10 03 0187 0210 0.264 0959 0919 0.895 1.000 1.000 1.000
05 0181 0195 0.241 0960 0.921 0.900 1.000 1.000 1.000
0.7 0181 0.204 0259 0956 0918 0.896 1.000 1.000 1.000
20 03 0184 0194 0222 0952 0919 0.907 1.000 1.000 1.000
05 0191 0199 0.220 0.958 0926 0.914 1.000 1.000 1.000
0.7 0186 0.193 0.222 0957 0929 0916 1.000 1.000 1.000
30 03 0185 0187 0.204 0.955 0920 0.912 1.000 1.000 1.000
05 0188 0191 0201 0956 0925 0919 1.000 0.999 1.000
0.7 0187 0191 0.208 0.954 0923 0.915 1.000 1.000 1.000
50 10 03 0285 0321 0416 0998 0.993 0989 1.000 1.000 1.000
05 0288 0302 0384 0.998 0994 0.990 1.000 1.000 1.000
0.7 0288 0320 0.413 0997 0.993 0989 1.000 1.000 1.000
20 03 0279 0.292 0339 0998 0995 0.993 1.000 1.000 1.000
05 0290 0.296 0331 0.997 0993 0.991 1.000 1.000 1.000
0.7 0288 0299 0346 0997 0.994 0.991 1.000 1.000 1.000
30 03 0297 0304 0333 0998 0995 0.994 1.000 1.000 1.000
05 0288 0292 0318 0998 0.995 0.994 1.000 1.000 1.000
0.7 0284 0.294 0323 0998 0994 0.993 1.000 1.000 1.000
100 10 03 0516 0569 0.712 1.000 1.000 1.000 1.000 1.000 1.000
05 0514 0543 0.668 1.000 1.000 1.000 1.000 1.000 1.000
0.7 0522 0570 0.713 1.000 1.000 1.000 1.000 1.000 1.000
20 03 0521 0541 0621 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0523 0538 0.600 1.000 1.000 1.000 1.000 1.000 1.000
0.7 0508 0529 0605 1.000 1.000 1.000 1.000 1.000 1.000
30 03 0524 0536 0584 1.000 1.000 1.000 1.000 1.000 1.000
05 0514 0526 0572 1.000 1.000 1.000 1.000 1.000 1.000
0.7 0514 0531 0583 1.000 1.000 1.000 1.000 1.000 1.000
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TABLE 4. Empirical power (1 —[3) for hypothesis testing Ho : p = 0 versus Hy : p =

po when data follows the bivariate Poisson distribution

Sample

Po = 0.2

Po = 0.6

Po = 0.8

sizes

P S K

P S K

P S

K

10 5

0.090 0.092 0.090
0.088 0.090 0.086
0.093 0.094 0.091
0.087 0.088 0.085

0.485 0.407 0.376
0.477 0.409 0.384
0483 0.412 0.389
0.485 0.414 0.398

0.865 0.809
0.868 0.792
0.865 0.784
0.869 0.785

0.802
0.780
0.773
0.772

20 5

0138 0.142 0.154
0132 0132 0.134
0138 0.139 0137
0.140 0.129 0.129

0.836 0771 0.754
0.833 0.769 0.757
0.837 0777 0767
0.832 0.770 0.757

0.995 0.991
0.995 0.988
0.995 0.989
0.996 0.989

0.991
0.989
0.989
0.989

30 5

0186 0.193 0.216
0.191 0.191 0.200
0.180 0.174 0178
0.183 0.175 0.179

0958 0926 0.916
0956 0926 0.921
0955 0925 0922
0954 0927 0.923

1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

1.000
1.000
1.000
1.000

50 5

0.283 0.299 0.339
0.286 0.290 0.309
0.294 0.287 0.298
0.292 0.279 0.286

0.997 0995 0.993
0.996 0993 0.993
0.998 0.994 0.993
0998 0.994 0.993

1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

1.000
1.000
1.000
1.000

100 5

0517 0543 0.615
0514 0524 0.558
0.520 0516 0.539
0523 0505 0.522

1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000

1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

1.000
1.000
1.000
1.000
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Ficure 7. Empirical power from bivariate Poisson distribution.
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7. CoNcLUSION AND DiscussioN

Table 1-2 demonstrates that when dealing with bivariate binomial and Poisson distributions,
the test statistics derived from Pearson’s, Spearman’s rank, and Kendall's correlation coefficients
effectively control the probability of Type | error in all scenarios. The empirical probability of Type
| error falls within the range of [0.025, 0.075], as per Bradley?s criterion [22], at a significance
level of 0.05. Furthermore, it was observed that the test statistic based on Kendall's correlation
coefficient consistently yielded the lowest probability of Type | error compared to the other methods
across nearly all cases.

Regarding the power, The findings indicated that when the correlation levels were 0.6 and 0.8,
the test statistic based on Pearson’s correlation coefficient consistently yielded the highest power
across all scenarios, including cases with small sample sizes. These results align with the findings
of Kaewkun (1996), which suggested that the test statistic based on Spearman’s rank correlation
coefficient effectively controlled the probability of Type | error at both 0.05 and 0.01 significance
levels for all sample sizes.

Additionally, our results support those of Pruekpramool et al. (2020) [4], indicating that Pearson’s
correlation coefficient generally provides the highest test power. Furthermore, the test statistic
based on Pearson’s correlation coefficient was found to be suitable for data with moderate to
high correlation and large sample sizes. This conclusion is consistent with the results of Bonett
(2000) [23], Pimchan et al. (2007) [1], and Mukaka (2012) [24], all of which demonstrated that
Pearson’s correlation coefficient offers the highest power when sample sizes are large; this can
be attributed to the nature of larger datasets, which tend to converge to a normal distribution, a
requisite for using Pearson’s correlation coefficient. When the correlation between variables was
high, it was observed that the correlation coefficients from the three methods demonstrated no

significant difference in power.
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