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Abstract. This paper proposes a Naïve Bayes Classifier for Bayesian and nonparametric methodsof analyzing multinomial regression. The Naïve Bayes classifier adopted Bayes’ rule for solving theposterior of the multinomial regression via its link function known as Logit link. The nonparametricadopted Gaussian, bi-weight kernels, Silverman’s rule of thumb bandwidth selector, and adjustedbandwidth as kernel density estimation. Three categorical responses of information on 78 peopleusing one of three diets (Diet A, B, and C) that consist of scaled variables: age (in years), height(in cm), weight (in kg) before the diet (that is, pre-weight), weight (in kg) gained after 6 weeks ofdiet were subjected to the classifier multinomial regression of Naïve Bayes and nonparametric. TheGaussian and bi-weight kernel density estimation produced the minimum bandwidths across the threecategorical responses for the four influencers. The Naïve Bayes classifier and nonparametric kerneldensity estimation for the multinomial regression produced the same prior probabilities of 0.3077,0.3462, and 0.3462; and A prior probabilities of 0.3077, 0.3462, and 0.3462 for Diet A, Diet B, andDiet C at different smoothing bandwidths.

1. Introduction
Application of probabilistic based classification to Bayes’ theorem with vigorous independencyassumptions is referred to as Naïve Bayes classifier. It is a direct descriptive approach forre-modifying probability model to be an unconstrained attribute model (Wibawa et al., 2019).Elaborately, a Naïve Bayes classifier formally presupposes that the absence (or presence) ofa particular attribute of a category is unrelated to the absence (or presence) of other traits.For instance, a fruit might be called a banana if it is yellow (or green for unripe one), has a
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Eur. J. Stat. 10.28924/ada/stat.2.8 2curved shape, and contains good amount of calories, 15-17 cm in length and 42" thereabout indiameter. The mentioned attributes depend on each other, upon the subsistence, varieties, or otherattributes; what Naïve Bayes classifier does is to consider all these attributes to be independent ascontributors to the likelihood that the fruit is a banana (Zhang & Gao, 2011; Salmi & Rustam, 2019).
Depending on the accuracy of the probability model, Naïve Bayes classifier can be eitherefficiently trained or untrained in a supervised learning setting. In many pragmatic applications,parameter estimation of Naïve Bayes models is usually via maximum likelihood. However, one canwork with Naïve Bayes model without knowing the prior probabilistic distribution or using anyBayesian methods (Poovaraghan et al., 2019).It is of utmost importance in machine learning algorithms and regression analysis to estimateeither the unknown probabilistic function (either probability density function or probability massfunction) or attached probabilistic function to a given dataset based on sound and convincingsubjectivity, e.g. Bayesian classifiers, mutual information-based attribute selection algorithms,and density-based clustering algorithms. In instances where probabilistic function is unknown,Kernel Density Estimator (KDE) is thoroughly constructed in advance (Xu, 2018).
KDE is a nonparametric (distribution-free) technique of statistical modeling that makes use ofdata or observations to build a statistical model. In other words, it is a technique for estimatingprobabilistic function for a given data without any circumstance probabilistic function. Theprobabilistic function (be it probability density function or probability mass function) of a givendataset can be obtained via commingling kernel functions, usually via begetting each value in thegiven dataset. However, KDE is an effective way of estimating probabilistic function of a givendata when the distribution of the data is unknown. In other words, KDE makes it easy to solvethe problem of non-Gaussian distribution when the dataset is of continuous or numeric attributes(Kaviani & Sunita, 2017; Chen et al., 2021).
KDE training method superposes kernel functions in its manifolds with flexible bandwidth tofit the unknown probabilistic function. The most commonly used kernels are Gaussian kernel,triangular, Epanechnikov, biweight, and triweight. In comparison to kernel, bandwidth plays asignificant part in the estimation of the distribution of the probabilistic functions: a small bandwidthusually leads to under-smoothed estimation while a large bandwidth usually leads to over-smoothedestimation (Kelly & Johnson, 2021). The Naïve Bayes classifier and the non-parametric KDE willbe a framework of multinomial regression analysis in this work. It will be a framework for responsesof more than two categorical acumen (multinomial distributed responses) with associated covariatesof any form of data measurement. In other words, this research will be engineered by multinomial
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Eur. J. Stat. 10.28924/ada/stat.2.8 3regression Naïve Bayes classifier for Bayesian and nonparametric KDE for its responses of morethan two categories.
2. Literature Review

Multinomial regression model has been widely used in regression modeling, inter alia, epi-demiological and biostatistics bailiwicks. Sarrias & Daziano (2017) anticipated that embeddedcoefficients in multinomial regression analysis are usually estimated via Maximum Likelihood(ML) or Ordinary Least Square (OLS) on the bases of random sampling or randomization. Theyadvocated that Bayesian multinomial regression analyzes would be more appropriate whensamples are generated for outcomes or when the data do not follow randomization (Blizzard et
al., 2007). The classical multinomial regression provides the standard penalized ML solutionsto multi-class categorical outcomes of a dataset, in contrast to logistic regression that providessolution for dichotomous-type responses (Croissant, 2020).

Nandram (2021) proposed a three-stage hierarchical Bayesian multinomial-Dirichlet-Dirichlet-model for multinomial counts in order to recital for heterogeneity effect. The main contribution ofthe proposed model was to develop a joint posterior density for the multinomial-Dirichlet–Dirichletmodel via a combination of non-parametric and parametric, on bases of nested error regressionwith the use of iterative re-weighted least squares. According to Johndrow et al. (2019),Bayesian estimation for categorical responses with augmented and imbalanced data usuallyresulted in inefficient sampling behavior. Andrea & Nicola (2014) and Wioletta (2015) came-upwith an informative prior of lognormal, Log-F or Gaussian for estimating posterior parametersin multinomial regression analyzes. They affirmed that there has been diverse range of priordistributions (informative or non-informative) with no clear-cut has to the best prior that bestsourced a data and parameter(s) to be estimated in a Bayesian setting. According to Mark &David (2000) and Nandram et al. (2018), informative priors are pre-knowledge based about theproblem based data; such that elicit opinion of experts are usually used to construct antecedentdistribution that appropriately premeditates beliefs about the unknown parameter(s). They are ofthe belief that informative priors (via its subdivision of conjugate and non-conjugate priors) seemto be over-subjective and unscientific. Examples of distributions that provide informative priorsare Jeffrey’s prior, Inverse-gamma, Walshart, uniform etc. On the other hand, Chen & Fu (2018)affirmed that non-informative priors or diffuse priors are positively biased when bounded by rangeof distributions less than four. It is based on this that some prominent Bayesian analysts concludedthat non-informative priors are misleading, vague and diffuse priors. Examples of non-informativepriors are binomial, Poisson, Laplace, and Beta distributions.
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Eur. J. Stat. 10.28924/ada/stat.2.8 4In other to bridge the lacuna between informative and non-informative prior, a Naïve Bayesclassifier theoretical framework via Baye’s rule and nonparametric Kernel Density Estimation (KDE)will be used to analyze multinomial regression. The multinomial regression enables categoricalresponses (responses of more than two categories) with different types of data measurement for theassociated covariates/independent variables. The adopted Baye’s rule will be in terms of posterior,prior, normalization and required data as proposed by the English Statistician, Thomas Bayes in1973, while the nonparametric method will use Gaussian and bi-weight has KDE.
3. A Paradox of Multinomial Regression

According to Sinharay (2010), multinomial distribution is a multivariate colligation of the bino-mial distribution. Assuming we have independent n-trials with possibility of kth finite outcomes,then the associated probabilities are δ1, δ2, · · · , δk , such that, δi ≥ 0, i = 1, · · · , k , k∑
i=1

δi = 1.Then X = (X1, X2, · · · , Xk) follows a multinomial distribution with parameters “δ” and “n”, suchthat, δ = (δ1, δ2, · · · , δk). The Probability Mass Function (PMF) of the multinomial distributionis:
P (X1 = x1, · · · , Xk = xk) =

n!

x1!x2! · · · xk !
δx11 δ

x2
2 · · · δ

xk
k (1)

It is to be noted that k∑
i=1

xi = n. If k = 2, the multinomial distribution will be tantamount tobinomial distribution. Logit link is the link function of multinomial distribution. It is peculiar toprobabilities associated to observations with possible outcomes (e.g. the outcome of either 1, 2, 3,4, 5 or 6 shows-up when a die is tossed). In situation where possible outcomes are greater than two,multiple probabilities are assigned to observations such that individual probability takes valuesbetween zero and one, the sum of the probabilities must be less than or equal to one (Hasan et al.,2016). Assuming there are M-possible outcomes, then there are M-1 probabilities to be estimatedvia (δ[1]i , · · · , δ[M−1]i

). The chance of obtaining the outcome is via (δ[M]i = 1−
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). Themultinomial logit link function (otherwise known as the inverted link function) can be written as:
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For i = 1, · · · , n, XT = (xi1, xi2, · · · , xiu), βT = (β[m]1 , β

[m]
2 , · · · , β[m]u

) in matrix form. WhereX is the design matrix of µ × µ, ρ is the 1 by µ regression coefficients. It is to be noted that theregression coefficients can have different values, that is, the effect of the covariates can be differentfrom their probabilities. The probabilities can be estimated as:
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Eur. J. Stat. 10.28924/ada/stat.2.8 54. The Multinomial Classification via Gaussian Naïve Bayes (GNB)
The posterior distribution from the GNB assumptions is derived using Baye’s rule as follows:

P (Yi/X) =
P (Yi)P (X/Yi)
n∑
i=1

P (Yi)P (X/Yi)

Yi = 0, 1, · · · , n (4)
P (Yi/X) = Poster ior ; P (X/Yi) = Data; P (Yi) = P r ior ; n∑

i=1

P (Yi)P (X/Yi) =

Normal ization

Say for
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P (Y = 0)P (X/Y = 0) + P (Y = 1)P (X/Y = 1) + · · ·+ P (Y = n)P (X/Y = n)(5)Dividing both the numerator and denominator by P (Y = n)P (X/Y = n)
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The final expression of P (Y = n/X) is in terms of the inverted link function for multinomial distri-bution. Considering the summations in the denominator of equation (13) and given our assumptionof GNB that P (Xi/Y = yk) is Gaussian, expanding gives:
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Equation (17) is called linear weighted sum of the XTi s . Substituting equation (17) back intoequation (13) gives,
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Where ω0, ω1, · · · , ωn−1 are the weights.
5. Parameter Estimation for the Bayesian Multinomial Regression using Gaussian NaïveBayes
The log of the conditional likelihood:
lnP (Yi/Xi W ) =

n∑
i=1
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(23)This can be compared to the canonical form of Generalized Linear Model (GLM)
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], then solve via iterative optimization of Reweighted IterativeLeast Square procedure, gradient ascent or Newton Rapshon method.
6. Non-parametric Classification

Non-parametric uses bandwidth say h > 0 near a point say x0. Assuming the ProbabilityDensity Function for the observations is f̂ (x0) with corresponding Cumulative Density Function(CDF) say F̂ (x0). The derivative at the point x0 is,
f̂ (x0) =

F
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(24)
The numerator can be written as P (x0 − h
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nh

(25)Then non-parametric Kernel Density Estimation (KDE) via Naïve Bayes: suppose in a classof Ck with ith features, such that in each feature of (x1, x2, · · · , xn). The conditional probability
fi (xi |C = c), the probability that feature value in the ith position xi given class c. The trainingdata for the KDE (X, C). Its kernel density estimator can be drawn as follows:

f̂h(x) =
1

nh

n∑
i=1

K

(
x − xi
h

) (26)
Where h > 0 is the smoothing parameter called the bandwidth (otherwise known as the smoothingparameter of the KDE estimator f̂ ), n is the sample size, and K(·) is the kernel function with theproperties that K (·) : < → <, such that ∞∫

−∞
K(·) = 1, E(·) = 0. The kernels to be used areGaussian and biweight.The Gaussian based Kernel Density Naïve Bayes probability is

fi (xi |C = c) =
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)
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i
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Where the function K(.) is the Gaussian function kernel with mean zero and variance 1. Nc isthe number of observations X belonging to class c, xj |i |c . The value in the ith position of the jthinput (x1, x2, · · · , xn) in class c, such “h” is a bandwidth, or a smoothing parameter.The Bi-weight based Kernel Density Naïve Bayes probability is
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fi (xi |C = c) =
1

Nch

Nc∑
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xi , xj |i |c
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|
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h
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)
(28)However, the conditional probabilities can also be estimated using Laplace Smoothing (LS) via

fi (xi |C = c) =
myi |c + 1

nc + 1
(29)

Such that mxi |c is the number of input X pertaining to class c and ith position as same xi . nc isthe total number of observation X in class c. k is the number of possible unique feature values forinput X. According to Silverman (1986), the rule-of-thumb method for estimating bandwidth “h” is
ĥ =

(
4σ̂5

3n

)1/5
≈ 1.06σ̂n−

1/5 (30)
Where σ2 the sample standard deviation and n is the number of samples. Silverman’s rule ofthumb assumes that the underlying kernel is Gaussian.

7. Numerical Analysis
The dataset to be used to validate the Naïve Bayes classifiers contains informationon 78 people using one of three diets (Diet A, B, or C). The dataset was extractedfrom the website of Department of mathematics and statistics, University of Sheffield(https://sheffield.ac.uk/mash/statistics/datasets), the dataset can also be found on stcp-dataset-diet_des. The dataset contains variables like participants number, binary variables - gender andthree different types of diets taken. Additionally, the dataset consists of scale variables - Age (inyears), Height (in cm), weight (in kg) before the diet (that is, pre-weight), weight (in kg) gainedafter 6 weeks of diet. Ellen Marshal, University of Sheffield, collated the data. The researchquestions were meant for studying the influence of the three different types of diets taken on thevariables mentioned (with the exception of the participants’ number and gender).Table 1. Posterior Bayes Naïve: Diets’ Prior and A Prior Probabilities withVariables’ Means and Standard Errors
Variable Intercept Age Height Pre.weight weight aftersix weeks Prior Prob-abilities A Prior Prob-abilitiesDiet A 1.2972(0.1597) 40.8750(9.72810) 170.2917(10.9484) 72.8750(8.3838) 69.5750(8.3984) 0.3077 0.3077
Diet B 3.2172(0.0467) 39.0000(9.5111) 174.8518(12.0821) 71.1111(10.0932) 68.0852(10.2172) 0.3462 0.3462
Diet C 0.2781(0.3610) 37.7778(9.3155) 167.2593(9.7096) 73.6296(7.6064) 68.4815(8.2428) 0.3462 0.3462

Keys: x=Means; y=Median; bw=Bandwidths
Source: Authors’ Computation (2022).
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Eur. J. Stat. 10.28924/ada/stat.2.8 9From table 1 above, diet type (A, B and C) as the dependent variable (subdivided into threecategorical), such that age, height, pre-weight and weight after six weeks are the independentvariables to be evaluated. The positive signs of means of 40.8750, 170.2917, 72.8750, 69.5750for age, height, pre-weight and weight after six weeks variables respectively imply that there is apositive contribution or relationship to Diet A. In a similar vein, positive signs of means of 39.0000,174.8518, 71.1111, 68.0852 for age, height, pre-weight and weight after six weeks variables re-spectively imply that there is a positive contribution or relationship to Diet B. While positive signsof means of 37.7778, 167.2593, 73.6296, 68.4815 for age, height, pre-weight and weight after sixweeks variables respectively imply that, there is a positive contribution or relationship to Diet C.It is to be noted that Diet C is the most significant with the mentioned contributors due its bare-ness minimum standard errors of 9.3155, 9.7096, 7.6064 and 8.2428 respectively for age, height,pre-weight and weight after six weeks variables.
P (Y = Diet A/X) =

1

1 + exp (1.2972 + 40.8750X1 + 170.2917X2 + 72.8750X3 + 69.5750X4)

P (Y = Diet B/X) =
1

1 + exp (3.2172 + 39X1 + 174.8518X2 + 71.1111X3 + 68.0852X4)Then,
P (Y = Diet C/X) =

1

1 + exp (0.2181 + 37.7778X1 + 167.2593X2 + 73.6296X3 + 68.4815X4)It is to be noted that X1=Age, X2=Height, X3=Pre.weight, X4=Weight after six weeks.Table 2. Predictive Probabilities
Variables Age Height Pre.weight Weight after weeksMultinomial Sigmoid σ(ai) 0.4107 0.3673 0.2219 0.0024

Source: Authors’ Computation (2022).

From table 3 above, it can be deduced that “age” is the most contributing factor among the fourcovariates to diet, followed “height”, “pre-weight” and “weight after six weeks”.
Table 3. Non-parametrically Gaussian KDE: Diets’ Prior and A prior Probabilitieswith Variables’ Means and Median

Variables Age Height Pre. Weight Weight after Weeksx y bw x y bw x y bw x y bwDiet A 41.000(41.000) 0.2090(0.1853) 4.446 178.5(178.5) 0.2123(0.3715) 3.112 73.00(73.00) 0.250(0.2463) 3.996 69.25(69.25) 0.2505(0.2306) 3.913
Diet B 35.000(35.000) 0.1398(0.1398) 4.169 179.5(179.5) 0.1896(0.1575) 5.385 179.5(179.5) 0.1896(0.1575) 5.385 79.00(79.00) 0.1820(0.1752) 4.378
Diet C 39.000(39.000) 0.1897(0.1897) 4.802 162(162) 0.1986(0.4673) 4.343 162(162) 0.1987(0.4673) 4.343 67.45(67.45) 0.2604(0.2804) 3.837

Source: Authors’ Computation (2022).
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Eur. J. Stat. 10.28924/ada/stat.2.8 10Table 4. Non-parametrically Bi-weight KDE: Diets’ Prior and A prior Probabilitieswith Variables’ Means and Median
Variables Age Height Pre. Weight Weight after Weeksx y bw x y bw x y bw x y bwDiet A 41.000(41.000) 0.0154(0.0139) 4.446 178.5(178.5) 0.0157(0.0077) 3.112 73.00(73.00) 0.0181(0.0185) 3.996 69.25(69.25) 0.0185(0.0174) 3.913
Diet B 35.000(35.000) 0.0159(0.0113) 4.169 179.5(179.5) 0.0118(0.0140) 5.385 80.5(80.5) 0.0050(0.0137) 4.699 79.00(79.00) 0.0134(0.0036) 4.378
Diet C 39.000(39.000) 0.0150(0.0139) 4.802 162(162) 0.0147(0.0100) 4.343 74(74) 0.0205(0.0189) 3.474 67.45(67.45) 0.0192(0.0207) 3.837

Source: Authors’ Computation (2022).Table 5. Non-parametrically Silverman’s Rule of Thumb Bandwidth Selector: Di-ets’ Prior and A prior Probabilities with Variables’ Means and Median
Variables Age Height Pre. Weight Weight after Weeksx y bw x y bw x y bw x y bwDiet A 41.000(41.000) 0.1809(0.1365) 6.121 178.5(178.5) 0.0068(0.0143) 4.142 73.00(73.00) 0.0181(0.0185) 3.996 69.25(69.25) 0.2546(0.2373) 3.768
Diet B 35.000(35.000) 0.1959(0.4589) 5.162 179.5(179.5) 0.2119(0.1674) 4.131 80.5(80.5) 0.0050(0.0137) 4.699 79.00(79.00) 0.2034(0.2382) 3.074
Diet C 39.000(39.000) 0.0123(0.0140) 5.536 162(162) 0.1815(0.3862) 5.414 74(74) 0.0205(0.0189) 3.474 67.45(67.45) 0.2324(0.2142) 4.878

Source: Authors’ Computation (2022).Table 6. Non-parametrically Adjusted Bandwidth (1.5): Diets’ Prior and A priorProbabilities with Variables’ Means and Median
Variables Age Height Pre. Weight Weight after Weeksx y bw x y bw x y bw x y bwDiet A 41.000(41.000) 0.1732(0.4605) 6.67 178.5(178.5) 0.1851(0.3300) 4.669 73.00(73.00) 0.2048(0.1610) 5.994 69.25(69.25) 0.2546(0.1579) 5.869
Diet B 35.000(35.000) 0.1790(0.4157) 6.254 179.5(179.5) 0.1545(0.1360) 8.078 80.5(80.5) 0.1548(0.2164) 7.048 79.00(79.00) 0.1545(0.1360) 8.078
Diet C 39.000(39.000) 0.1664(0.4683) 7.204 162(162) 0.1667(0.3398) 6.514 74(74) 0.2280(0.1778) 5.211 67.45(67.45) 0.2131(0.1770) 5.756

Source: Authors’ Computation (2022).

The data sample is “x” also termed as the mean, the points of the grid at which the densityderivative is to be estimated is “y”, also termed as the median and “h” the smoothing bandwidth viaunbiased cross validation. It is to be noted from table 3 to table 6 for non-parametrically GaussianKDE, bi-weight KDE, Silverman’s Rule of Thumb bandwidth Selector, and Adjusted Bandwidth(1.5) respectively produced the same prior probabilities of 0.3077, 0.3462, and 0.3462; and A priorprobabilities of 0.3077, 0.3462, and 0.3462 for Diet A, Diet B, and Diet C at different smoothingbandwidths, the same set of priors with that of Posterior Bayes Naïve. Gaussian KDE and bi-weight KDE produced the bareness minimum bandwidths across the three Diets for age, height,pre-weight, weight after six weeks in comparison to Silverman’s Rule of Thumb Bandwidth Selectorand adjusted bandwidth (1.5).
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Figure 1. Visualization of the Naïve Bayes Conditional Density Plots
Source:Authors’ Computation (2022).
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Figure 2. Visualization of the Kernel Conditional Densities of the Corresponds
Source:Authors’ Computation (2022).
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This paper introduced a Bayesian and nonparametric framework for solving and analyzing multi-nomial regression. The framework adopted a Naïve Bayes classifier for the Bayesian approachand nonparametric approach via kernel density estimation. The kernels adopted in this researchare Gaussian KDE, bi-weight KDE, Silverman’s Rule of Thumb bandwidth Selector, and AdjustedBandwidth (1.5). In conclusion, the Gaussian KDE and bi-weight KDE produced the barenessminimum bandwidths across the three categorical responses for the four influencers. Both theNaïve Bayes classifier and nonparametric KDE for the multinomial regression produced the sameprior probabilities of 0.3077, 0.3462, and 0.3462; and A prior probabilities of 0.3077, 0.3462, and0.3462 for Diet A, Diet B, and Diet C at different smoothing bandwidths. An extension of this workcan be carried-out by extending the Naïve Bayes classifier and non-parametric KDE to Negative-Binomial or zero-inflated regression for modeling count responses, that are usually affected byover-dispersion of count outcomes.

References
[1] D. Andrea, O. Nicola, Approximate Bayesian logistic regression via penalized likelihood estimation with dataaugmentation, Unit of Biostatistics and Unit of Nutritional Epidemiology Institute of Environmental Medicine,Karolinska. (2014) 1-24.[2] L. Blizzard, D.W. Hosmer, The log multinomial regression model for nominal outcomes with more than two attributes,Biom. J. 49 (2007) 889–902. https://doi.org/10.1002/bimj.200610377.[3] H. Chen, S. Hu, R. Hua, X. Zhao, Improved naive Bayes classification algorithm for traffic risk management, EURASIPJ. Adv. Signal Process. 2021 (2021) 30. https://doi.org/10.1186/s13634-021-00742-6.[4] H. Chen, D. Fu, An improved naïve bayes classifier for large scale text, Advances in Intelligent Systems Research146 (2018). 2nd International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2018).[5] Y. Croissant, mlogit: Multinomial Logit Models. R package version 1.0-3.1 (2020). https://CRAN.R-project.org/

package=mlogit.[6] A. Hasan, Z. Wang, A.S. Mahani, Fast estimation of multinomial logit models: R Package mnlogit, J. Stat. Soft. 75(2016) 1-24. https://doi.org/10.18637/jss.v075.i03.[7] J.E. Johndrow, A. Smith, N. Pillai, D.B. Dunson, MCMC for imbalanced categorical data, J. Amer. Stat. Assoc. 114(2019) 1394–1403. https://doi.org/10.1080/01621459.2018.1505626.[8] P. Kaviani, D. Sunita, Short survey on Naïve Bayes algorithm, Int. J. Adv. Eng. Res. Develop. 4 (2017) 2348-4470.[9] A. Kelly, M.A. Johnson, Investigating the statistical assumptions of Naïve Bayes classifiers, in: 2021 55th AnnualConference on Information Sciences and Systems (CISS), IEEE, Baltimore, MD, USA, 2021: pp. 1–6. https:
//doi.org/10.1109/CISS50987.2021.9400215.[10] M.E. Glickman, D.A. Dyk, Basic Bayesian methods, in: W.T. Ambrosius (Ed.), Topics in Biostatistics, Humana Press,Totowa, NJ, 2007: pp. 319–338. https://doi.org/10.1007/978-1-59745-530-5_16.[11] B. Nandram, A Bayesian approach to linking a survey and a census via small areas, Stats. 4 (2021) 509–528.
https://doi.org/10.3390/stats4020031.[12] B. Nandram, L. Chen, S. Fu, B. Manandhar, Bayesian logistic regression for small areas with numerous households,Stat. Appl. 16 (2018) 171–205.

https://doi.org/10.28924/ada/stat.2.8
https://doi.org/10.1002/bimj.200610377
https://doi.org/10.1186/s13634-021-00742-6
https://CRAN.R-project.org/package=mlogit
https://CRAN.R-project.org/package=mlogit
https://doi.org/10.1080/01621459.2018.1505626
https://doi.org/10.1109/CISS50987.2021.9400215
https://doi.org/10.1109/CISS50987.2021.9400215
https://doi.org/10.1007/978-1-59745-530-5_16
https://doi.org/10.3390/stats4020031


Eur. J. Stat. 10.28924/ada/stat.2.8 14

[13] N. Salmi, Z. Rustam, Naïve Bayes classifier models for predicting the colon cancer, IOP Conf. Ser.: Mater. Sci. Eng.546 (2019) 052068. https://doi.org/10.1088/1757-899X/546/5/052068.[14] M. Sarrias, R. Daziano, Multinomial logit models with continuous and discrete individual heterogeneity in R: Thegmnl Package, J. Stat. Soft. 79 (2017). https://doi.org/10.18637/jss.v079.i02.[15] B.W. Silverman, Density estimation for statistics and data analysis, Chapman and Hall, New York (1986).[16] S. Sinharay, Discrete probability distributions, In International Encyclopedia of Education (3rd Edition) (2010).[17] R.J. Poovaraghan, M.V.K. Priya, S.S.Vamsi, M. Mewara, S. Loganathan, Fake news accuracy using Naïve Bayesclassifier, Int. J. Recent Technol. Eng. 8 (2019) 45-78.[18] A.P. Wibawa, A.C. Kurniawan, D.M.P. Murti, et al. Naïve Bayes classifier for journal quartile classification, Int. J.Recent Contrib. Eng. Sci. IT. 7 (2019) 91. https://doi.org/10.3991/ijes.v7i2.10659.[19] G. Wioletta, The advantages of Bayesian methods over classical methods in the context of credible intervals, Inform.Syst. Manage. 4 (2015) 53-63.[20] S. Xu, Bayesian Naïve Bayes classifiers to text classification, J. Inform. Sci. 44 (2018) 48–59. https://doi.org/
10.1177/0165551516677946.[21] W. Zhang, F. Gao, An improvement to Naive Bayes for text classification, Procedia Eng. 15 (2011) 2160–2164.
https://doi.org/10.1016/j.proeng.2011.08.404.

https://doi.org/10.28924/ada/stat.2.8
https://doi.org/10.1088/1757-899X/546/5/052068
https://doi.org/10.18637/jss.v079.i02
https://doi.org/10.3991/ijes.v7i2.10659
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1016/j.proeng.2011.08.404

	1. Introduction
	2. Literature Review
	3. A Paradox of Multinomial Regression
	4. The Multinomial Classification via Gaussian Naïve Bayes (GNB)
	5. Parameter Estimation for the Bayesian Multinomial Regression using Gaussian Naïve Bayes
	6. Non-parametric Classification 
	7. Numerical Analysis
	8. Conclusions 
	References

