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Abstract. The study aimed to investigate the impact of count data on bivariate correlation coefficients,including Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’scorrelation coefficient, particularly when the data follows bivariate binomial and Poisson distributions.The study considered sample sizes of 10, 20, 30, 50, and 100, with correlation levels of 0, 0.2, 0.6,and 0.8. The study compared the performance of the correlation coefficients based on their abilityto control the probability of type I error and power at a significance level of 0.05. The simulationresults indicated that when the data adhere to bivariate binomial and Poisson distributions, thePearson correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s tau correlationcoefficient effectively control the probability of a type I error. Furthermore, when assessing the powerof a test at correlation levels of 0.6 and 0.8, the Pearson’s correlation test statistics demonstrated thehighest power across all scenarios, even with small sample sizes.

1. Introduction
The correlation coefficient is a statistical measure used to assess the relationship betweentwo or more quantitative variables. It indicates the strength and direction of the relationshipbetween the variables. Represented by the symbol ρ, the correlation coefficient ranges from -1to +1. A value close to -1 or +1 signifies a strong linear relationship, while a value close to 0indicates a weak or nonexistent linear relationship. The sign of the correlation coefficient alsocarries important information. A positive correlation coefficient suggests that the variables move inthe same direction, whereas a negative correlation coefficient indicates that they move in oppositedirections. The most well-known correlation coefficients include the Pearson correlation coefficient,Spearman’s rank correlation coefficient, and Kendall’s rank correlation coefficient. Each of thesecoefficients has specific applications depending on the nature of the data and the assumptionsunderlying their use.
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Eur. J. Stat. 10.28924/ada/stat.5.14 2The Pearson correlation coefficient is widely used to measure the linear relationship betweentwo quantitative variables, assuming that the data follows a normal distribution and is at leaston an interval scale. In contrast, Spearman’s rank correlation coefficient and Kendall’s correlationcoefficient are non-parametric statistics suitable for ordinal data and do not require the assumptionof normality. Several studies have examined the effectiveness and robustness of these correlationcoefficients, particularly in the presence of outliers and non-normal data. For example, Pimchan etal. (2007) [1] studied the impact of outliers on the robustness of different correlation coefficients.Their findings indicated that with no outliers and a small sample size (n = 20), the robust correla-tion coefficient was the Spearman rank correlation coefficient. However, with a larger sample size,the Pearson product-moment correlation coefficient proved to be more robust. Furthermore, whenoutliers made up less than 10% of the sample size, the Biweight Midcorrelation and Spearmanrank correlation coefficient exhibited similar robustness properties. In instances where outliersconstituted more than 10% of the sample, the Spearman rank correlation coefficient was deemedthe most robust. Winter et al. (2016) [2] compared the efficiency of Pearson and Spearman cor-relation coefficients (denoted as rp and rs , respectively) across various distributions and samplesizes. Their research demonstrated that opting for rs over rp could lower variability in terms ofstandard deviations by approximately 20%. Additionally, rp was found to be suitable for light-taileddistributions, while rs was preferred for heavy-tailed distributions or when outliers were present.Schober et al. (2018) [3] asserted that the Pearson correlation should be employed to measurelinear relationships between two normally distributed random variables, while the Spearman rankcorrelation is more appropriate for non-normally distributed continuous data, ordinal data, andsituations involving outliers. Pruekpramool et al. (2020) [4] investigated the efficiency of Pearson,Spearman, and Kendall’s correlation coefficients in non-normally distributed data. Their resultsindicated that Pearson’s correlation coefficients typically provided the most accurate estimates withthe lowest relative bias, whereas Kendall’s correlation coefficients tended to have the highest rel-ative bias. Areechart et al. (2017) [5] explored the robustness of rank correlation coefficients in thepresence of outliers. The findings revealed that the Hoeffding correlation coefficient was the mostrobust across almost all sample sizes, particularly when the data contained outliers, and the twovariables were uncorrelated. Conversely, when two variables were highly correlated, the Kendalltau correlation coefficient and the absolute bias of the Spearman and Blest correlation coefficientsexhibited the smallest mean square error for all sample sizes. Moreover, the mean square error ofthe Spearman correlation coefficient was lowest when the correlation between the two variableswas between 0.6 and 0.8 across all sample sizes. Lastly, Raadt et al. (2021) [6] examined reliabilitycoefficients for ordinal rating scale data. Their results indicated that the differences between qua-dratic kappa and the Pearson and intraclass correlations increased as the level of agreement amongraters rose. Furthermore, the differences between the three coefficients (Cohen?s kappa, linearly
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Eur. J. Stat. 10.28924/ada/stat.5.14 3weighted kappa, and quadratically weighted kappa) were generally minimal when the differencesin means and variances among raters were small.This research examines and compares the performance of three correlation coefficients: the Pear-son correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s rank correlationcoefficient. It specifically focuses on their effectiveness when applied to bivariate binomial andPoisson data. The study evaluates the efficiency of these statistics based on two criteria: theirability to control the probability of type I error and their statistical power. The primary aim of thisresearch is to assist researchers in choosing the appropriate correlation coefficient for their data,as selecting the wrong one can lead to incorrect conclusions [7].
2. Bivariate Distribution

Bivariate distributions are statistical models that describe the probability behavior of two ran-dom variables simultaneously. These distributions are crucial for understanding the relationshipbetween these two variables, offering insights into their joint behavior, correlation, and depen-dence structure. This section presents two important types of bivariate distributions: the bivariatebinomial distribution and the bivariate Poisson distribution.
2.1. Bivariate Binomial distribution. The bivariate binomial distribution expands on the binomialdistribution by considering two related binary outcomes. It is used to analyze the combinedlikelihood of two events, both of which follow a binomial distribution and are somewhat correlated.This distribution is beneficial in fields such as genetics, epidemiology, and quality control, whereoutcomes are frequently binary and interdependent.Let (X, Y ) is a pair of random variables with a joint distribution as follow: P (X = 0, Y =
0) = p00, P (X = 1, Y = 0) = p10, P (X = 0, Y = 1) = p01, P (X = 1, Y = 1) = p11, where
p00 + p10 + p01 + p11 = 1. Therefore, this distribution has bivariate Bernoulli law.Consider the distribution of the sum of n mutually independent random vectors which have thesame bivariate Bernoulli distribution law: (X1, Y1), (X2, Y2), ..., (Xn, Yn). We can calculate theprobabilities P (∑n

i=1Xi = k,
∑n
i=1 Yi = l) for all k and l satisfying 0 ≤ k ≤ n, 0 ≤ l ≤ n.Let α, β, γ and δ are numbers of the events (0,0), (1,0), (0,1) and (1,1) occur respectively, where

α + β + γ + δ = n. Then the sum of pairs (∑n
i=1Xi ,

∑n
i=1 Yi) is equal to (β + δ, γ + δ). By thenotion of multinomial distribution, the probability of the event described above is then given by

Pαβγδ =
n!

α!β!γ!δ!
p00

αp10
βp01

γp11
δ. (1)

Then the probability P (∑n
i=1Xi = k,

∑n
i=1 Yi = l) is given by the sum of the probabilities Pαβγδ ,where α, β, γ and δ take all over the values of non-negative integral values satisfying the conditions
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β + δ = k , γ + δ = l and α+ β + γ + δ = n, and it is given by
P (

n∑
i=1

Xi = k,

n∑
i=1

Yi = l) =
∑
β+δ=k
γ+δ=l

α+β+γ+δ=n

n!

α!β!γ!δ!
p00

αp10
βp01

γp11
δ, (2)

where k and l are non-negative integers satisfying 0 ≤ k, l ≤ n [8].
2.2. Bivariate Poisson distribution. The bivariate Poisson distribution expands the Poisson dis-tribution to account for two correlated count variables. It predicts the likelihood of pairs of eventsoccurring simultaneously, with each event following a Poisson distribution and exhibiting a certainlevel of correlation between them. This distribution is commonly used in fields such as insurance,traffic flow analysis, and epidemiology, where events occur randomly over time or space, and thenumber of occurrences is the primary focus of the study.Consider the bivariate binomial distribution when the probabilities are expressed as p10 =
λ10/n, p01 = λ01/n and p11 = λ11/n, we have the joint distribution of the sum vector of n inde-pendent vectors of bivariate Bernoulli law is given by

P (

n∑
i=1

Xi = k,

n∑
i=1

Yi = l) =

min(k,l)∑
δ=max(k+l−n,0)

n!

(n − (k + l) + δ)!(k − δ)!(l − δ)!δ!(
1−

λ10 + λ01 + λ11
n

)n−(k+l)+δ (λ10
n

)k−δ
(
λ01
n

)l−δ (λ11
n

)δ
. (3)

Consider the limiting distribution of the bivariate binomial distribution above as n →∞, the termof the right side converges to
λk−δ10 λl−δ01 λ

δ
11

(k − δ)!(l − δ)!δ!e
−(λ10+λ01+λ11) (4)

[9], and the sum of the right side becomes to δ varying 0, 1, 2, ..., min(k, l) as n increases toinfinity. Then the limiting distribution of the sum vector (X, Y ) of the n vectors is given by the form
P (X = k, Y = l) =

min(k,l)∑
δ=0

λk−δ10 λl−δ01 λ
δ
11

(k − δ)!(l − δ)!δ!e
−(λ10+λ01+λ11) (5)

[8].
3. Correlation Coefficient

3.1. Pearson’s correlation coefficient. The Pearson correlation coefficient is a widely used sta-tistical measure that evaluates the linear relationship between two quantitative variables. Thisstatistic assumes that the data is normally distributed and is measured on at least an intervalscale. The correlation coefficient can be calculated by dividing the sample covariance of the two
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Eur. J. Stat. 10.28924/ada/stat.5.14 5variables by the product of their sample standard deviations or by using the specific formula forthis calculation [11]:
rp =

n

n∑
i=1

xiyi −
n∑
i=1

xi

n∑
i=1

yi√√√√√n n∑
i=1

x2i −

[
n∑
i=1

xi

]2n n∑
i=1

y2i −

[
n∑
i=1

yi

]2
, (6)

where ∑n
i=1 xi and ∑n

i=1 xi are the sum of the data measured by the X variable and the Y variable,respectively, ∑n
i=1 xiyi is the sum of the products of the X and Y variables, and ∑n

i=1 x
2
i and∑n

i=1 y
2
i are the sum of the squares of the data measured by the variable X and the Y variable,respectively.

3.2. Spearman’s rank correlation coefficient. Spearman’s rank correlation coefficient, also knownas Spearman’s rho, is a practical non-parametric statistic. It is used to measure the relationshipbetween ordered pairs of variables by using the rank values of the data. In simpler terms, it is astraightforward tool for measuring the relationship between two sets of data that have been rankedin order, such as when dealing with ordinal data [12] [13] [14]. However, its practicality extends toboth continuous and discrete variables, as claimed by Lehman (2005) [15].When calculating Spearman’s rank correlation coefficient, it is essential to note that the under-lying assumption differs from that of the Pearson correlation coefficient. The data is assumed to befrom a random sample and is at least on an ordinal scale. The coefficient can be calculated usingthe following formula [16]:
rs =

n

n∑
i=1

xiyi −
n∑
i=1

xi

n∑
i=1

yi√√√√√n n∑
i=1

x2i −

[
n∑
i=1

xi

]2n n∑
i=1

y2i −

[
n∑
i=1

yi

]2
. (7)

The formula for calculating Spearman’s rank correlation coefficient is similar to the formula forcalculating Pearson’s correlation coefficient. However, it is calculated using the ranks of the valuesof each of the two variables instead of their actual values. Additionally, there is an alternativeformula to obtain Spearman’s rank correlation coefficient as provided below [17] [18]:
rs = 1−

6

n∑
i=1

(ai − bi)2

n3 − n , (8)
where ∑n

i=1(ai − bi)2 is the sum of the squares of the difference in rank in each pair, and n is thesample size.
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Eur. J. Stat. 10.28924/ada/stat.5.14 63.3. Kendall’s correlation coefficient. Kendall’s correlation coefficient or Kendall’s tau [9] [19] issimilar to Spearman’s rank correlation coefficient. It is a non-parametric statistic used to measurethe relationship between two variables on an ordinal scale without assuming normality. Kendall’scorrelation coefficient can be calculated using the following formula [20]:
τ =

Nc − Nd
(n2 − n)/2 , (9)

where Nc is the number of corresponding ranks, Nd is the number of inconsistent ranks, and n isthe sample size.
4. Criteria Used to Compare the Performance of Proposed Correlation Coefficients

When evaluating the performance of proposed correlation coefficients, it is crucial to establishclear and objective criteria that accurately measure their effectiveness. Two key criteria commonlyemployed for this purpose are the empirical probability of Type I error and empirical power. Thesecriteria help evaluate the accuracy and reliability of correlation coefficients across different statis-tical tests and practical applications.
4.1. Empirical probability of type I error. The empirical probability of a type I error, often referredto as the false positive rate, indicates the likelihood that a statistical test incorrectly rejects a truenull hypothesis (H0). When applied to correlation coefficients, this criterion evaluates how oftenthe proposed coefficient indicates a significant correlation when, in reality, no such correlationexists.In this study, the empirical probability of type I error (α̂) is calculated as the number of timesthe null hypothesis is rejected when it is true, divided by the total number of iterations. If any teststatistic gives the empirical probability of a type I error corresponding to Bradley’s criteria [22], thatis, the empirical probability of a type I error is in the range [0.025, 0.075] at the 0.05 significancelevel, it will be concluded that the test statistic can control the probability of a type I error.
4.2. Empirical power of a test. Empirical power of a test is the probability that a statistical testcorrectly rejects a false null hypothesis, thereby identifying a true effect [21]. For correlation coef-ficients, empirical power assesses the ability of the proposed measure to detect actual correlationsbetween variables.In this study, the empirical power (1−β̂) is calculated from the number of times the null hypothesisis rejected when the null hypothesis is not true divided by the number of iterations. If any teststatistic can control the probability of type I error and gives the highest power, it will be concludedthat such test statistic is the best.
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This research is a simulation study using RStudio software. It aims to compare the efficiencyof the three correlation coefficients, including Pearson’s correlation coefficient (P), Spearman’srank correlation coefficient (S), and Kendall’s correlation coefficient (K), when data follow bivariatebinomial and Poisson distributions.

5.1. Research scopes. The scopes of this study were defined as follows:1) This study covers a range of sample sizes, including small (10, 20), medium (30), and large(50 and 100).2) The distributions of data considered in this study were the bivariate binomial distributionwith different parameter combinations: (n1, p1) = (n2, p2) = (n, p) = (10, 0.3), (10, 0.5), (10, 0.7),(20, 0.3), (20, 0.5), (20, 0.7), (30, 0.3), (30, 0.5), (30, 0.7), (50, 0.3), (50, 0.5), (50, 0.7), (100, 0.3),(100, 0.5), (100, 0.7), and the bivariate Poisson distribution with parameters (λ1, λ2) = (5, 5), (10,10), (18, 18) and (30, 30).

Figure 1. Bivariate binomial data with parameters (n1, p1) = (20, 0.7) and
(n2, p2) = (20, 0.7), and n = 100
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Figure 2. Bivariate Poisson data with parameter (λ1, λ2) = (30, 30) and n = 100
3) The population correlation (ρ) were considered at 0.0, 0.2, 0.6, and 0.8 levels to encompassall relationship strengths. As depicted in Figure 1-2, ρ values of 0.0, 0.2, 0.6, and 0.8 representno relationship, weak relationship, moderate relationship, and strong relationship between twovariables, respectively.4) The significance level (α) for the test was set at 0.05.5) The number of iterations was 10,000 times for each situation.

5.2. Research procedures. The research procedures are divided into two studies as follows:
5.2.1. The study of the probability of type I error. Processes to study the probability of type I errorare shown below.

Step 1: Simulate the data within the research scope and under the null hypothesis (H0) that isset to be true. The hypothesis of the test is stated as follows:
H0 : ρ = 0 versus H1 : ρ 6= 0.

Step 2: Calculated the test statistics based on the Pearson’s correlation coefficient, Spearman’srank correlation coefficient, and Kendall’s correlation coefficient.
Step 3: Consider a result of the hypothesis test whether to accept or reject the null hypothesis(H0).
Step 4: Repeat Step 1-3 for 10,000 times.
Step 5: Count the number of rejections of the null hypothesis.
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Step 6: Calculate the empirical probability of type I error.
Step 7: Compare the empirical probability of type I error with Bradley?s criterion [22]. If anytest statistic gives the empirical probability of type I error is in the range [0.025, 0.075] at the 0.05significance level, it will be concluded that the test statistic can control the probability of type Ierror.

5.2.2. The study of the power of a test. Processes to study the power of a test are presented below.
Step 1: Simulate the data within the research scope and under the alternative hypothesis (H0)that is set to be true. The hypothesis of the test is stated as follows:

H0 : ρ = 0 versus H1 : ρ = ρ0,where ρ0 = 0.2, 0.6, 0.8.
Step 2: Calculated the test statistics based on the Pearson’s correlation coefficient, Spearman’srank correlation coefficient, and Kendall’s correlation coefficient.
Step 3: Consider a result of the hypothesis test whether to accept or reject the null hypothesis(H0).
Step 4: Repeat Step 1-3 for 10,000 times.
Step 5: Count the number of rejections of the null hypothesis.
Step 6: Calculate the empirical power of the test.
Step 7: Compare the empirical power of the three test statistics. If any test statistic can controlthe probability of type I error and gives the highest power, it will be concluded that such teststatistic is the best.

6. Results
The aim of this study was to compare the effectiveness of three different correlation coefficients,Pearson’s, Spearman’s rank, and Kendall’s, when dealing with data that follows bivariate binomialand Poisson distributions. The criteria used for the comparison were the ability to control theprobability of type I error and the power. The detailed research results are presented in thefollowing subsections.

6.1. Results of the ability to control the probability of type I error. In Table 1-2 and Figure 3-4, itis shown that when analyzing data that adhere to bivariate binomial and Poisson distributions, teststatistics derived from Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, andKendall’s correlation coefficient can effectively control the probability of a type I error. Accordingto Bradley’s criterion [22], at a significance level of 0.05, the empirical probabilities of a type Ierror typically range from 0.025 to 0.075. Furthermore, it has been observed that the test statisticbased on Kendall’s correlation coefficient consistently produces the lowest probability of a type Ierror compared to the other methods.
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Table 1. Empirical probabilities of type I error (α̂) for testing H0 : ρ = 0 versus
H1 : ρ 6= 0 when data follows bivariate binomial distributionSample sizes Parameter Correlation coefficientn p P S K10 10 0.3 0.0480 0.0492 0.04470.5 0.0501 0.0522 0.04670.7 0.0541 0.0577 0.051220 0.3 0.0515 0.0569 0.05000.5 0.0514 0.0522 0.04790.7 0.0447 0.0506 0.046430 0.3 0.0532 0.0548 0.04920.5 0.0485 0.0511 0.04710.7 0.0507 0.0539 0.046520 10 0.3 0.0475 0.0512 0.04840.5 0.0487 0.0511 0.04920.7 0.0428 0.0458 0.042220 0.3 0.0469 0.0496 0.04710.5 0.0519 0.0538 0.05020.7 0.0503 0.0512 0.049030 0.3 0.0494 0.0534 0.05030.5 0.0518 0.0546 0.05280.7 0.0494 0.0509 0.050330 10 0.3 0.0512 0.0522 0.05040.5 0.0490 0.0492 0.04780.7 0.0521 0.0527 0.050920 0.3 0.0448 0.0458 0.04460.5 0.0486 0.0479 0.04780.7 0.0498 0.0474 0.046130 0.3 0.0494 0.0488 0.04720.5 0.0527 0.0511 0.05080.7 0.0503 0.0520 0.049450 10 0.3 0.0520 0.0484 0.04870.5 0.0483 0.0514 0.05160.7 0.0479 0.0479 0.047920 0.3 0.0507 0.0509 0.05090.5 0.0451 0.0480 0.04670.7 0.0497 0.0492 0.047230 0.3 0.0489 0.0493 0.04900.5 0.0505 0.0505 0.05070.7 0.0545 0.0517 0.0520100 10 0.3 0.0469 0.0473 0.04870.5 0.0513 0.0506 0.05050.7 0.0524 0.0521 0.051820 0.3 0.0483 0.0493 0.04850.5 0.0474 0.0495 0.04940.7 0.0464 0.0501 0.049730 0.3 0.0509 0.0512 0.05070.5 0.0510 0.0498 0.04920.7 0.0509 0.0501 0.0501
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Table 2. Empirical probabilities of type I error (α̂) for testing H0 : ρ = 0 versus
H1 : ρ 6= 0 when data follows the bivariate Poisson distributionSample

λ
Correlation coefficientsize P S K10 5 0.0502 0.0532 0.047910 0.0464 0.0499 0.043518 0.0476 0.0486 0.042330 0.0511 0.0543 0.048220 5 0.0494 0.0504 0.047210 0.0510 0.0506 0.048218 0.0492 0.0492 0.045530 0.0497 0.0502 0.049930 5 0.0458 0.0480 0.045410 0.0463 0.0463 0.045118 0.0537 0.0535 0.053230 0.0504 0.0513 0.051650 5 0.0518 0.0557 0.054710 0.0466 0.0492 0.048518 0.0488 0.0488 0.049730 0.0503 0.0513 0.0496100 5 0.0552 0.0516 0.052010 0.0473 0.0490 0.048218 0.0525 0.0513 0.051230 0.0506 0.0525 0.0513

Figure 3. Scatterplot of sample size versus empirical probability of type I error forbivariate binomial distribution.
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Figure 4. Scatterplot of sample size versus empirical probability of type I error forbivariate Poisson distribution.
6.2. Empirical power. Regarding Table 3, the results show that for data following a bivariatebinomial distribution with a correlation of 0.2 (ρ = 0.2) and a sample size of 10, the empirical powerof the test statistics based on Spearman’s rank correlation coefficient and Kendall’s correlationcoefficient did not differ from that of the test statistics based on Pearson’s correlation coefficient.However, as the sample size increased to 20, 30, 50, and 100, the test statistic based on Kendall’scorrelation coefficient proved to be the most effective, demonstrating the highest power (see Figure5). Furthermore, it was observed that at correlation levels of 0.6 and 0.8 (ρ = 0.6 and 0.8), the teststatistic based on Pearson’s correlation coefficient outperformed the others in all scenarios, evenwith small sample sizes (see Figure 6 as an example).For data that follows a Poisson distribution, Table 4 and Figure 7 illustrate that with a cor-relation of 0.2 (ρ = 0.2), the test statistics based on Spearman’s rank correlation and Kendall’scorrelation coefficients showed similar performance, as indicated by their comparable empiricalpower. However, when the correlation level increased to 0.6 and 0.8 (ρ = 0.6 and 0.8), the teststatistic based on Pearson’s correlation coefficient consistently demonstrated the highest poweracross all scenarios, even with small sample sizes.
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Table 3. Empirical power (1− β̂) for hypothesis testing H0 : ρ = 0 versus H1 : ρ =
ρ0 when data follows the bivariate binomial distributionSample Parameter ρ0 = 0.2 ρ0 = 0.6 ρ0 = 0.8size n p P S K P S K P S K10 10 0.3 0.087 0.107 0.113 0.484 0.415 0.371 0.870 0.818 0.8210.5 0.081 0.095 0.100 0.482 0.410 0.369 0.874 0.826 0.8200.7 0.085 0.105 0.110 0.486 0.406 0.362 0.871 0.819 0.82120 0.3 0.081 0.093 0.093 0.485 0.414 0.383 0.869 0.805 0.7960.5 0.085 0.093 0.089 0.483 0.415 0.382 0.871 0.799 0.7900.7 0.083 0.095 0.093 0.482 0.420 0.384 0.870 0.797 0.79130 0.3 0.086 0.096 0.092 0.491 0.423 0.395 0.872 0.801 0.7910.5 0.087 0.094 0.088 0.481 0.418 0.384 0.871 0.796 0.7870.7 0.081 0.087 0.080 0.482 0.417 0.388 0.871 0.798 0.78420 10 0.3 0.133 0.153 0.189 0.835 0.761 0.720 0.996 0.992 0.9930.5 0.139 0.151 0.176 0.840 0.771 0.736 0.997 0.993 0.9930.7 0.130 0.152 0.184 0.831 0.765 0.725 0.996 0.991 0.99320 0.3 0.128 0.135 0.150 0.836 0.770 0.747 0.995 0.990 0.9910.5 0.132 0.140 0.151 0.837 0.772 0.753 0.996 0.993 0.9930.7 0.138 0.146 0.157 0.832 0.781 0.754 0.995 0.991 0.99130 0.3 0.132 0.137 0.141 0.829 0.765 0.749 0.995 0.989 0.9900.5 0.132 0.136 0.141 0.838 0.779 0.763 0.996 0.990 0.9900.7 0.134 0.142 0.148 0.835 0.772 0.754 0.997 0.991 0.99030 10 0.3 0.187 0.210 0.264 0.959 0.919 0.895 1.000 1.000 1.0000.5 0.181 0.195 0.241 0.960 0.921 0.900 1.000 1.000 1.0000.7 0.181 0.204 0.259 0.956 0.918 0.896 1.000 1.000 1.00020 0.3 0.184 0.194 0.222 0.952 0.919 0.907 1.000 1.000 1.0000.5 0.191 0.199 0.220 0.958 0.926 0.914 1.000 1.000 1.0000.7 0.186 0.193 0.222 0.957 0.929 0.916 1.000 1.000 1.00030 0.3 0.185 0.187 0.204 0.955 0.920 0.912 1.000 1.000 1.0000.5 0.188 0.191 0.201 0.956 0.925 0.919 1.000 0.999 1.0000.7 0.187 0.191 0.208 0.954 0.923 0.915 1.000 1.000 1.00050 10 0.3 0.285 0.321 0.416 0.998 0.993 0.989 1.000 1.000 1.0000.5 0.288 0.302 0.384 0.998 0.994 0.990 1.000 1.000 1.0000.7 0.288 0.320 0.413 0.997 0.993 0.989 1.000 1.000 1.00020 0.3 0.279 0.292 0.339 0.998 0.995 0.993 1.000 1.000 1.0000.5 0.290 0.296 0.331 0.997 0.993 0.991 1.000 1.000 1.0000.7 0.288 0.299 0.346 0.997 0.994 0.991 1.000 1.000 1.00030 0.3 0.297 0.304 0.333 0.998 0.995 0.994 1.000 1.000 1.0000.5 0.288 0.292 0.318 0.998 0.995 0.994 1.000 1.000 1.0000.7 0.284 0.294 0.323 0.998 0.994 0.993 1.000 1.000 1.000100 10 0.3 0.516 0.569 0.712 1.000 1.000 1.000 1.000 1.000 1.0000.5 0.514 0.543 0.668 1.000 1.000 1.000 1.000 1.000 1.0000.7 0.522 0.570 0.713 1.000 1.000 1.000 1.000 1.000 1.00020 0.3 0.521 0.541 0.621 1.000 1.000 1.000 1.000 1.000 1.0000.5 0.523 0.538 0.600 1.000 1.000 1.000 1.000 1.000 1.0000.7 0.508 0.529 0.605 1.000 1.000 1.000 1.000 1.000 1.00030 0.3 0.524 0.536 0.584 1.000 1.000 1.000 1.000 1.000 1.0000.5 0.514 0.526 0.572 1.000 1.000 1.000 1.000 1.000 1.0000.7 0.514 0.531 0.583 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.28924/ada/stat.5.14


Eur. J. Stat. 10.28924/ada/stat.5.14 14

Figure 5. Empirical power from bivariate binomial distribution for testing H0 : ρ =
0 versus H1 : ρ = 0.2.

Figure 6. Empirical power from bivariate binomial distribution for testing H0 : ρ =
0 versus H1 : ρ = 0.6.
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Table 4. Empirical power (1− β̂) for hypothesis testing H0 : ρ = 0 versus H1 : ρ =
ρ0 when data follows the bivariate Poisson distributionSample

λ
ρ0 = 0.2 ρ0 = 0.6 ρ0 = 0.8sizes P S K P S K P S K10 5 0.090 0.092 0.090 0.485 0.407 0.376 0.865 0.809 0.80210 0.088 0.090 0.086 0.477 0.409 0.384 0.868 0.792 0.78018 0.093 0.094 0.091 0.483 0.412 0.389 0.865 0.784 0.77330 0.087 0.088 0.085 0.485 0.414 0.398 0.869 0.785 0.77220 5 0.138 0.142 0.154 0.836 0.771 0.754 0.995 0.991 0.99110 0.132 0.132 0.134 0.833 0.769 0.757 0.995 0.988 0.98918 0.138 0.139 0.137 0.837 0.777 0.767 0.995 0.989 0.98930 0.140 0.129 0.129 0.832 0.770 0.757 0.996 0.989 0.98930 5 0.186 0.193 0.216 0.958 0.926 0.916 1.000 1.000 1.00010 0.191 0.191 0.200 0.956 0.926 0.921 1.000 1.000 1.00018 0.180 0.174 0.178 0.955 0.925 0.922 1.000 1.000 1.00030 0.183 0.175 0.179 0.954 0.927 0.923 1.000 1.000 1.00050 5 0.283 0.299 0.339 0.997 0.995 0.993 1.000 1.000 1.00010 0.286 0.290 0.309 0.996 0.993 0.993 1.000 1.000 1.00018 0.294 0.287 0.298 0.998 0.994 0.993 1.000 1.000 1.00030 0.292 0.279 0.286 0.998 0.994 0.993 1.000 1.000 1.000100 5 0.517 0.543 0.615 1.000 1.000 1.000 1.000 1.000 1.00010 0.514 0.524 0.558 1.000 1.000 1.000 1.000 1.000 1.00018 0.520 0.516 0.539 1.000 1.000 1.000 1.000 1.000 1.00030 0.523 0.505 0.522 1.000 1.000 1.000 1.000 1.000 1.000

Figure 7. Empirical power from bivariate Poisson distribution.
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Table 1-2 demonstrates that when dealing with bivariate binomial and Poisson distributions,the test statistics derived from Pearson’s, Spearman’s rank, and Kendall’s correlation coefficientseffectively control the probability of Type I error in all scenarios. The empirical probability of TypeI error falls within the range of [0.025, 0.075], as per Bradley?s criterion [22], at a significancelevel of 0.05. Furthermore, it was observed that the test statistic based on Kendall’s correlationcoefficient consistently yielded the lowest probability of Type I error compared to the other methodsacross nearly all cases.Regarding the power, The findings indicated that when the correlation levels were 0.6 and 0.8,the test statistic based on Pearson’s correlation coefficient consistently yielded the highest poweracross all scenarios, including cases with small sample sizes. These results align with the findingsof Kaewkun (1996), which suggested that the test statistic based on Spearman’s rank correlationcoefficient effectively controlled the probability of Type I error at both 0.05 and 0.01 significancelevels for all sample sizes.Additionally, our results support those of Pruekpramool et al. (2020) [4], indicating that Pearson’scorrelation coefficient generally provides the highest test power. Furthermore, the test statisticbased on Pearson’s correlation coefficient was found to be suitable for data with moderate tohigh correlation and large sample sizes. This conclusion is consistent with the results of Bonett(2000) [23], Pimchan et al. (2007) [1], and Mukaka (2012) [24], all of which demonstrated thatPearson’s correlation coefficient offers the highest power when sample sizes are large; this canbe attributed to the nature of larger datasets, which tend to converge to a normal distribution, arequisite for using Pearson’s correlation coefficient. When the correlation between variables washigh, it was observed that the correlation coefficients from the three methods demonstrated nosignificant difference in power.
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