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Some Resultats on Optimal Allocation of Policy Limits and Deductibles: Mixture Model
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Abstract. The main purpose of this paper is to introduce and investigate stochastic orders of scalarproducts of random vectors. We study the problem of finding maximal expected utility for some func-tional on insurance portfolios involving some additional (independent) randomization. Furthermore,applications in policy limits and deductible are obtained, we consider the scalar product of two ran-dom vectors which separates the severity effect and the frequency effect in the study of the optimalallocation of policy limits and deductibles. In that respect, we obtain the ordering of the optimalallocation of policy limits and deductibles when the dependence structure of the losses is unknown.Our application is a further study of [1− 6].

1. Introduction
Introduction and motivationIn recent years modern actuarial theory and risk theory have attracted attention and are widelystudied in various fields. Traditionally, insurance has been built on the assumption of independence,and the law of large numbers has governed the determination of premiums. But these days, theincreasing complexity of insurance and reinsurance products has led to increased actuarial interestin the modeling of dependent risks. In [3,4], the author considred the problem of optimal allocationof policy limits and deductibles among n random losses X1, X2, ..., Xn from the viewpoint of apolicyholder. The paper concludes that for a risk-averse policyholder, if the sum of policy limits orthe sum of deductibles is fixed, then Xi ≤st Xj implies that l?i ≤ l?j and d?i ≥ d?j when (X1, ..., Xn)is comonotonic, wher l?i and d?i are the optimal policy limit and the optimal deductible allocatedto the i − th risk.The losses mentioned above are actually due to both severity and frequency impacts. The policylimit and deductible of a certain risk are for the cumulative losses of the risk during the policy
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Eur. J. Stat. 10.28924/ada/stat.2.4 2term. In order to study the problem of the optimal allocation of policy limits and deductibles inthis situation, an approach to separate the effects of severity and frequency becomes necessary.In this work, we study the problems of optimal allocation of policy limits and deductibles fromthe viewpoint of a policyholder, where the dependance structure of losses is unknown for generalmodel. In addition, by applying the bivariate characterizations of stochastic ordering relations, wereconsider the general model and derive some new refined results on ordering of optimal allocationsof policy limits and deductibles from the viewpoint of a policyholder.
Preliminary and modelsSuppose that a policyholder is exposed to n random losses, through paying a premium, he couldobtain coverage from an insurer. Policy limit and deductible are two common forms of coverage,when the total policy limit or the total deductible is granted, the policyholder can allocate themarbitrarily among the n losses. Let J be an arbitrarily discete index set, representing all randomenvitronments, and let χ =

{
Xj : j ∈ J

} be a group of fundamental risk. we assume that n policiesof the n losses are effected by the insurance environments. Two states, J = {1, 2} for insurance,reflect some sort of extra claim generation phenomena (like the influence of weather on car accidents,say). In automobile insurance,
1- might be the risk under normal conditions;
2- might be the risk under bad conditions (slippery roads, foggy days, high traffic volume, andso on). On each policy, the loss under a fixed environment j ∈ J is characterized by a randomvariable Xj . So the loss on each policy is a mixture of some funtamental random variables, i,e.,associated with each policy, there exists a random variable M taking values in J such that the losscould be expressed as XM =

∑
j∈J
Xj1{M=j}. Recently, effects of financial risks as well as insurancerisks have been studied with the scalar product of two random vectors

Sn = X1f (Y1) + X2f (Y2) + ...+Xnf (Yn) (M1)
Where: Yi = δiTi , Sn is a total discounted loss, Xi are loss due to the i − th risk, Ti are time ofoccurrence of i−th insured risk and δi are discount rate capture the impact of financial environment(Xi , Ti are independent non-negative random variables and δi are non-random numbers).A very good property of the model (M1) (see [6]) is that Xi ’s characterize the scales of the losseswhile f (Yi) characterize the chances of the losses. Also, we will make the following assumptions

1.f (Yi) ≥ 0, ∀Yi ≥ 0, and lim
Yi→∞

f (Yi) = 0

2.f (Yi) is dereasing and convex function.
3.Y1, Y2, ..., Yn are mutually independent.
4.A policyholder exposed to risks X1, X2, ..., Xn is granted a total of l dollars (l ≥ 0)as the policy limit with which he can allocate arbitrarily among the n risks.

.
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Eur. J. Stat. 10.28924/ada/stat.2.4 3In this situation, if some risk occurs, the insurer will make the payment right after the event ofthe loss and the insurance coverage for this risk will terminate. However the insurance coveragefor the other risks is still in effect. If (l1, ..., ln) are the allocated policy we have ∀i : li ≥ 0and n∑
i=1

li = l . When l is n-tuple admissible and Sn(l) denote the class of all such n-tuples. If
l = (l1, ..., ln) ∈ Sn(l) is chosen, then the discounted value of benefits obtained from the insurerwould be

n∑
i=1

(
XMi ∧ li

)
f (Yi) (1)

and hence, the retained discounted loss is
n∑
i=1

[
XMi −

(
XMi ∧ li

)]
f (Yi) =

n∑
i=1

(
XMi − li

)
+
f (Yi)

Assume that the policyholder is risk-averse, if we take the expected utility of wealth as the op-timization criterion for the allocation, then the optimal allocation problem of the policy limits isProblem L:
max
l∈Sn(l)

E

[
u

(
w −

n∑
i=1

(
XMi − li

)
+
f (Yi)

)]
where u (.) is the utility function of the policyholder (u (.) is increasing and concave) and w isthe wealth (after the premium). On the other hand, instead of policy limits, we assume that d
d = (d1, ..., dn) ∈ Sn (d) are the allocated deductibles, di ≥ 0 for all i , d1 + ...+ dn = d . And thediscounted benefits obtained from the insurer would be

n∑
i=1

(
XMi − di

)
+
f (Yi)

hence, the optimal allocation problem of the policy deductibles is Problem D:
max
d∈Sn(d)

E

[
u

(
w −

n∑
i=1

(
XMi ∧ di

)
f (Yi)

)]
where u (.) and w admit the same interpretations as that in Problem L. Inheriting from thedependence structure in χ =

{
Xj : j ∈ J

}
, the losses {XMi , i = 1, ..., n

} also have an unknowndependence structure. Like work [2] , we will take a conservative attitude towards this uncertainty,and view the most unfavorable situation as the actual dependence structure. Therefore, Problem Lis modified to:
max
I∈Sn(l)

min
(XM1 ,XM2 ,...,XMn)

E

[
u

(
w −

n∑
i=1

(
XMi − li

)
+
f (Yi)

)]
and Problem D is modified to:

max
d∈Sn(d)

min
(XM1 ,...,XMn)

E

[
u

(
w −

n∑
i=1

(
XMi ∧ di

)
f (Yi)

)]
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Eur. J. Stat. 10.28924/ada/stat.2.4 4In order to make our discussion proceed, we firstly solve the “min” parts of the problems mentionedabove, i .e ., to identify the worst dependence structure that minimizes the expected utility. Notethat u (.) and w are the utility function (increasing and concave) and the wealth (after premium)respectively, then ũ (x) : x → −u (w − x) is an increasing convex function. So the two problemsare equivalent toProblem L′ :
min
d∈Sn(d)

max
(XM1 ,...,XMn)

E

[
ũ

(
n∑
i=1

(
XMi ∧ di

)
f (Yi)

)]
Now, the “min” parts are transformed into “max” parts. The following two propositions are providedfor solving the “max” parts firstly.

Proposition 3.1. Suppose thate ũ is increasing and convex. Let {Xcj , j ∈ J} be an any comono-tonic copy of {Xj ; j ∈ J},i,e., they have the same marginal distributions, and {Xcj ; j ∈ J
} is comono-tonic and jointly measurable. Assume that both {Xj ; j ∈ J} and {Xcj ; j ∈ J

} are independent of
{M1, ...,Mn} and {Y1, ..., Yn}. Then

E

[
ũ

(
n∑
i=1

(
XMi − li

)
+
f (Yi)

)]
≤ E

[
ũ

(
n∑
i=1

(
XcMi − li

)
+
f (Yi)

)]
Proof. Fix any j1, ..., jn ∈ J , and t1, ..., tn ≥ 0. According to the hypothesis, the collection{(
Xcj1 − l1

)
+
f (Y1), ...,

(
Xcjn − ln

)
+
f (Yn)

} is also comonotonic. Therefore,
n∑
i=1

(
Xji − li

)
+
f (Yi) ≤cx

n∑
i=1

(
Xcji − li

)
+
f (Yi)

which follows from Lemma 2.2. Sincee ũ (.) is increasing and convex, then
E

[
ũ

(
n∑
i=1

(
Xji − li

)
+
f (Yi)

)]
≤cx E

[
ũ

(
n∑
i=1

(
Xcji − li

)
+
f (Yi)

)]
Hence, in view of the fact that {M1, ...,Mn} and {Y1, ..., Yn} are independent, and they areindependent of {Xj ; j ∈ J} , wehave
E

[
ũ

(
n∑
i=1

(
XMi − li

)
+
f (Yi)

)]
= E

{
E

[
ũ

(
n∑
i=1

(
XMi − li

)
+
f (Yi)

)
|M1, ...,Mn, Y1, ..., Yn

]}

≤ E

{
E

[
ũ

(
n∑
i=1

(
XcMi − li

)
+
f (Yi)

)
|M1, ...,Mn, Y1, ..., Yn

]}

= E

[
ũ

(
n∑
i=1

(
XcMi − li

)
+
f (Yi)

)]
.

Proposition 3.2. Suppose that ũ is increasing and convex. Let {Xcj ; j ∈ J
} be a comono-tonic copy of {Xj ; j ∈ J} , assume that both {Xj ; j ∈ J} and {Xcj ; j ∈ J

} are independent of
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{M1, ...,Mn} and {Y1, ..., Yn}. Then,
E

[
ũ

(
n∑
i=1

(
XMiΛdi

)
f (Yi)

)]
≤ E

[
ũ

(
n∑
i=1

(
XcMiΛdi

)
f (Yi)

)]
Remark 3.2. Owing to these two propositions, we will assume that {Xj ; j ∈ J} is comonotonicfrom now on. One importantconsequence is that if j1 ≤ J2, then X j1 ≤st XJ2 , and hence, X j1 ≤ XJ2 on Ω by comonotonicity,which means that everyrealization of {Xj ; j ∈ J} is an increasing real-valued function on J . Actually, following fromthe former three conditions listed in the beginning of this section, the existence of the comonotonicand jointly measurable copy {Xcj ; j ∈ J

} can be proved, and the proof also appears in [4].
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