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Abstract. Transmutation is a widely used technique for generalizing probability distributions
to improve data fitting. Its implementation often relies on maximum likelihood estimation,
which reduces to a box-constrained numerical optimization problem. Despite this, many stud-
ies overlook the crucial role of the initial values required to start the optimization algorithm.
In this paper, we demonstrate through two case studies on real data that improper parameter
initialization can lead to convergence toward local maxima, ultimately resulting in biased esti-
mates and incorrect conclusions. We show that the choice of starting values can significantly
affect both the convergence behavior and the reliability of the final results. This study high-
lights the need for greater methodological rigor and increased awareness regarding parameter
initialization in iterative estimation procedures, particularly within the context of transmuted
distributions in order to avoid erroneous conclusions.

1. Introduction

In parametric statistics, the validity and reliability of inference depend critically on both the
adequacy of the statistical model and the accurate estimation of its parameters. Over the past
two decades, the search for more flexible models capable of capturing complex data patterns has
led to numerous proposals for extending classical distributions. Quadratic transmutation [13]
is one of the most popular of such techniquess, which transforms a baseline distribution into
a more flexible form by introducing a transmutation parameter. The cumulative distribution
function (cdf) of the transmuted distribution with baseline G(x; ξ) is defined as

F (x; θ) = (1 + λ)G(x; ξ)− λ(G(x; ξ))2, (1)
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where ξ is a real or vector parameter of the baseline distribution, λ ∈ [−1, 1] is the transmutation
parameter and θ = (ξ, λ) is the full parameter vector.

While this construction initially appeared to be a heuristic extension, recent developments
have provided a deeper theoretical understanding. Bourguignon et al. [2] proved that transmuted
distributions can be written as linear mixtures of the baseline distribution and the corresponding
exponentiated distribution with power parameter equal to 2. Kozubowski and Podgorski [8]
proved that transmuted distributions can be interpreted as extremal distributions, specifically,
the distribution of the maximum (or minimum) of a random number N of i.i.d. variables
following the baseline distribution, where N follows a Bernoulli distribution shifted by one.
Granzotto et al. [5] proved that transmuted distributions are also mixtures of order statistics.
All these results situate transmuted distributions within the broader class of distributions defined
through random extremes, thereby justifying their use beyond simple empirical generalizations.

The estimation of parameters in transmuted models, particularly via the maximum likelihood
(ML) method, is not straightforward. In most cases, the estimation of θ can only be done by
using numerical optimization algorithms. Whatever the algorithm used, it requires important
choices such that the initial estimate θ(0) needed to start the algorithm. However, the associated
likelihood functions are often non-convex and may exhibit multiple local maxima, especially
due to the structure introduced by the transmutation term. In maximization problems, most
algorithms are able to find only a local maximum [10]. So, if the log-likelihood has many
local maxima, algorithms may converge to local maxima that are not the maximum likelihood
(ML) estimate (MLE) and thus lead to erroneous conclusion. As emphasized by [12], local
maxima in likelihood-based estimation can lead to incorrect and misleading inference. His
analysis of Stata’s estimation routines (using models such as the Heckman selection model
and the Zinb model) demonstrates that common optimization algorithms may converge to sub-
optimal local maxima, yielding results that are statistically meaningless if the global maximum
is missed. Despite the seriousness of this issue, it is often overlooked by practitioners, possibly
because, as noted by Hoeschele [6], it is commonly assumed that the likelihood function has
a unique maximum. Consequently, when the iterative process converges to a value within the
parameter space, this value is typically regarded as the final estimate. Using the examples of the
transmuted exponentiated gamma and the transmuted power function distributions, Geraldo [3]
and Geraldo [4] proved the possible existence of local maxima away from the maximum likelihood
estimator (MLE) in the log-likelihoods of transmuted probability distributions. These local
maxima are a serious concern because optimization algorithms may converge to them, resulting
in incorrect parameter estimates.

This note aims to enhance the understanding of this problem in the context of transmuted dis-
tributions. We argue that particular care must be taken when implementing maximum likelihood
(ML) estimation, especially by using multiple starting values to reduce the risk of convergence
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to a non-global solution. To illustrate this issue, we focus on the Transmuted Exponentiated Ex-
ponential (TEE) distribution introduced by Merovci [9] and the Transmuted Gompertz (TGo)
distribution developed by Abdul-Momiem and Seham [1]. Using the same real dataset as in
their studies, we show that different initial values lead to different parameter estimates and,
importantly, we demonstrate that the original estimates reported in their works are not the true
maximum likelihood estimates (MLEs). We then provide the corrected estimates and discuss
their implications.

The remainder of this paper is organized as follows. Section 2 presents the TEE and TGo
distributions along with their corresponding ML estimation frameworks. Section 3 reports the
main findings from our numerical analyses conducted in R software [11] based on real data.
Finally, Section 4 concludes with some remarks.

2. Presentation of the selected distributions

2.1. The TEE distribution. The probability density function (pdf) of the TEE distribution
is defined by

f(x) = αβe−βx
(
1− e−βx

)α−1 [
1 + λ− 2λ

(
1− e−βx

)α]
, x ≥ 0

with vector parameter θ = (α, β, λ) ∈ R∗+ × R∗+ × [−1, 1]. The log-likelihood function linked to
a random sample x1, . . . , xn of size n is given by

`(θ) = n log(αβ)− β
n∑
i=1

xi + (α− 1)
n∑
i=1

log
(
1− e−βxi

)

+
n∑
i=1

log
[
1 + λ− 2λ

(
1− e−βxi

)α]
.

Therefore, MLE of θ, if it exists, is solution to the following non-linear box-constrained opti-
mization problem:

θ̂ = argmax
θ∈R∗

+×R
∗
+×[−1,1]

`(θ). (2)

Remark 1. The resolution of Equation (2) requires a numerical optimization algorithm. As
most algorithms are able to find only a local maximum [10], it is clear that, if `(θ) has many
local maxima, algorithms may converge to a local maximum that is not the MLE. And if one is
satisfied only with testing a single starting point for the maximization of `(θ), it is possible to
find local maxima different from the MLE and draw erroneous conclusions.

2.2. The TGo distribution. The pdf of the TGo distribution is defined by

f(x) = αβeαxe−β(eαx−1)
[
1 + λ− 2λ

(
1− e−β(eαx−1)

)]
, x ≥ 0
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with vector parameter θ = (α, β, λ) ∈ R∗+ × R∗+ × [−1, 1]. The log-likelihood function linked to
a random sample x1, . . . , xn of size n is given by

`(θ) = n log(αβ) + α
n∑
i=1

xi − β
n∑
i=1

(
e−αxi − 1

)
+

n∑
i=1

log
[
1 + λ− 2λ

(
1− e−β(eαxi−1)

)]
.

Therefore, the MLE of θ, if it exists, is solution to the following non-linear box-constrained
optimization problem:

θ̂ = argmax
θ∈R∗

+×R
∗
+×[−1,1]

`(θ). (3)

Remark 1 also applies to the resolution of Equation (3).

3. Main result from numerical study of real data

3.1. Example for the TEE distribution. We illustrate the existence of local maxima with
the example of the glass fibres dataset taken from [9]:

Table 1. Glass fibres dataset

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61
1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27
1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76
1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54
1.60 1.62 1.66 1.69 1.76 1.84 2.24 0.81
1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66
1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51
1.55 1.61 1.63 1.67 1.70 1.78 1.89

Taking into account the availability in R software of optimization algorithms that can handle
box and inequality constraints and other factors such as computational time, we retained the
quasi-Newton algorithm BFGS (see [10] for a detailed description) and we implemented it using
the "alabama" package [14]. Table 2 gives the final estimates for one thousand different starting
points randomly chosen in the parameter space R∗+ × R∗+ × [−1, 1].

Table 2. Results of estimation for glass fibres dataset

Final estimates Frequency Log-likelihood
θ1 = (31.153, 2.910,−0.696) 737 −28.475
θ2 = (21.617, 1.965, 1.000) 263 −26.631

From Table 2, we notice that for 73.7% of the starting points, the BFGS has converged to θ1 =
(31.153, 2.910,−0.696) and for the others (26.3%), it has converged to θ2 = (21.617, 1.965, 1.000).
The value θ1 is thus the most probable value and it is the value found by Merovci [9] as the
MLE. But, it is clear that this result is erroneous and the MLE is θ2 = (21.617, 1.965, 1.000)
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because `(θ2) > `(θ1). As noted by Jin et al. [7], the mere existence of local maxima is not a
concern unless optimization algorithms are frequently trapped in them. This, however, is not
the case here, since the most likely value corresponds to a local maximum.

3.2. Example for the TGo distribution. We illustrate the existence of local maxima with
the example of the life of fatigue fracture of Kevlar 373/epoxy subject to constant pressure at
the 90% stress level [1]:

Table 3. Observed fatigue life of Kevlar 373/epoxy under constant 90% stress

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650
0.5671 0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391
0.8425 0.8645 0.8851 0.9113 0.9120 0.9836 1.0483 1.0596
1.0773 1.1733 1.2570 1.2766 1.2985 1.3211 1.3503 1.3551
1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630
1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316
1.9558 2.0048 2.0408 2.0903 2.1093 2.1330 2.2100 2.2460
2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911 3.0256
3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005
5.4435 5.5295 6.5541 9.0960

Table 4 gives the final estimates for one thousand different starting points randomly chosen
in the parameter space R∗+ × R∗+ × [−1, 1].

Table 4. Results of estimation for kevlar dataset

Final estimates Frequency Log-likelihood
θ1 = (0.188, 1.148, 0.819) 644 −124.819
θ2 = (0.014, 51.555,−0.837) 356 −121.616

From Table 4, we notice that for 64.4% of the starting points, the BFGS has converged to θ1 =
(0.188, 1.148, 0.819) and for the others (35.6%), it has converged to θ2 = (0.014, 51.555,−0.837).
The value θ1 is thus the most probable value and it is the value found by Abdul-Momiem
and Seham [1] as the MLE. But, it is clear that this result is erroneous and the MLE is θ2 =
(0.014, 51.555,−0.837) because `(θ2) > `(θ1).

4. Conclusion

In this note, we have proven through the example of the transmuted exponentiated exponential
and the transmuted Gompertz distributions, that the log-likelihood of a transmuted distribution
could have several local maxima and, depending on the starting value, optimization algorithms
could converge to local maxima that are not the maximum likelihood estimate (MLE). It would
then be advisable to compare several starting values in order to avoid erroneous conclusion.
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