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ABSTRACT. In cluster-correlated data arise when there exists any condition for that individual are
grouped among themselves. Data of this kind arise frequently in social science, behavioral, and
medical sciences since individuals can be grouped in so many different ways. Multilevel modeling
(MLM) is an approach that can be used to handle cluster or grouped data. Analyzing of correlated
data is different from the usual way for independent data since we have to consider the correlation
structure among individuals within cluster. In random effects models’ correlation structure can be
estimated by considering the models parameters are allowed to vary across the cluster. Random
effect models have two components, within cluster components, cluster-specific response is
described by a regression model with a population-level intercept and slope, other is between-
cluster component: variation in cluster-intercepts and slopes is captured. In a multilevel model,
cluster level variance component is more affected by no. of cluster as well as cluster size. So, this
is important to aware the researcher about no. of cluster and cluster size in estimating the random
components of random effect models for correlated continuous and discrete outcome respectively in
MLM since it produces bias estimate for few no. of cluster and cluster size. The parameters of
random effects models can be estimated by Maximum Likelihood and Restricted Maximum
Likelihood (REML) estimation for correlated continuous outcome, on the contrast besides REML,
Penalized Quassi Likelihood (PQL) and Adaptive Gaussian Quadrature (AGQ) estimation
techniques are applied for correlated discrete outcome. In this thesis, using the simulation
procedure we would be compared among these estimation techniques by exploring the influence of
no. of cluster and cluster size on estimated random parameters from random effect models of two-
level and three levels for continuous and discrete outcome respectively. Relative bias, mean square
error and coverage probability would be used for comparison purpose among the estimation

techniques.
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In a summary, we find that if we increase the no. of cluster and cluster size at each level
biasness and mean square error of estimated random parameter would be decreased for all

estimation techniques.

1 Introduction

Clustered data, where the observations are group or cluster. Each cluster contains multiple
observations, giving the data a “nested” or “hierarchical” structure, with individual
observations nested within the cluster. The key feature of clustered data is that
observations within a cluster are “more alike” than observations from different clusters.
In clustered data, the dependent variable is measured once for each subject, but the
subjects themselves are somehow grouped. The fact that observations within a cluster are
more alike than observations from different clusters induces a correlation between
observations within the same cluster. This is referred to as intra cluster correlation.

For example, consider the school example; in here 10 schools and each school have 20
students. If we collected data from students from 10 schools then it is cluster data. In this
example 10 schools is consider as cluster and the number of students is considered as
individuals. Here each individual within correlated in each cluster but uncorrelated
between cluster. In multilevel models, however, there is a sample size for each level,
defined as the total number of units observed for this level. For example, in a three-level
study of pupils nested in classrooms nested in schools, there might be observations on 60
schools, a total of 150 classrooms, and a total of 3,300 pupils.

When data are sampled in a multi-stage manner or if observations are clustered, modeling
data by ignoring the clustering will often result in standard error estimates that are
underestimated if the outcome variable demonstrates dependence based on the clustering
(L.e., the intraclass correlation is greater than zero). When clustering is ignored, the
residuals will not be identically and independently distributed, violating an assumption of
single-level models such as ordinary least-squares regression. This dependence will
ultimately result in an inflated type-l error rate for significance tests of regression
coefficients. However, in the statistical literature, methods have been developed for

addressing data that come from a hierarchical structure and can account for the
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dependence among observations. Clustered data are characterized as data that can be
classified into a number of distinct groups or “clusters” within a particular study. However,
there are many other types of experimental design that can yield clustered data. Here, we
provide a statistical model for intra cluster correlation and systematically investigate a
range of methods for analyzing clustered data.

For cluster data, mixed-effects regression models (MRMSs) usually include random subject
effects to account for the similarity among repeated measures for a given subject. The
variance of the random subject effects, which represents between-subjects (BS) variation
and the error variance, which represents within-subjects (WS) variation, are usually
considered to be homogeneous across subject groups or levels of covariates. However, in
reality, the homogeneous variance assumption, both within- and between-subjects, can be
violated, and the random subject effects can further be correlated with the error terms.

If one analyzes clustered data with a models that assumes independence of observations,
such as the generalized linear models, and ignores the clustering of observations, while the
regression coefficients will be estimated without bias, the standard errors of time-invariant
predictors will be underestimated see, e.g, Maas and Hox, 2005 Maas, C. J., Hox, J. J.
(2005).

Multilevel models (MLMs) are very popular methods to analyze clustered or hierarchical
structure. It is also used to analyze repeated measures data. Frequently in educational
psychology research, observations have a hierarchical structure (Raudenbush and Bryk
2002). Students are nested within classrooms; children are nested within families, or
teachers are nested within schools. MLMs are conceptually similar to multiple regression
in that an outcome variable is linearly predicted from multiple independent variables (a.k.a.
covariates or predictors). An assumption of traditional regression models such as ordinary
least squares for continuous outcomes or logistic regression for binary outcomes is that
observations (or the residuals) are independent. But cluster data violated this
independence assumption, because observations are correlated within cluster. MLMs relax
the independence assumption by directly modeling the clustered structure of the data
through the inclusion of random effects or by directly modeling an alternative covariance

structure for the residuals that accounts for the dependence of observations. Many different
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types of parameters are present within MLMs including fixed effects at each level, random
effects, their variance, and possible covariance components, as well as standard error
estimates of each parameter.

Often, data have a clustered (panel or tabular) structure, that means observations are
correlated within cluster. But classical statistics assumes that observations are
independent and identically distributed (iid). Applied independence assumption to
clustered data, may lead to false results. In contrast, clustered data assumes two sources of
variation, within cluster and between clusters. Random effect models is crucial for modeling
cluster data (two and three level modeling), which allow each cluster have their own
random intercept and random slope respectively. Also, random effect models allow for the
possibility that one or more covariates have effects that vary from unit (cluster, subject) to
unit. In statistics the random component can be estimated via various approaches such as
maximum likelthood estimation, restricted maximum likelihood estimation.

Estimating the random component from the random effect models using various statistical
tool like ML (maximum likelihood), REML (restricted maximum likelihood), AGQ (adaptive
Gaussian quadrature), PQL (penalized quasi likelihood) is varied with no of cluster and
cluster size for continuous and discrete outcome, which would be main concerned in this
thesis. Many of the concerns with continuous outcomes are magnified with binary
outcomes. When the outcome variable was binary (i.e., requiring the use of multilevel
logistic regression), in to small numbers of clusters being problematic, cluster size played a
much larger role with binary outcomes than with continuous outcomes. Even with a very
large number of clusters, conditions with a cluster size of five or fewer produced estimates
that exhibited much more bias than their counterparts with continuous outcomes (Austin,
P.C 2010; Clarke 2008; Moineddin et al. 2007). Another difficulty encountered with binary
outcomes is that estimation of the models is less straightforward

As implemented in statistical packages, linear mixed models assume that we have modeled
the dependency structure correctly the random effects and within-unit residual errors
follow normal distributions, and that these have constant variance. While it is possible to

some extent to check these assumptions through various diagnostics, a natural concern is
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that if one or more assumptions do not hold, our inferences may be invalid. Fortunately, it
turns out that linear mixed models are robust to violations of some of their assumptions.

To outline the contents of this paper, first, a brief overview of cluster data and the
multilevel models (two and three level models). Then, the MLMs with a small number of
clusters is reviewed in detail. Third, an illustrative simulation study is provided that
depicts the potential issues in modeling data with a small number of clusters with MLMs.
Fourth, compare the different methods to estimate parameter with increase the cluster and
cluster size.

An important problem in multilevel modeling is what constitutes a sufficient cluster and
cluster size for accurate estimation. In multilevel analysis, the major restriction is often the
higher-level cluster size. In this thesis, a simulation study is used to determine the
influence of different cluster sizes at the group level on the accuracy of the estimates
(regression coefficients and variances). In addition, the influence of other factors, such as
the lowest-level cluster size and different variance distributions between the levels
(different intraclass correlations), is examined. The results show that only a small cluster
size at level two and three leads to biased estimates. The bias estimates of multilevel
models, which differ in terms of the number of levels (e.g., 2, 3), scale of the outcome
variable (e.g., continuous, cateqgorical). To estimate MLMs without bias, adequate cluster
and cluster sizes must be obtained, since MLMs are often estimated with maximum
likelihood (ML) and restricted maximum likelthood methods. ML and REML estimates are
asymptomatically unbiased, meaning that they perform well as large sample sizes approach
but are known to behave less desirably with smaller samples sizes, particularly when the
number of clusters is small.

It is important that researchers are aware of the MLMs when sample size is small.
Methods in a simulated analysis of cluster data, the impact of a cluster size was examined
on both a continuous and dichotomous outcome in a simple two and three level multilevel
models. For different linear and logistic models were examined: models with a group-level
covariate; models with an individual-level covariate and models with an aggregated group-
level covariate. The study evaluated further whether the impact of small cluster size

differed depending on the total number of clusters. When the number of clusters were
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large, neither fixed nor random components were affected by small cluster size. As the
number of clusters decreased, the estimates of random effects were inflated. Furthermore,
group-level variance estimates were more affected by random components.

Although a specific sample size to ensure unbiased estimates cannot been pinpointed, a
few guidelines have been suggested such as 30 clusters (also deemed macrounit, level-2
sample size, site, or individuals for clustered data) with a cluster size of 30 (microunit,
level-1 sample size, or clustered data) in Kreft (1996), a minimum of 20 clusters (Snijders
and Bosker 2012), or 50 clusters with a cluster size of 20 for cross-level interactions or
100 clusters with 10 units each if the main interest is in the variance components (Hox
1998, 2010). From a design perspective, Snijders and Bosker (1993) also advise against
MLMs if the number of clusters is below 10. However, in applied settings, the demands of
these recommendations are not always realized, leading to potentially biased results. For
instance, in a review by Dedrick et al. (2009), using the 30/30 guideline, of the 99 studies
reviewed using MLMs between 1999 and 2003 in 13 journals from education, psychology,
and sociology, 21 % had sample sizes that would not meet the recommendation.

For a general introduction to multilevel modeling of hierarchical or cluster data, we refer to
Snijders and Bosker (1999), Heck and Thomas (2000), Raudenbush and Bryk (2002), and
Hox (2002). The maximum likelihood (ML) and restricted maximum likelihood (REML)
estimation methods used commonly in multilevel analysis are asymptotic, which assumption
that the sample size must be sufficiently large. This raises questions about the acceptable
lower limit to the sample size, and the accuracy of the estimates and the associated with
relatively small cluster sizes. In multilevel studies, the main problem is usually the sample
size at the group level, because the group-level sample size is always smaller than the
individual-level sample size.

Currently there are few sample size guidelines referenced in the literature. One the rule of
the thumb proposed for designs in which individuals are nested within groups calls for a
minimum of 30 units at each level of the analysis. This rule of thumb is commonly cited
(Hox, 1998; Mass & Hox,2004) and was further developed by Hox (1998) who
recommended a minimum of 20 observations (level-1) for 50 groups (level-2). Maas and

Hox (2004,2005) who examined conditions in which the number of level-2 units ranged 30
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to 100 and the number of level-1 units per level-2 unit ranged from 5 to 50, found the less
bias in the variance component estimate, but still reported substantial in making inference

about the variance components when the number of level-2 units only 30.

2. Overview of Two-Level Models
To illustrate the MLM, consider the following two-level models for continuous and discrete
outcomes as
Level -1: Yj; = Boj + B1jX1ij +1ij
Level-2: Boj = Voo + Vo1 W1j + Ug;
,31j = Y10 + Y11Wij +uy;

where Y;; is a response variable for the ith

observation in the j'* cluster, X1ij is the value
of the level-1 predictor for the it" observation in the j* cluster, 1j is the level-1 residual
for the it" observation in the jt" cluster, y are fixed effect estimates, W;;j is the value of
the level-2 predictor for the j* cluster, Up; and uy; are the random effects of the jth
clusters are considered to be a sample from the larger populationFor random effect models
the parameter B, and pB; follows the multivariate normal distribution with mean p and

variance-covariance matrix ¥ and the error term also follow normal distribution with mean

0 and variance ¢?.

3. Overview of Three Level Models

Many of the concepts for two-level models translate to three-level models. Therefore, there
is a need for developing methods for a three-level analysis with random intercept and
random slope models which can be written as
Level-1: Yijx = Bojk + BrjrXuiji + Tiji
Level-2: Bojk = Yook + Yo1xWijk + Uojik
ﬁ1jk = Yok T YiueWaji + Uik
Level-3: yoor = G000 + 8001201k + Vook
Y10k = 6100 + 8101201k + Viok

Where Y is the response variable for it" students of the j* classroom and k" school?

h

X1ijk is the value of the level-1 predictor for the i*" students in the j** classroom and k"
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h

school, 73 is the level-1 residual for the i*® students in the j* classroom and k"

schools and y are fixed effect estimates, Wy is the value of the level-2 predictor for the
jt" classroom and k" school , Ugjk and Uy are the random effects of the jt" classroom
and k'™ school. Zyy, is the level-3 predictor for the k' school. Here for random effect
models the parameter follows multivariate normal distribution with mean p and variance-

covariance matrix X and the error term follows the normal distribution with mean 0 and

variance o2.

4. Methodology

In this paper we illustrate the two and three level models for discrete and continuous
outcome. Different methods are applying for estimating the parameter for continuous and
discrete outcome. There are many methods for estimating parameter in continuous outcome
like as Maximum likelthood Estimation (MLE), Restricted Maximum Likelihood Estimation.
Another different method applies for estimating discrete outcome like as Restricted
Maximum Likelihood Estimation (MLE), Penalized Quassi Likelihood (PQL), and Adaptive
Gaussian Quadrature (AGQ). In two and three level models we estimate relative bias and
mean square error for measure the accuracy in different methods. Comparing different
methods based on the criteria of mean square error and relative bias. In multilevel
modeling increase the number of cluster and cluster size relative bias and mean square
error decrease different methods for discrete and continuous outcome in two and three level
models. In this paper we estimate the relative bias and mean square error for random
intercept parameter for two and three level models and compare different methods in

discrete and continuous outcome.

5. Result and Discussion

In order to identify the effect of varying the no. of cluster and cluster size on estimated
parameter using the different estimation technique, we design this simulation part. We
simulated data from random effect models of two level and three level, considering the
continuous and discrete parameter respectively and different estimation tools are used,

such as, maximum likelihood estimation and restricted maximum likelihood estimation (for
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continuous outcome), Penalized Quasi likelihood and Adaptive Gaussian quadrature (for
discrete outcome).

Simulation Study for two level model

Two levels: Continuous Outcomes (Cluster no. fixed)

Here we also display the relative bias and mean square error for continuous outcome. We

compare REML and ML method

Figure 1: Relative bias of random intercept and random slope for continuous outcome

considering cluster no. fixed
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Figure 2: Mean square error of random intercept and random slope for continuous outcome

considering cluster no. fixed
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In the above graph 1 display the result for relative bias for random intercept and random
slope parameter when the number of clusters is fixed. Here observe that the relative bias
for random intercept and random slope parameter is decreasing with increasing the cluster
size for both methods but in REML methods relative bias more decreasing than the ML
methods.

Also, in the figure 2 graphical representation of mean square error for random intercept
and random slope parameter for fixed cluster. From the graph 2 we can see that when the
cluster size is varying then the mean square error is decreasing for random intercept and

random slope parameter in two level modals.

Two levels: Continuous Outcomes (Cluster size fixed):

Figure 3: Relative bias of random intercept and random slope for continuous outcome

considering cluster size fixed
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Figure 4: Mean square error of random intercept and random slope for continuous outcome

considering cluster size fixed
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From the figure 3 we observe when cluster size fixed but number of cluster varying then
relative bias for random intercept and random slope parameter are decressing in ML and
REML methods but REML methods give less relative bias.

Figure 4 show the mean square error for random intercept and random slope parameter
decreasing with increasing the number of cluster when the cluster size fixed. Here we
observe that in both methods mean square error always decreasing with increasing the
number of cluster but in REML mean square error more decreasing than ML methods.
Coverage which means that how many times the true parameter values are falls in the
desire confidence interval. If we find the coverage for 95% confidence interval then it
indicates that how many times the true parameter values are falls in 95% confidence
interval. Coverage can often be compared to the nominal confidence of the interval. Low
coverage meant that biased estimates or anticonservative standard error estimates or both.
High coverage probabilities indicate overly conservative standard error estimates. | would

like to find the coverage in random intercept and random slope parameter.
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Table 1: Coverage of random intercept and random slope for continuous by REML methods

Parameter | No. of cluster | Cluster size| Coverage rate (%)
10 91.6
20 92.8
Intercept (Bo) 60 93.4
80 10 94.4
120 95.6
10 91.6
20 92.2
Slope (B;) 60 93.3
80 10 94.1
120 95.4

Tables 1 display the coverage rate increasing with increasing the number of cluster when
cluster size fixed. Initially when number of cluster 10 and cluster size fixed 10 then the
coverage rate is 91.6% for random intercept and random slope parameter. But when we
increase the number of cluster then the coverage rate also increases. Lastly when the
number of clusters is 120 and cluster size 10 then coverage rate is for f, = 95.6% and

B1 = 95.4% which is equal to 95% confidence intervals.

Two levels: Discrete Outcomes (Cluster no. fixed)

Since in the above section we justify ML and REML methods only for continuous outcome,
now we also justify this result in discrete outcome variables. Her we use three methods for
estimating the parameter in two level models and we only consider the random intercept

parameter for discrete outcome. Her we use three methods for estimating parameter

1) REML (Restricted maximum likelihood)
2) PQL (Penalized quasi likelihood)
3) AGQ (Adaptive Gaussian quadrature)

Here graphically shows the result for discrete outcome for random intercept parameter
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Figure 5: Relative bias of random intercept for discrete outcome considering cluster size
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Figure 5 the graphical representation of relative for random intercept parameter for

discrete outcome. Here we see that relative bias for random intercept parameter decreasing

with increasing the cluster size. In figure 6 we compare three methods and, in each method,

relative bias decreasing when we increasing the cluster size. Graph (figure 6) display the
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result mean square error for random intercept parameter when number of clusters fixed. In
this figure mean square error in random intercept parameter decreasing with increases the

cluster size.

Two levels: Discrete Outcomes (Fixed cluster size)

Figure 7: Relative bias of random intercept for discrete outcome considering cluster size
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Figure 8: Mean square error of random intercept for discrete outcome considering cluster

size fixed
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The graph (figure 7) shows after increasing the number of cluster relative bias also
decreasing three methods. From figure 8 mean square error also decrease with increase
the number of clusters. Since adaptive Gaussian quadrature methods is better among the
three methods. We find the coverage rate for discrete outcome. Here the table for coverage

rate is given below

Table 2: Coverage of random intercept for discrete outcome by AGQ methods

Parameter Number of Cluster Coverage rate (%)
cluster size
5 68.4
10 82.6
Intercept (Bo) 20 89.2
60 15 93.8
80 94.0
120 95.2

Table 2 show the coverage rate for 95% confidence interval for different number of clusters.
When cluster size fixed 15 and number of cluster 5 then the coverage rate for random
intercept parameter is 68.4%, when we estimate the parameter by adaptive Gaussian
quadrature methods. But when increase the number of cluster 120 then the coverage rate
also increases in 95.2% which means that with increase the number of clusters the

accuracy of adaptive Gaussian quadrature methods closed to the true parameter value.
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Simulation Study for three level models

Three levels: Continuous Outcome (varying level-2 cluster no.):
Figure 9: Relative bias of random intercept for continuous outcome considering (level-2

cluster no.) fixed
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Figure 10: Mean square error of random intercept for continuous outcome considering

(level-2 cluster no.) fixed
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Figure 9 display the relative bias in continuous outcome for level-2 parameter when
number of cluster (leve-3) fixed. From the graph we observe that with increase the number

of cluster (level-2) relative bias decreasing in three level models. In both methods relative
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bias decreasing but REML methods produce less relative bias in three level models when
we try estimate relative bias for (level-2) in three level models. Also, here from the figure
10 the mean square error in level-2 parameter (level-2) shows that with increasing the
number of classrooms mean error also decreasing for three level models. Again, we
estimate the coverage rate for level-2 parameter and check the parameter how many times
fall the true parameter value in 95% confidence interval. Table 3 shows the coverage rate

for level-2 parameter in three level models

Table 3: Coverage of random intercept (level-2) for discrete outcome by REML methods

Parameter No.of cluster No.of cluster Coverage rate (%)
(level-2) (level-3)
20 46.2
40 45.0
Intercept 60 15 47 .4
(Po) 80 45.2
120 49.0

Table 3 provides the coverage rate for level-2 parameter. Here Initially when number of
cluster (level-2) is 20 then coverage rate only 46.2 which is so far from the 95% confidence
interval. Although we increase the number of classrooms in 120 then the REML methods

provided low coverage rate and it is so far from 95% confidence interval.
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Three levels: Continuous Outcome (varying level-3 cluster no.)
Figure 11: Relative bias of random intercept for continuous outcome considering (level-3

cluster no.) fixed
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Figure 12: Mean square error of random intercept for continuous outcome considering

(level-3 cluster no.) fixed
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The graph (figure 11) displays the relative bias in level-3 parameter always decrease in
this both methods but REML methods produce less relative bias. Based on the criterion of
mean square error we compare ML and REML methods for level-3 parameter. From figure
12 shows that mean square error decreasing with increasing the number of cluster (level-

3). Now we also find the coverage rate for level-3 parameter in three level models.
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Table 4: Coverage of random intercept (level-3) for continuous outcome by REML methods

Parameter No. of cluster No. of cluster Coverage rate (%)
(level-3) (level-2)
20 90.4
40 934
Intercept ( 60 15 93.6
Po) 80 94.6
120 953

Table 4 provide coverage rate for different number of schools in three level models for 95%
confidence interval. When number of cluster (level-3) is 20 then the coverage rate is 90.4%.
After increase number of cluster (level-3) the coverage rate also increases which is
approximate to 95%. But three levels when we estimate coverage rate for level-2 parameter
then it provides low coverage rate. So, we conclude that in three level when estimate
coverage rate for level-3 parameter, it is provided better coverage rate and close to desire

confidence interval but level-2 parameter provide low coverage rate.

Three levels: Continuous Outcome (varying level-2 and level-3 cluster no. simultaneously):
Figure 13: Relative bias of random intercept for continuous outcome varying level-2 and

level-3 cluster no. simultaneously
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Figure 14 Mean square error of random intercept for continuous outcome varying level-2

and level-3 cluster no. simultaneously
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The figure 13 shows that relative bias and for random intercept parameter when varying
level-2 and level-3 together. In this both methods for level-2 and level-3 we only consider
the random intercept parameter and compare the result in ML and REML methods.

The graph 14 provide the mean square error in different number of cluster (kevel-2) and
different number of cluster (level-3). Here also mean square error decreasing with
increasing the number of cluster (level-2) and number of cluster (level-3) simultaneously.

Now we estimate the coverage rate for varying level-2 and level-3 simultaneously.

Table 5: Coverage of random intercept (level-2 and level-3) for continuous outcome by

REML methods

Parameter No.of Cluster No.of Cluster Coverage rate(%) Coverage rate (%)
(level-2) (level-3) (level-2) (level-3)
5 20 33.0 90.4
20 40 26.0 93.6
Intercept (f) 30 60 20.4 65.0
40 80 24.0 95.6
60 120 17.2 93.2
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Table 5 provide the coverage rate in level-3 parameter. When number of cluster (level-2) is
5 and number of cluster (level-3) is 20 then the coverage rate for level-2 and level-3
parameter is 33% and 90.4% receptively. Here level-2 parameter provides the low coverage

rate but level -3 parameter provide better coverage rate.

Three levels: Discrete Outcomes (varying level-2 cluster no.)

Figure 15: Relative bias of random intercept for discrete outcome varying (level-2 cluster

no.)
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Figure 16: Mean square error of random intercept for discrete outcome varying (level-2

cluster no.)
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From the graph 15 provide that the relative bias in level-2 parameter decrease when
increase the number of cluster (level-2). Here relative bias in level-2 parameter by AGQ
methods provided less relative bias in three level models.

The (figure 16) we observe that mean square error decreasing in three methods when
increasing the number of cluster (level-2) in three level models for discrete outcome. Now
we also estimate coverage rate for level-2 parameter when estimate parameter by AGQ

methods.

Table 6: Coverage of random intercept (level-2) for discrete outcome by AGQ methods

Parameter No.of cluster No.of cluster Coverage rate (%)
(leve-2) (leve-3)

20 471

40 53.2

Intercept 60 43.6
(Po) 80 15 36.8
100 51.0

120 505

In the above table 6 which shows the coverage rate in level-2 parameter for different
number of cluster (level-2) when number of cluster (level-3) fixed. Here we observe that
when we increase the number of cluster (level-2) then it provides the low coverage rate in

level-2 parameter which is so far from the 95% confidence interval.


https://doi.org/10.28924/ada/stat.2.7

Eur. J. Stat. 2 (2022) 10.28924/ada/stat.2.7 R

Three levels: Discrete Outcomes (varying level-3 cluster no.)
Figure 17: Relative bias of random intercept for discrete outcome varying (level-3 cluster

no.)
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The (figure 17) provide the relative bias in level-3 parameter for discrete outcome in three
level models. In this graph relative bias decreasing with increasing the number of cluster
(level-3) when number of cluster (level-2) is fixed. Here adaptive Gaussian quadrature

methods provided less relative bias among the three methods

Figure 18: Mean square error of random intercept for discrete outcome varying (level-3

cluster no.)
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In the above figure 18 which displayed the mean square error for level-3 parameter when
number of cluster (level-2) fixed. With increasing the number of cluster (level-3) mean
square error is decreasing and AGQ methods provided less mean square error other than
two methods. Now we estimate coverage rate for level-3 parameter when estimate level-3

parameter by AGQ methods.

Table 7: Coverage of random intercept (level-3) for discrete outcome by AGQ methods

Parameter | No.of cluster No.of cluster Coverage rate (%)
(Llevel-3) (level-2)
20 88.0
40 87.0
Intercept 60 15 89.2
(Bo) 80 915
120 93.0

In the above table 37 when we estimate parameter by AGQ then the coverage rate is 88%
in level-3 parameter for number of clusters 20. When increase the number of clusters we
observe from the table the coverage rate for in level-3 parameter also increases and close

to the 95% confidence interval.

6. Conclusion

In this thesis paper the main idea is to effect of sample size in multilevel models for cluster
data when we estimate random effect models parameter. There are several authors have try
to estimate fixed effect parameter in multilevel models for continuous and discrete outcome
variable. They also try to estimate parameter for different methods such as restricted
maximum likelihood (REML), maximum likelihood (ML) for continuous outcome and
adaptive Gaussian quadrature (AGQ), penalized quasi likelihood for discrete outcome.
Many authors estimate the multilevel model’'s parameter and compare the different
methods. Given the potential problems of small sample sizes, several simulation studies
have been designed to examine the effect of small sample sizes, at different levels of

analysis, on various multilevel results (e.g., variance estimates, fixed effects estimates).
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In the above all discussion, we can say that the researcher more conscious about sample
size because there is more impact when estimates two and three level models parameter. It
is important that researchers are aware of and acknowledge the potential
untrustworthiness present with MLMs when sample size is small. To estimate multilevel
models without bias, adequate sample sizes must be obtained, since multilevel are often
estimated with different methods for discrete and continuous outcome and all methods
affect by small sample size.

Finally, we can say that REML method provided better result of continuous outcome for
two and three level model and AGQ method provided less relative bias and mean square

error for two and three level model.
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