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Mixingale Estimation Function for SPDEs with Random Sampling
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Abstract. We study the mixingale estimation function estimator of the drift parameter in the stochasticpartial differential equation when the process is observed at the arrival times of a Poisson process.We use a two stage estimation procedure. We first estimate the intensity of the Poisson process.Then we substitute this estimate in the estimation function to estimate the drift parameter. We obtainthe strong consistency and the asymptotic normality of the mixingale estimation function estimator.
1. Introduction

Parameter estimation in stochastic partial differential equations (SPDEs) is a very young area ofresearch in view of its applications in finance, physics, biology and oceanography. Loges (1984)initiated the study of parameter estimation in infinite dimensional stochastic differential equations.When the length of the observation time becomes large, he obtained consistency and asymptoticnormality of the maximum likelihood estimator (MLE) of a real valued drift parameter in a Hilbertspace valued SDE. Koski and Loges (1986) extended the work of Loges (1984) to minimum contrastestimators. Koski and Loges (1985) applied the work to a stochastic heat flow problem. Mo-hapl (1997) studied maximum likelihood and least squares estimators for discrete observations ofan elliptic SPDE where the dependent structure of the observations is completely different andsimple from the parabolic case. Martingale estimation function for discretely observed diffusionswas studied in Bibby and Srensen (1995). Bishwal (2007) studied a new estimating function fordiscretely sampled diffusions by removing the stochastic integral in Girsanov likelihood. Bishwal(2008) studied likelihood asymptotics and Bayesian asymptotics for drift estimation of finite andinfinite dimensional stochastic differential equations. Benstein-von Mises theorem and small noise
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Eur. J. Stat. 10.28924/ada/stat.2.3 2Bayesian asymptotics for parabolic stochastic partial differential equations was studied in Bishwal(2018). HJM type forward interest rate models viewed as an SPDE along corresponding estimationand testing problem is studied in Bishwal (2017), see also Bishwal (2021). Chong (2020) estab-lished a limit theorem for integrated volatility estimation in SPDE by conducting a martingaleapproximation by truncation and blocking techniques to apply results by Jacod (1997).Based on continuous observations, usually there can be two asymptotic settings in SPDE: 1)
T → ∞ 2) N → ∞ where T is the length of the observations and N is the number of Fouriercoefficients in the expansion of the solution to the SPDE.In a Bayesian approach, using the first setting, Bishwal (1999) proved the Bernstein-von Misestheorem and asymptotic properties of regular Bayes estimator of the drift parameter in a Hilbertspace valued SDE when the corresponding ergodic diffusion process is observed continuously overa time interval [0, T ]. The asymptotics are studied as T → ∞ under the condition of absolutecontinuity of measures generated by the process. Results are illustrated for the example of anSPDE.Bishwal (2002) proved the Bernstein-von Mises theorem and spectral asymptotics of Bayesestimators for parabolic SPDEs when the number of Fourier coefficients becomes large. In thiscase, the measures generated by the process for different parameters are singular.In this paper we study the asymptotic properties of the quasi maximum likelihood estimatorwhen we have observations of finite-dimensional projections at Poisson arrival time points. Theasymptotic setting is the large number of observations at random time points which are the arrivalsof a Poisson process and large number of Fourier coefficients.The rest of the paper is organized as follows : Section 2 contains model, assumptions andpreliminaries which include a review of the limit theorems for triangular array of dependent randomvariables. In Section 3 we prove the main results of the paper. Section 4 demonstrates the resultsthrough heat equation as an example of SPDE. Section 5 provides concluding remarks.
2. Model and Preliminaries

Let us fix θ0, the unknown true value of the parameter θ. Let (Ω,F , P ) be a complete probabilityspace and W (t, x) be a process on this space with values in the Schwarz space of distributions
D′(G) where x ∈ G ⊂ Rd such that for φ,ψ ∈ C∞0 (G), ‖φ‖−1

L2(G)
〈W (t, ·), φ(·)〉 is a one dimensionalWiener process and

E(〈W (s, ·), φ(·)〉〈W (t, ·), ψ(·)〉) = (s ∧ t)(φ,ψ)L2(G). (2.1)

This process is usually referred to as the cylindrical Brownian motion (CBM).
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Eur. J. Stat. 10.28924/ada/stat.2.3 3Consider the stochastic evolution equation
du(t, x) + (A0 + θA1)u(t, x)dt = dW (t, x), t ∈ [0, T ], x ∈ G, u(0, x) = 0 (2.2)

where G is a smooth bounded domain in Rd , A0 and A1 are linear operators on a smooth boundeddomain G in Rd with orders m0 and m1 respectively with m1 ≥ m−d/2 where 2m = max(m0, m1),
{Wt(x)} is a cylindrical Brownian motion based on the observations of the solution u(t, x), t ∈
[0, T ], x ∈ G. Let Aθ = A0 + θA1.We assume that there exists a complete orthonormal system {hj}∞j=1 in L2(G)) such that forevery j = 1, 2, . . . , the system hj ∈ Wm,2

0 (G) ∩ C∞(G) and
Λθhj = βj(θ)hj , and Lθhj = µj(θ)hj for all θ ∈ Θ (2.3)

where Lθ is a closed self adjoint extension of Aθ, Λθ := (k(θ)I − Lθ)1/2m, k(θ) is a constantand the spectrum of the operator Λθ consists of eigenvalues {βj(θ)}∞j=1 of finite multiplicities and
µj(θ) = −β2mj + k(θ).The cylindrical Brownian motion W (t, x) can be expanded in the series

W (t, x) =

∞∑
j=1

Wj(t)hj (2.4)

where {Wj(t), t ≥ 0}∞j=1 are independent one dimensional Brownian motions. The latter seriesconverges P -a.s. in H−α for α > d/2. Indeed
‖W (t, x)‖2−α =

∞∑
j=1

W 2j (t)‖hj‖2−α =

∞∑
j=1

W 2j (t)β−2αj (2.5)

and the later series converges P -a.s.Let
ψN :=

N∑
j=1

β2j
µj

(2.6)

Here θ ∈ Θ ⊆ R is the unknown parameter to be estimated on the basis of the observations ofthe random field uθ(t, x), t ≥ 0, x ∈ [0, 1].Consider the Fourier expansion of the process
u(t, x) =

∞∑
j=1

uj(t)φj(x) (2.7)

corresponding to some orthogonal basis {φj(x)}∞j=1. Bagchi and Kumar (2001) used this rep-resentation for infinite factor model. Note that uθj (t), j ≥ 1 are independent one dimensionalOrnstein-Uhlenbeck processes
duθj (t) = µj(θ)uθj (t)dt + β−αj dWj(t) (2.8)

uθj (0) = uθ0j ,
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Eur. J. Stat. 10.28924/ada/stat.2.3 4Recall that µj(θ) = k(θ) − β2mj . Thus the j th Fourier coefficient satisfies the linear SDE of theOrnstein-Uhlenbeck type
duθj (t) = (k(θ)− β2mj )uθj (t)dt + β−αj dWj(t) (2.9)

Note that for a fixed t , the processes are {u1(t), u2(t), u3(t), . . .} independent. This is like acontinuous version of cross section time series, i.e, a joint regression auto-regression model of order1. The random field u(t, x) is observed at discrete times t and discrete positions x . Equivalently,the Fourier coefficients uθj (t) are observed at discrete time points.The discrete time points could be deterministic (equally spaced/homoscedastic or unequallyspaced/heteroscadastic) or random. We consider random time points. For x ∈ [0, 1], for fixed j , we observethe process {uj(t), t ≥ 0} at times {t0, t1, t2, ....}. We assume that the sampling instants {ti , i =

0, 1, 2...} are generated by a Poisson process on [0,∞), i.e., t0 = 0, ti = ti−1+αi , i = 1, 2, ... where
αi are i.i.d. positive random variables with a common exponential distribution F (x) = 1−exp(−λx).Note that intensity parameter λ > 0 is the average sampling rate which is needs to be estimated. Itis also assumed that the sampling process ti , i = 0, 1, 2, ... is independent of the observation process
{uj(t), t ≥ 0, j ≥ 1}. We note that the probability density function of tk+i − tk is independent of
k and is given by the gamma density

fi(t) = λ(λt)i−1 exp(−λt)It/(i − 1)!, i = 0, 1, 2, .... (2.10)

where It = 1 if t ≥ 0 and It = 0 if t < 0.For a fixed 1 ≤ j ≤ N , we denote uj(ti) by uj,ti , i = 1, 2, . . . , n. We observe the first NFourier coefficient at the random time points ti , i = 1, 2, . . . , n. Thus the dataset is given by
uj,ti , j = 1, 2, . . . , N, i = 1, 2, . . . , n. Thus the total number of observations of the random field uon the grid is nN . For instance, in the case of an application to term structure data, this is quitenatural, since we can expect many observations over a time of a number of different maturities. Ourasymptotic set up is n →∞ and N →∞.Define

ρ := ρ(λ, θ) =
λ

λ− κ(θ) + β2mj
, j = 1, 2, . . . , N. (2.11)

Now recall some limit theorems for triangular array of dependent random variables, namelymartingale difference sequences and mixing sequences.
Theorem 2.1 Martingale CLT (Hall and Heyde (1980)) : Let {Xn,i , 1 ≤ i ≤ kn} be a triangular
array of square integrable martingale difference sequence under the natural filtrations satisfying:

a) max |Xn,i | →P 0;
b)
∑kn
i=1X

2
n,i →P 1;

c) EmaxX2n,i is bounded in n;
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Then Sn →D N (0, 1) as n →∞ where Sn =
∑kn
i=1Xn,i .

Theorem 2.2 Mixing CLT (Peligrad and Utev (1997)): Let {Xn,i , 1 ≤ i ≤ kn} be a tringular array
of random variables satisfying:

a) var(
∑b
j=a Xn,j) ≤ C

∑b
j=a var(Xn,j) for every 0 ≤ a ≤ b ≤ kn where C is a universal

constant;

b) lim inf
n→∞

var(
∑kn
j=1Xn,j)∑kn

j=1 var(Xn,j)
> 0;

c)

∣∣∣∣∣∣cov
exp

i t b∑
j=a

Xn,j

 , exp

i t c∑
j=b+u

Xn,j

∣∣∣∣∣∣ ≤ ht(u)

c∑
j=a

var(Xn,j)

for every 0 ≤ a ≤ b ≤ c ≤ kn where ht(u) ≥ 0,
∑
ht(2j) < ∞ and u is of the form u =

[(c − a)1−ε] for certain 0 < ε < 1;
d) σ−2n

∑kn
j=1 EX

2
n,j I(|Xn,j | > εσn) as n →∞ for every ε > 0 where σ2n denotes var(

∑kn
j=1Xn,j).

Then Sn/σn →D N (0, 1) as n →∞ where Sn =
∑kn
j=1Xn,j .

Condition (C) in Theorem 2.2 is a ρ-mixing type condition generalizing the more restrictivecondition from Utev (1991) that the triangular array is ρ-mixing with a certain decay of the mixingcoefficients.The ρ-mixing condition which gives the rate of decay of maximal correlation coefficient wasintroduced by Kolmogorov and Rozanov (1960). Note that ρ-mixing implies strong mixing.Next we recall some facts from mixingale law of large numbers (Mixingale LLN) and mixingalecentral limit theorem (Mixingale CLT).Mixingale was introduced by McLeish (1975a). Mixingale condition is a condition of weaktemporal dependence that is weaker than most conditions considered in the literature. Examplesinclude martingale difference sequences, integrable M-dependent sequences, stationary Gaussianprocesses whose correlations converge to zero as the time span increases to infinity, φ-mixingsequences, ρ-mixing sequences, α-mixing sequences, autoregressive moving average sequences,infinite order moving average sequences and near epoch dependent sequences.Let (Ω,F , P ) be a probability space. Let {Fn,i , i = . . . , 0, 1, . . . ; n = 1, 2, . . .} be anynondecreasing sequence of sub σ-fields of F in i for each n. Often one will take Fn,i = F for
i > kn and Fn,i = {Φ,Ω} for i ≤ 0. Let {Xn,i , i = 1, 2, . . . , kn, n = 1, 2, . . .} where kn ↑ ∞ as
n →∞.
Definition 2.1 (Mixingale) A triangular array {Xn,i ,Fn,i} is a L1-mixingale if for all i =

1, 2, . . . , kn, n = 1, 2, . . . where kn →∞ as n →∞, and ψm : m = 0, 1, 2, . . . such that ψm ↓ 0 as
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m →∞, we have
(a) |E(Xn,i |Fn,i−m)| ≤ cn,iψm,

(b) |Xn,i − E(Xn,i |Fn,i+m)| ≤ cn,iψm+1.

L1-mixingales are necessarily sequences of mean zero random variables since |EXn,i | =

E|E(Xn,i |Fn,i−m)|
≤ cn,iψm → 0 as n → ∞. The constants {ψm} are referred to as L1-mixingale numbers. Thesenumbers index the temporal dependence of the sequence {Xi}. If {Xi} is independent, then ψm = 0for all m ≥ 0.First we report weak law of large numbers for mixingales.
Theorem 2.3 (Mixingale WLLN)(Andrews (1988)) : Suppose the triangular array {Xn,i ,Fn,i} is a
uniformly integrable L1-mixingale. If lim supn→∞

1
kn

∑kn
i=1 cn,i <∞, then

E|X̄n| = E

∣∣∣∣∣ 1

kn

kn∑
i=1

Xn,i

∣∣∣∣∣→ 0

as n →∞ and in consequence X̄n →P 0 as n →∞.

Then we report the following strong law of large numbers which strengthens McLeish (1975a)by weakening the conditions.
Theorem 2.4 (Mixingale SLLN) (Hansen (1991)) : Suppose the array {Xi ,Fi} is a L2-mixingale
with

∑∞
m=1 ψm <∞ and

∑∞
i=1 i

−2c2i <∞. Then X̄n → 0 almost surely as n →∞.

The following is the strong law of large numbers for triangular array of mixingales.
Theorem 2.5 (Mixingale SLLN) (De Jong (1996)) : Suppose the triangular array {Xn,i ,Fn,i} is a L2-
mixingale and for a positive integer-valued sequence mn, we have

∑∞
n=1(n

−1∑n
i=1 cn,iψmn)2 <∞.

Then X̄n → 0 almost surely as n →∞.

McLeish (1975b) gave an invariance principle similar to the central limit theorem of Serfling(1968) under assumption of the conditional expectations of variables with respect to distantlast. Tightness is proved under and "asymptotic martingale" type condition, and when conditionalvariances of the partial sums are asymptotically constant, the limit is shown to be Brownian motion.
Theorem 2.6 (Mixingale CLT) (McLeish (1977)) : Suppose the triangular array {Xn,i ,Fn,i} is a
uniformly integrable L1-mixingale. Then

nt∑
i=1

Xn,i →D Wt
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as n →∞ where h−1E
[(∑bn(t+h)c

i=bntc Xn,i

)2
|Fn,bnsc

]
− 1→P 0 as n−1 + h+ (nh)−1 → 0 for some

s, t such that 0 ≤ s < t < t + h < 1 where Wt is standard Brownian motion.

Theorem 2.6 is generalized in the following:
Theorem 2.7 (Mixingale CLT) (Ikeda (2013)) : Suppose the triangular array {Xn,i ,Fn,i} is a
uniformly integrable L1-mixingale. Then

nt∑
i=1

Xn,i →D
∫ t

0

δ
1/2
v dWv

as n → ∞ where h−1E
[(∑bn(t+h)c

i=bntc Xn,i

)2
|Fn,bnsc

]
− δt →P 0 as n−1 + h + (nh)−1 → 0 for

some s, t such that 0 ≤ s < t < t + h < 1 with (δt)t∈[0,1] is non-negative, t-continuous, uniformly
integrable and F-measurable and

∫ 1
0 δsds is uniformly bounded away from zero.

Mixingale estimation function (MEF) estimator, which is also the quasi maximum likelihoodestimator (QMLE) is the solution of the estimating equation:
G∗n,N(θ) = 0 (2.12)

where
G∗n,N(θ) =

N∑
j=1

n∑
i=1

β2αj λ(ρ(λ, θ))2

ρ(λ, 2θ)
uj,ti−1

[
(uj,ti−1θρ(λ, θ))2 + λ

]−1
[uj,ti − ρ(λ, θ)uj,ti−1 ]. (2.13)

We call the solution of the estimating equation the quasi maximum likelihood estimator (QLE).There is no explicit solution for this equation.The optimal estimating function for estimation of the unknown parameter θ is given by
Gn,N(θ) =

N∑
j=1

n∑
i=1

β2αj uj,ti−1 [uj,ti − ρ(λ, θ)uj,ti−1 ]. (2.14)

The mixingale estimation function (MEF) estimator of ρ is the solution of
Gn,N(θ) = 0 (2.15)

and is given by
ρ̂n,N :=

∑N
j=1

∑n
i=1 uj,ti−1uj,ti∑N

j=1

∑n
i=1 u

2
j,ti−1

. (2.16)

3. Main Results

We do the parameter estimation in two steps: The rate λ of the Poisson process can be estimatedgiven the arrival times ti , therefore it is done at a first step. Since we observe total number of

https://doi.org/10.28924/ada/stat.2.3


Eur. J. Stat. 10.28924/ada/stat.2.3 8arrivals n of the Poisson process over the T intervals of length one, the MLE of λ is given by
λ̂n :=

n

T
. (3.1)

Theorem 3.1 We have

λ̂n → λ a.s. as n →∞.
√
n(λ̂n − λ)→D N (0, eλ(1− e−λ)) as n →∞.

Proof. Let Vi be the number of arrivals in the interval (i − 1, i ]. Then Vi , i = 1, 2, . . . , n arei.i.d. Poisson distributed with parameter λ. Since Φ is continuous, we have for every fixed j ≥ 1,
I{0}(Vi) = I{0}(uj,ti ) a.s. i = 1, 2, . . . , n. Note that for every fixed j ≥ 1,

1

n

n∑
i=1

I{0}(uj,ti )→
a.s. E(I{0}V1) = P (V1 = 0) = e−λ as n →∞. (3.2)

LLN and CLT and delta method applied to the sequence I{0}(uti ), i = 1, 2, . . . , n give the results.
The CLT result above allows us to construct confidence interval for the jump rate λ.

Corollary 3.1
A 100(1− α)% confidence interval for λ is given by[
n
T − Z1−α

2

√
1
n −

1
T ,

n
T + Z1−α

2

√
1
n −

1
T

]
where Z1−α

2
is the (1 − α

2 )-quantile of the standard
normal distribution.

We obtain the strong consistency and asymptotic normality of the MEF estimator in thefollowing theorem.
Theorem 3.2 We have

a) ρ̂n →a.s. ρ as n →∞ and N →∞.

b)
√
nψN(ρ̂n,N − ρ)→D N (0, λ−i(1− e−ρ)) as n →∞ and N →∞.

Proof. By using the fact that every stationary mixing process is ergodic, it is easy to show thatif uj(t) is a stationary ergodic O-U Markov process and ti is a process with nonnegative i.i.d.increments which is independent of uj(t), then {uj,ti , i ≥ 1, j ≥ 1} is a stationary ergodic Markovprocess. Hence {uj,ti , i ≥ 1} is a stationary ergodic Markov process. Thus the extra randomnessof the sampling instants preserves the stationarity and ergodicity of the Markov process in orderfor the law of large numbers to be applicable.Observe that uθj (t) := vj is a stationary ergodic Markov chain and vj ∼ N (0, σ2) where σ2 isthe variance of u1,t0 . Thus by SLLN for zero mean square integrable mixingales ( Theorem 2.5),
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Eur. J. Stat. 10.28924/ada/stat.2.3 9Peligrad and Utev (1997, Theorem B) and arguments in Bibinger and Trabs (2017, Proposition7.6), we have
1

nψN

N∑
j=1

n∑
i=1

uj,ti−1uj,ti →
a.s. E(u1,t0u1,t1) = ρE(u21,t0) (3.3)

1

nψN

N∑
j=1

n∑
i=1

u2j,ti−1 →
a.s. E(u21,t0) (3.4)

Thus ∑N
j=1

∑n
i=1 uj,ti−1uj,ti∑N

j=1

∑n
i=1 u

2
j,ti−1

→a.s. ρ. (3.5)

Further, √
nψN(ρ̂n,N − ρ) =

(nψN)−1/2
∑N
j=1

∑n
i=1 uj,ti−1(uj,ti − θuj,ti−1)

(nψN)−1
∑N
j=1

∑n
i=1 u

2
j,ti−1

. (3.6)

Since
E(uj,t1uj,t2 |uj,t1) = θu2j,t1 , j = 1, 2, . . . , N, (3.7)it follows by Theorem 2.7 and Theorem 2.2 which an generalization of Theorem 2.1 obtainedPeligrad and Utev (1997, Theorem B), along with the arguments in Bibinger and Trabs (2019), that

(nψN)−1/2
N∑
j=1

n∑
i=1

uj,ti−1(uj,ti − θuj,ti−1) (3.8)

converges in distribution to normal distribution with mean zero and variance equal to
E[(u1,t1u1,t2)− E(u1,t1u1,t2 |uj,t1)]2 = 1− e2(θ−β1δ){2(β1 − θ)(β1 + 1)}−1. (3.9)

Applying delta method the result follows.
In the next step, we use the estimator of λ to estimate θ.Note that

1

ρ̂n,N
=

∑N
j=1

∑n
i=1 u

2
j,ti−1∑N

j=1

∑n
i=1 uj,ti−1uj,ti

. (3.10)

Thus
1 +

β2m1 − κ(θ)

λ
=

∑N
j=1

∑n
i=1 u

2
j,ti−1∑N

j=1

∑n
i=1 uj,ti−1uj,ti

. (3.11)

Thus
β2m1 − κ(θ)

λ
=

∑N
j=1

∑n
i=1 u

2
j,ti−1∑N

j=1

∑n
i=1 uj,ti−1uj,ti

− 1

= −
∑N
j=1

∑n
i=1 uj,ti−1 [uj,ti − uj,ti−1 ]∑N
j=1

∑n
i=1 uj,ti−1uj,ti

(3.12)

Now replace λ by its estimator MLE λ̂n = n
T .

https://doi.org/10.28924/ada/stat.2.3


Eur. J. Stat. 10.28924/ada/stat.2.3 10

β2m1 − κ(θ) = −
∑N
j=1

∑n
i=1 uj,ti−1 [uj,ti − uj,ti−1 ]

T
n

∑N
j=1

∑n
i=1 uj,ti−1uj,ti

(3.13)

Thus
θ̂n,N = κ−1

(
β2m1 +

∑N
j=1

∑n
i=1 uj,ti−1 [uj,ti − uj,ti−1 ]

T
n

∑N
j=1

∑n
i=1 uj,ti−1uj,ti

)
. (3.14)

Since the function κ−1(·) is a continuous function, by application of delta method, the followingresult is a consequence of Theorem 3.2.
Theorem 3.3

a) θ̂n,N →a.s. θ as n →∞ and N →∞

b)
√
nψN(θ̂n,N − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ

−1(κ(θ)−β2m1 )))

as n →∞ and N →∞ such that N√
n
→ 0.

In the second stage, we substitute λ by its estimator λ̂n = n
T .

4. Examples

1) Consider the stochastic heat equation
duθ(t, x) = θ

∂2

∂x2
uθ(t, x)dt + dW (t, x) (4.1)

for 0 ≤ t ≤ T and x ∈ (0, 1) and θ > 0 with periodic boundary conditions.Here 2m = m1 = 2 and µj = −θπ2j2, γ > 1/2 and ψN = N3. Hence
√
nN3(θ̂n,N − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ

−1(κ(θ)−β2mi ))) as n →∞ and N →∞.

2) As another example of the evolution equation consider the linear parabolic equation
duθ(t, x) = θuθ(t, x) +

∂2

∂x2
uθ(t, x)dt + dW (t, x), t ≥ 0, x ∈ [0, 1] (4.2)

u(0, x) = u0(x) ∈ L2([0, 1]) (4.3)

uθ(t, 0) = uθ(t, 1), t ∈ [0, T ], (4.4)If d = 2, then we have√
n logN(θ̂n,N − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ

−1(κ(θ)−β2mi ))) as n →∞ and N →∞.

If d > 2, then we have√
nN(d−2)/d(θ̂n,N − θ)→D N (0, (κ′(θ))−2λ2(1− e−2λ

−1(κ(θ)−β2mi ))) as n →∞ and N →∞.
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5. Concluding Remarks

1. Observe that the parametric rate is √nψN . This is expected in an ergodic situation.2. For fixed time horizon T , with deterministic time grid ti = i∆n, i = 1, 2, . . . , n, one needsthe double asymptotics as follows: Either one can consider N to be fixed, e.g, N = 1 or N isa sequence satisfying N = O(nγ) for some γ ∈ (0, 1/2). See Bibinger and Trabs (2017) forestimation of volatility in SPDE. However, for random time grid, with the arrivals being that ofa Poisson process, one needs N → ∞ to ensure that in finite time T < ∞, there may not haveenough arrivals.3. In deterministic time grid, Bibinger and Trabs (2017) provide asymptotic results with grid finerin time than in space. Thus the observation scheme is high frequency in time and low resolution inspace. This is satisfied by the following scheme, so called rapidly increasing experimental design(REID): N√
n
→ 0 as n →∞ and N →∞.4. If the parameter is multidimensional, it would be interesting to see how the dimension ofthe parameter space, e.g., r relates to the space-time data sizes N and n. Also if the dimensionof the parameter space increases with sample sizes, it would be interesting to see the tripleasymptotics framework. Another problem would be sieve estimation of the nonparametric driftwhen the dimension of the sieve, e.g., q increases along with space-time data sizes N and n.5. In standard semimartingale models leading to discrete increments, which are (almost) uncorre-lated (martingale increments are uncorrelated), in our case the increments are negatively correlated.Hence, martingale central limit theorem can not be applied due to negative auto-correlation of theincrements. Jacod’s stable central limit theorem, see Jacod (1997, Theorem 3-1), which is typi-cally exploited in the literature of high frequency statistics can not be directly applied. This facthighlights crucial difference between the discretized SPDE model and classical theory from thestatistics of semimartinagle literature. Utev (1990) has proved a central limit theorems for ρ-mixingtriangular arrays can be applied. However the random field here is not ρ-mixing. The abstract

ρ-mixing assumption can be replaced by two explicit conditions on the variance of partial sums andon covariances of characteristic functions of partial sums. The resulting generalized central limittheorem, which satisfies a covariance inequality related to ρ-mixing process, has been reportedby Peligrad and Utev (1997, Theorem B), which is presented as Theorem 2.2 and we verify thegeneralized mixing type conditions in our setup.6. One advantage of random sampling is to remove the alising problem. Another advantage ofrandom sampling is to gain optimality of discretization, see e.g, see Hofmann et al. (2001).7. It remains to investigate estimation from random space sampling, e.g, Beta sampling ofSPDE which have not been considered in this paper. Simultaneous random sampling of both time
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