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ABSTRACT. This paper discusses novel methods for the pairwise selection of explanatory variables from
a large set of candidate pairs. These methods are applied to monthly time series of surface temperature
and their performance is compared with that of conventional selection criteria such as AlIC and BIC. In
our frequency-domain analysis of the temperature datasets, the pairs are defined in a natural way as
cosine and sine vectors of the same frequency. The results show that the new criteria are the only ones

which are able to correctly identify seasonal patterns.

1. INTRODUCTION

Reschenhofer (2015a) derived conditions for the consistent selection of a subset from
a large set of potential explanatory variables and proposed automatic subset selection
criteria, which satisfy these conditions. For situations where the explanatory variables can
only be selected pairwise, Reschenhofer (2015b) proposed analogous criteria. From a
technical point of view, the latter setting is easier because it involves quantities that are y2-
distributed with two degrees of freedom rather than only one degree of freedom, which allows
the use of Rényi's representation (Rényi, 1953) for the calculation of the mean and the
variance of sums of order statistics (note that a standard exponentially distributed variable
can easily be obtained by dividing a y2(2)-distributed variable by 2). The need for new
subset selection criteria is due to the fact that the widely used criteria AIC (Akaike, 1973)

and BIC (Schwarz, 1978) are particularly suitable for nested models but do not take the
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extent of possible data snooping into account, which is particularly problematic when the set
of candidate variables is large.
Criteria of the AIC-type can for the classical regression model in the most general form

be written as

140%+42Kk%0%-8k03+240%-3203+120* (1)
n—-k-2

(Reschenhofer, 1999), where the first term is two times the negative maximum log likelihood

—2log(f (y; XB,621) + 2(k + 1DQ + 2Q% +

and the other terms serve to penalize overparametrization. There are k + 1 model parameters,
namely By, ..., Bx,0%. The number of model parameters is used as a measure of model
complexity. Misspecificaton of a model is meaasued by Q = 62/62, where 6 is an unbiased
estimator of the true error variance obtained from a large model (which is assumed to be
correctly specified) and 62 is the least squares (LS) estimator obtained from the possibly
misspecified model y = X + u. The criterion (1) reduces to Sawa’s (1978) criterion for n —
o, the AIC for n > o and Q = 1, and the corrected AIC (Sugiura, 1978; Hurvich and Tsai,
1989) for Q = 1. It is clear that the criteria of the AIC-type are inconsistent because their
penalty terms do not grow as n — oo. In contrast, the penalty term of the BIC, which is given
by (k + 1)log(n), increases as n increases but it still does not factor in the number K of
candidate variables. Because of this shortcoming of the BIC, several modifications have been
proposed (e.g. Zheng & Loh, 1997; Chen & Chen, 2008; Wang et al., 2009; Kim et al., 2012),
which are typically not fully specified but depend on tuning parameters to be chosen by the
user.

Soon after the criteria for pairwise variable selection (Reschenhofer, 2015b) had been
published online in the SOP Transactions on Statistics and Analysis in 2015, this journal
was apparently discontinued. For convenience of the reader, we will therefore review some
of the theoretical results in the next section. In addition, we will also introduce new criteria.
In Section 3, the different criteria are evaluated using real data. The design of this empirical
investigation is tailored for the problem of consistently selecting pairs of variables from a
large set of pairs. Firstly, the time series are extremely long. They start in January 1880 and
extend to January 2021. Secondly, the number of available explanatory variables is of the

same size as the length of the time series. Thirdly, the pairs of explanatory variables are
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formed in a natural way. Fourthly, the explanatory variables are orthogonal, which is
essential for carrying out the required computations in an efficient way. Finally, there is
indeed a genuine pattern in these time series, which allows a clear distinction between true

and false models. Section 4 concludes.

2. METHODS
2.1 Individual explanatory variables

In the following, we prefer to use criteria with multiplicative penalty terms instead of
additive penalty terms. However, it is easily possible to switch back at any time from the
latter to the former. For example, in the case of the final prediction error (FPE)

—S, (2)
(Rothman, 1968; Akaike, 1969), where S = Y, fi?2 = né? is the residual sum of squares, we
obtain
nlog (Z—J:I;S) =nlog(s) + log(l + nz__kk)” ~ nlog(S) + log(exp(2k)) = nlog(S) +
2k
= nlog(6?) + 2k + nlog(n), (3)
which is, apart from an additive constant, equal to the AIC
—2log(f (y; XB,621) + 2(k + 1). (4)
For this approximation, it is of course required that k is small compared to n.

The term k occurring in (2) coincides with the expected value of the sum of k iid.
x%(2)-variables and has just the right size to ensure the unbiasedness of (2) as an estimator
for the mean squared prediction error

Ellz— %8|, (5)
where z is a new sample which is independent from the original sample y that has been
used for the estimation of S. A conceptual shortcoming of model selection by minimizing
some unbiased estimator of the squared prediction error is that it is implicitly assumed that
each competing model is correctly specified, i.e, EXf = Ey. However, taking a possible
misspecification into account (e.g., by introducing the term Q) has only a small effect on the

performance of the model selection criterion because in the case of a serious misspecification


https://doi.org/10.28924/ada/stat.2.11

Eur. J. Stat. 2 (2022) 10.28924/ada/stat.2.11

the term S is decisive anyway (see Reschenhofer, 1999). We will therefore turn a blind eye
to the possibility of a misspecification and focus solely on the danger of overfitting. The
simplest way to do that is to assume that Ey = 0. To preserve unbiasedness (under the
additional assumption of orthogonality of the explanatory variables) in the case of subset
selection, where the residual sum of squares is minimized also with respect to the n X k
matrix X whose columns can be chosen from a total of K columns, the term k in (2) has to
be replaced by the expected value {;(k, K) of the sum of the k largest of K independent and
x%(1)-distributed variables (Reschenhofer, 2004; for a related criterion see George and
Foster, 2000). The criterion

+{1(k,K
FPEg (k) = T2 23S, (6)

is clearly an improvement over (3) because it takes the number K of available explanatory
variables into account and therefore allows a fairer penalization of data snooping.
Reschenhofer (2015a) arqued that in the presence of some dominant explanatory variables,
which are certain to be included, it is more appropriate to use {;(1,K — k) instead of {;(k +
1, K) for the decision to increase the model dimension from k to k + 1. A technical advantage
of this stepwise procedure is that only expected values of the form {; (1, K) are needed, which
were approximated by 2 log(K) by Foster and George (1994) and used for the construction
of their risk inflation criterion (RIC). A more accurate approximation is given by

¢1(1,K) = 2 log(K) — log(log(K)) (7)
(Reschenhofer, 2004). For an alternative stepwise procedure see Reschenhofer (2010).

2.2 Pairs of explanatory variables

In contrast to time-domain models, frequency-domain models typically include only

pairs of explanatory variables rather than individual explanatory variables because both a
cosine vector and a sine vector of the same frequency are required to model an oscillation
with an arbitrary phase. Suppose that the mean x of an n-dimensional normal distribution

with covariance matrix 2l can be written as a linear combination

cos(wj - 1) sin(w; - 1)
U= Z} 1 } + Z] 1 ] ' (8)
cos(w; ) sin(w; ' n)

=:Cj =:Sj
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where K = [(n—1)/2] and 0 < w; = 2mj/n < m is the j-th Fourier frequency. Because of
the orthogonality of the vectors Cy, ..., Cx, Sy, ..., Sk, the LS estimates of the coefficients A;

and B; based on a sample y are given by

r _ Xiqcos(wi)yr 2

R — —_ - n .
5 _ Xi=gsin(wi)ye 2y o _
B; = —Zgzlsinz(wjt) =—Xt=1 sin(w;t)ye, (10)

and the residual sum of squares by
A A T A N
SK)=(y—24,C-2XBS;) (y—XA4;C; - X B;S))
=y y ZAZCT ZBZSTS
= Ty? - 23 (4 + BY). ()
=R}

Under the additional assumption that u = 0, we have

A PRIPN ~ 202
and
SRY . SRR iid X2(2), (13)

hence the expected value of the residual sum of squares of the best model with k < K pairs

C;,S; of explanatory variables is given by

’\ 2 oy
ES(k) = E (Thyyf — 254, R2 ) = 02E (S, 2 - S5 58, R2 ) = 0% (n — G (k, K)),
(14)
where q is a permutation which rearranges R%,...,R2 into descending order, i.e.,
52
Rey = = Ryqoy (15)
and
Calk, K) = 21 (14 2ioiean) (16)

is the expected value of the sum of the k largest of K independent and y?(2)-distributed

random variables. Finally, it follows from

* — A D T A
ES*(k) = E(Z - z:§§=1Aq(j)cq(j) - 2:?-1361(1')*5}1(1')) (Z - Z:?-1‘4(1(1) a() — Z] 1 q(J)Sq(J))
=n02+Egz (A7 (,)"‘B (]))—02(n+(2(k K)) (17)

that
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n+(2(k K)

FPESUB(k) n-Z,(k,K)

et GI) (18)

is an unbiased estimator for the mean squared prediction error (17).
2.3 Consistency
We study the probability of overfitting in the simplest case, where the residual sums
of squares S(0) and S(1), respectively, of the two smallest models are compared under the
assumption that u = 0. The probability that a criterion with a multiplicative penalty term h

incorrectly prefers one pair over zero pairs is given by

PSR < 5(0) = P (55 (SO = 2R240 ) h < s55(0)) = P (2 > Z20) »

2

plz>"=) (19)

N —’
=:H

where Z is the maximum of K independent and standard exponentially distributed random

variables. For consistency it is required that this probability is very small, hence H must be

much greater than EZ. It is therefore safe to assume that H — EZ > 0, which implies that
Var(2)

P(Z>H)=P(Z—-EZ>H—-EZ)<P(|Z—-EZ|>H—-EZ) < _EZ)? (20)
Using Rényi's representation (Rényi, 1953) to write Z as a linear combination
Z=4+2 4 (21)
of a random sample ey, ..., ex from a standard exponential distribution, we obtain
Var(z)—1+ + - +—<— (22)
hence the propability (20) vanishes if H — EZ — o or, equivalently, if
nh —n— 2EZ — oo. (23)
A suitable choice for the multiplicative penalty term his
ha=1+22(logK) +C+=), 1> 2 (24)

because
nhy —n—2EZ = nhy —n—2(1+5+ - +2) = (A - 2) (log(K) + € +5-) - o0, (25)
where € = 0.5772156649 ... is Euler's constant. The associated additive penalty term is

given by
pa=2(log(k) +C+=-), 1> 2, (26)

because
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nlog(S(1hy) = nlog(S(1)) + log(1 + %)n ~ nlog(S(1)) + pa. (27)
In the next section, the performance of this penalty term will be examined for various values

of A and compared with conventional penalty terms.

3. EMPIRICAL RESULTS

In our empirical study, we use only stations with continuous monthly temperature
measurements from January 1880 to January 2021. The homogenized station data (see
Lenssen, 2019; GISTEMP Team, 2022) were downloaded from the website
https://data.giss.nasa.gov/gistemp/ of the NASA Goddard Institute for Space Studies (GISS).
Figure 1.a shows the annual means from 1880 to 2020 for the stations (i) Vardo, Norway
(70.3670N, 31.1000E, elevation: 15m), (ii) Freudenstadt, Germany (48.4544N, 8.4100E,
elevation: 797m), (iii) Kremsmiinster, Austria (48.0500N, 14.1331E, elevation: 383m), (iv)
Basel Binningen (47.5500N, 7.5831E, elevation: 316m), and (v) Valentia Observatory, Ireland
(51.9394N, 10.2219W, elevation: 9m). Each time series exhibits an upward trend which is an
indication of global warming (see, e.g., also Fomby and Vogelsang, 2002; Lai and Yoon,
2018; Chang et al., 2020; Mangat and Reschenhofer, 2020). To make this trend more visible,
we plotted first the cumulative measurements in Figure 1.b and then the difference between
the cumulative measurements yq,y; + ¥2,V1 + V2 +V3,... and a suitable linear trend
b,2b,3b, ... in Figure 1.c. The accumulation has a strong smoothing effect and the subtraction
of the linear trend amplifies any possible deviation of the difference from linearity. The
parameter b was obtained by averaging over the first 20 years. Analogous difference plots
were produced separately for each calendar month. In each case, a faster than linear growth
can be seen which is again strong evidence of an upward trend. Finally, Figure 3 shows for
each station the average seasonal pattern, which must later in our evaluation study be

correctly identified by the different criteria discussed in the previous section.

In the periodogram

I(wy) = g |2ty yee ™" (28)
obtained from the measurements over a period of 141 full years (January 1880 to December

2010), a seasonal pattern becomes apparent in the form of isolated peaks at the seasonal
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frequencies, which are in the case of monthly data given by 2mj/12,j =1,...,6, where
2nj /12 = wq4q = 141 2/n and n = 12141 = 1692. However, there is also a possible
pole at frequency zero (see the first column of Figure 4), which is a further indication of the
upward trend in the temperature. To get rid of this distracting feature, we take first
differences. In order to retain full years, we add the January 2021 to the observation period.
The observation period for the differenced series then starts in February 1880 and extends
to January 2021. The second column of Figure 4 shows that the pole has indeed disappeared
but the seasonal pattern is still there. The transformation has served its purpose. We are

now ready to start the evaluation of the competing criteria.
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Figure 1.a Annual means from 1880 to 2020 for the stations (i) Vardo, Norway (blue) (ii)
Freudenstadt, Germany (turquoise), (iii) Kremsmiinster, Austria (green), (iv) Basel Binningen,
Switzerland (orange), and (v) Valentia Observatory, Ireland (red). 1.b Cumulative time series.

1.c Linear trend subtracted
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Figure 2: After the subtraction of a linear trend, the cumulative monthly temperature at Vardo
(blue), Freudenstadt (turquoise), Kremsmiinster (green), Basel Binningen (orange), and
Valentia Observatory (red) is plotted separately for each calendar month (a: January, b:

February, c: March, ...).
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Figure 3: Mean seasonal pattern in (a) the monthly temperature and (b) the differenced
monthly temperature at Vardo (blue), Freudenstadt (turquoise), Kremsmiinster (green), Basel

Binningen (orange), and Valentia Observatory (red).
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In Subsection 2.2, we used [(n — 1)/2] instead of [n/2] for the definition of the number
K of Fourier frequencies, which excludes the seasonal frequency . This decision was based
on the fact that the distribution of the periodogram ordinate at this frequency has only one
instead of two degrees of freedom because sin(m) = 0. Nevertheless, the frequency m has
exceptionally been included in Figures 4. Obviously, this seasonal frequency does not explain
an important part of the seasonal pattern anyway. In general, only the first two or three
seasonal frequencies are really needed for the description of the seasonal pattern, which is
due to the fact that this pattern does not deviate much from a simple sinusoidal shape (see
Figure 3). An ideal criterion should therefore select only the pairs (C},S;) corresponding to
the first two or three seasonal frequencies and none of the other pairs. Because of the
orthogonality of the cosine and sine vectors, we choose a stepwise approach, where the k-
th pair will be selected if

nlog(S(k)) + p(k) < nlog(S(k — 1)). (29)
The additive penalty term p(k) can either be constant or depend on the sample size n, the
total number K of available pairs or the number K —k + 1 of the remaining pairs, which
have not been chosen yet.

The criteria AIC and the BIC penalize the inclusion of an additional pair with the
constant terms py;c(k) = 2+ 2 and pg;c(k) = 2 log(n), respectively. The additional factor 2
in these terms is due to the trivial fact that each pair consists of two explanatory variables.
Anyhow, these two criteria penalize any pair in exactly the same way, regardless whether it
is the only choice or it has been selected as the best from a large set of candidate pairs. In
contrast, the criterion based on (25) explicitly penalizes overparametrization because its
penalty term p,, which is given by (26), depends on the total number K of available pairs.
However, this term may still be considered constant in the sense that it penalizes the
inclusion of the first pair in the same way as the inclusion of the second or third pair. It does
not take into account that in the second step there are only K — 1 pairs left and in the third

step only K — 2. The criterion with penalty term
pe(k) = 20,(LK—k+1) =4(1+ 2?;1’”1}) (30)

(Reschenhofer, 2015b) does just that. It looks at the number of the remaining pairs. The

large-sample properties of the criteria utilizing K depend of course on the size of K, in
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particular on whether K increases as n increases and at which rate. In our application, K =

n/2.
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Figure 4: Periodogram of the monthly temperature from 1880-01 to 2020-12 (1** column) and
periodogram of the first differences from 1880-02 to 2021-01 (2" column) at the stations
Vardo (1" row), Freudenstadt (2" row), Kremsmiinster (3 row), Basel Binningen (4™ row),
and Valentia Observatory (5™ row). The periodogram ordinates at the seasonal frequencies
are marked red.

Table 1 shows for each of the five temperature datasets which of the seasonal
frequencies (excl. ) and how many of the nonseasonal frequencies are selected by the
different criteria when the whole observation period is used. Not surprisingly, the AIC selects
far too many frequencies. It always selects 50 frequencies, which is the maximum allowed in
our study. Since at most three frequencies are required for the description of the seasonal
patterns, AIC makes at least 47 wrong decisions. BIC selects much fewer frequencies than

AIC but still more than the other competing criteria which perform quite similarly. The
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harshest criterion is that with the penalty term (30). It is the only one which selects exactly
those (green) frequencies which are absolutely necessary. When a milder criterion is desired,
which selects also the optional (yellow) frequencies, the criterion with penalty term (26) and
A = 2.5 might be a good compromise.

Table 1: Selection of up to 50 pairs of cosine and sine vectors of the same frequency by
seven automatic selection methods for the description of the seasonal patterns in five
differenced temperature series (stations: Vardo, Freudenstadt, Kremsmiinster, Basel
Binningen, and Valentia Observatory). The colors green and yellow indicate which of the
first five seasonal frequencies are absolutely required (green) or optional (yellow).

Nonseasonal frequencies (orange) should not be selected ever.

AIC BIC 2, A=225 A=250 A=2.75 A=3.00
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

47 3 0 1 1 1 0
1 1 1 1 1 1 1
1 1 0 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

47 5 0 3 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

47 5 0 3 2 2 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

48 5 0 4 3 2 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

47 8 0 4 3 1 1
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4. CONCLUSION

In this paper, conditions for the pairwise selection of explanatory variables from a large
set of pairs are derived and selection methods are proposed that satisfy these conditions. In
an empirical study with long monthly temperature time series, these methods are evaluated
and compared with conventional methods. In this study, the number of available pairs is
equal to half of the length of the time series. The pairs are defined as cosine and sine vectors
of the same frequency. Apart from a possible seasonal component, the spectrum of the time
series is continuous. When the temperature time series are described by a linear combination
of the cosine and sine vectors, the individual coefficients vanish at all frequencies as the
length of the time series increases, but with the exception of the seasonal frequencies. It is
therefore straightforward to assess the performance of the competing selection methods.
Ideally, all seasonal frequencies required for the description of the seasonal pattern should
be selected but none of the nonseasonal frequencies. The conventional selection criteria AIC
and BIC fail to identify the seasonal pattern correctly. They select too many of the
nonseasonal frequencies. Not surprisingly, this is particularly true for the AIC. But also the
BIC does not sufficiently penalize overparametrization because it does not take the total
number of available pairs into account. Only the new selection criteria manage to identify

the seasonal pattern correctly.
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