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MLE Evolution Equation for Fractional Diffusions and Berry-Esseen Inequality of Stochastic
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Abstract. We study recursive parameter estimation in fractional diffusion processes. First, stabilityand asymptotic properties of the global maximum likelihood estimator (MLE) of the drift parameterare obtained under some regularity conditions. Then we obtain an evolution equation for the MLEof the drift parameter in nonhomogeneous fractional stochastic differential equation (fSDE) driven byfractional Brownian motion. This equation is then modified to yield an algorithm which is consistent,asymptotically efficient and converges to the MLE. The gradient and Newton type algorithm are first-order approximations. Finally we study the Berry-Esseen inequality for stochastic gradient descentin continuous time (SGDCT) algorithm for American option. We compare it with Longstaff-Schwartzregression based method.
1. Introduction and Preliminaries

Online parameter estimation is a challenging problem that appear frequently in fields such asrobotics, neuroscience and finance in order to design adaptive filters and optimal controllers forunknown or changing systems. The approach here is based on modification of the offline maximumlikelihood estimation.First we introduce some basic tools from fractional stochastic calculus.
1.1 Fractional Brownian Motion

The fractional Brownian motion (fBm, in short), which provides a suitable generalization of theBrownian motion, is one of the simplest stochastic processes exhibiting long range-dependence. Itwas introduced by Kolmogorov (1940) in a Hilbert space framework and later on studied by Levy(1948) and in detail by Mandelbrot and Van Ness (1968).
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Eur. J. Stat. 10.28924/ada/stat.2.13 2Consider a probability space (Ω,F ,P) on which all random variables and processes below aredefined.A fractional Brownian motion {WH
t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a centeredGaussian process with continuous sample paths whose covariance kernel is given by

E(WH
t W

H
s ) =

VH
2

(s2H + t2H − |t − s|2H), s, t ≥ 0

where
VH := var(WH

1 ) =
1

[Γ(H + 1
2 )]2

{
1

2H
+

∫ ∞
1

[
uH−

1
2 − (u − 1)H−

1
2

]2
du

}
.

With VH = 1, fBm is called a normalized fBm.
Properties(P1) It has stationary increments: E(WH

t −WH
s )2 = |t − s|2H, t, s ≥ 0.(P2) WH

0 = 0, E(WH
t ) = 0, E(Wt)

2 = |t|2H, t ≥ 0.(P3) When H = 1
2 ,W

1
2
t is the standard Brownian motion. The increments are independent.(P4) The process is self similar or scale invariant, i.e., (WH

αt , t ≥ 0) =d (αHWH
t , t ≥ 0), α > 0.

H is also called the self similarity parameter.(P5) The increments of the fBm are negatively correlated for H < 1
2 and positively correlatedfor H > 1

2 .(P6) For H > 1
2 , fBm is a long memory process since the covariance between far apart incrementsdecrease to zero as a power law: r(n) := E[WH

1 (WH
1+n −WH

n )] ∼ CHn2H−2 and ∑∞n=1 r(n) =∞.This property is also called long range dependence or long memory. The parameter H, measuresthe intensity of the long range dependence. Note that the estimation of the parameter H based onobservation of fractional Brownian motion has already been paid some attention, see, e.g., Peltierand Levy Vehel (1994) and the references there in. However we assume H to be known.(P7) The sample paths of WH are almost surely Hölder continuous of any order less than H, butnot Hölder continuous of any order greater than H, hence continuous but nowhere differentiable.(P8) For any H, it has a finite 1
H variation, i.e.,

0 < sup
Π
E
∑
ti∈Π

[∣∣∣WH
ti+1
−WH

ti

∣∣∣ 1
H

]
<∞.

(P9) Law of the Iterated Logarithm (Arcones (1995)):
P

(
limt→0+

WH
t

tH(log log t−1)
1
2

=
√
VH

)
= 1.

Self similarity of fBm leads to
P

limt→0+

WH
1
t

(log log t−1)
1
2

=
√
VH

 = 1.
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Eur. J. Stat. 10.28924/ada/stat.2.13 3Setting u = 1
t ,

P

(
limu→∞

WH
u

uH(log log u−1)
1
2

=
√
VH

)
= 1.

Strong Law of Large Numbers:
lim
u→∞

WH
u

u
= 0 a.s.

(P10) fBm can be represented as a stochastic integral with respect to standard Brownian motion
B (Mandelbrot and van Ness (1968)). For H > 1

2 ,
WH
t =

1

Γ(H + 1
2 )

{∫ 0

−∞
[(t − s)H−

1
2 − (−s)H−

1
2 ]dBs +

∫ t

0

(t − s)H−
1
2 dBs

}
.

Standard Brownian motion can be written as a stochastic integral w.r.t WH
t (see, Igloi and Terdik(1999)):

Bt =
1

Γ( 3
2 −H)

{∫ 0

−∞
[(t − s)−H+ 1

2 − (−s)−H+ 1
2 ]dWH

s +

∫ t

0

(t − s)−H+ 1
2 dWH

s

}
.

(P11) With topological dimension n, the fractal dimension of fBm is n + 1 − H. Hausdorffdimension of one dimensional fBm is 2−H.(P12) Existence of fBm:(i) It can be defined by a stochastic integral w.r.t. Brownian motion.(ii) It can be constructed by Kolmogorov extension theorem ( see, Samorodnitsky and Taqqu(1994)).(iii) It can be defined as the weak limit of some random walks with strong correlations (see,Taqqu (1975)).(P13) For H 6= 1
2 , the fBm is not a semimartingale and not a Markov process, but a Dirichletprocess.(P14) Dirichlet Process: A process is called a Dirichlet process if it can be decomposed asthe sum of a local martingale and an adapted process of zero quadratic variation (zero energy).Obviously is a larger class of processes than semimartingales.(P15) For H < 1

2 , the quadratic variation of WH is infinite. For H > 1
2 , the quadratic variationof WH is zero. Hence for H > 1

2 ,W
H is a Dirichlet process.(P16) Fractional Brownian motion can be simulated using Cholesky decomposition method ofthe covariance matrix.

1.2 Stochastic Integral w.r.t. fBm

For H 6= 1
2 , the classical theory of stochastic integration with respect to semimartingales is notapplicable to stochastic integration with respect to fBm. However, since fBm is a Gaussian process,stochastic integration with respect to Gaussian process is applicable.
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Eur. J. Stat. 10.28924/ada/stat.2.13 4For integration questions related to fractional Brownian motion, see Pipiras and Taqqu (2000).Now there exists several approaches to stochastic integration with respect to fBm:(i) Classical Riemann sum approach : Lin (1995), Dai and Heyde (1996), Kleptsyna, Kloeden andAnh (1998c);(ii) Malliavin calculus approach : Decreusefond and Ustunel (1998, 1999), Coutin and Decreusefond(1999a), Alos, Mazet and Nualart (2000, 2001);(iii) Wick calculus approach : Duncan, Hu and Pasik-Duncan (1999);(iv) Pathwise calculus : Young (1936), Zahle (1998, 1999), Ruzmaikina (2000);(v) Dirichlet calculus : Lyons and Zhang (1994);(vi) Rough path analysis : Lyons (1998), Lyons and Victoir (2007).Lin (1995) introduced the stochastic integral as follows: Let π : 0 < t1 < t2 < · · · < tn = 1 bea partition of [0, 1]. Let φ be a left continuous bounded Lebesgue measurable function with rightlimits, called sure processes. Then∫ 1

0

ψ(t)dWH
t = l.i.m.|π|→∞∑

ti∈π
ψ(ti−1)(WH

ti
−WH

ti−1
).

The indefinite integral is defined as∫ t

0

ψ(s)dWH
s =

∫ 1

0

ψ(t)I[0,t]dW
H
t .

This integral has a continuous version and a Gaussian process. However,
E

(∫ t

0

ψ(s)dWH
s

)
6= 0.

To overcome this situation, Duncan, Hu and Pasik-Duncan (2000) introduced an integral using
Wick calculus for which

E

(∫ t

0

f (s)dWH
s

)
= 0.

They defined integrals of both Itô and Stratonovich type.We shall discuss the Wick calculus approach here. Wiener integral for deterministic kernel wasdefined by Gripenberg and Norros (1996).Let φ : R+ × R→ R be a Borel measurable deterministic function. Let
L2
φ(R+) :=

{
f : |f |2φ =

∫ ∞
0

∫ ∞
0

f (s)f (t)φ(s, t)dsdt <∞
}
.

The inner product in the Hilbert space L2
φ is denoted by 〈·, ·〉φ.If f , g ∈ L2

φ, then ∫∞0 fsdW
H
s and ∫∞0 gsdW

H
s are well defined zero mean, Gaussian randomvariables with variances |f |2φ and |g|2φ respectively and covariance

E

(∫ ∞
0

fsdW
H
s

∫ ∞
0

gsdW
H
s

)
=

∫ ∞
0

∫ ∞
0

fsgsφ(s, t)dsdt =: 〈f , g〉φ.
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Eur. J. Stat. 10.28924/ada/stat.2.13 5Let (Ω,F , P ) be the probability space on which WH is defined. For f ∈ L2
φ, define ε : L2

φ →
L1(Ω,F , P ) as

ε(f ) := exp

{∫ ∞
0

ftdW
H
t −

1

2

∫ ∞
0

∫ ∞
0

fs ftφ(s, t)dsdt

}
= exp

{∫ ∞
0

ftdW
H
t −

1

2

∫ ∞
0

|f |2φ
}

which is called an exponential function.Let E be the linear span of exponentials, i.e.,
E =

{
n∑
k=1

akε(fk) : n ∈ N, ak ∈ R, fk ∈ L2
φ(R+), k = 1, 2, . . . , n.

}
The Wick product of two exponentials is defined as

ε(f ) � ε(g) = ε(f + g).

For distinct f1, f2, · · · , fn ∈ L2
φ, the exponentials ε(f1), ε(f2), · · · , ε(fn) are independent. It can beextended to define the Wick product of two functionals F and G in E .

An analogue of Malliavin Derivative: Wick Derivative

The φ-derivative of a random variable F ∈ Lp in the direction of Φg where g ∈ L2
φ is defined as

DΦgF (ω) = lim
δ→0

1

δ

[
F

(
ω + δ

∫ ·
0

(Φg)(u)du

)
− F (ω)

]
if the limit exists in Lp(Ω,F , P ).If there is a process (DφFs , s ≥ 0) such that

DΦgF =

∫ ∞
0

DφFsgsds a.s.

for all g ∈ L2
φ, then F is said to be φ-differentiable. Let F : [0, T ] × Ω → R be a stochasticprocess. The process is said to be φ-differentiable if for each t ∈ [0, T ], F (t, ·) is φ-differentiableand Dφs Ft is jointly measurable.

Chain Rule: If f : R → R is smooth and F : Ω → R is φ-differentiable, then f (F ) is also
φ-differentiable and

DΦgf (F ) = f ′(F )DφgFand
Dφs f (F ) = f ′(F )Dφs (F ).(1) If g ∈ L2

φ, F ∈ L2(Ω,F , P ) and DΦgF ∈ L2(Ω,F , P ), then
F �

∫ ∞
0

gsdW
H
s = F

∫ ∞
0

gsdW
H
s −DΦgF.
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Eur. J. Stat. 10.28924/ada/stat.2.13 6(2) If g, h ∈ L2
φ and F,G ∈ E , then

E

(
F �

∫ ∞
0

gsdW
H
s G �

∫ ∞
0

hsdW
H
s

)
= E

[
DΦgFDΦhG + FG〈g, h〉φ

]
.

Let πn : 0 < t
(n)
1 < t

(n)
2 < · · · < t

(n)
n = T. Let L[0, T ] be the family of stochastic processes on

F on [0, T ] such that E|F |2φ <∞, F is φ-differentiable, the trace of (Dφs Ft , 0 ≤ s ≤ T, 0 ≤ t ≤ T )exists and E ∫ T0 (Dφs Fs)
2ds < ∞ and for each sequence of partitions {πn, n ∈ N} such that as

|πn| → 0

n−1∑
i=0

E

{∫ t
(n)
i+1

t
(n)
i

|Dφs F πt(n)
i

−Dφs Fs |ds

}2

→ 0

and E|F π − F |2φ → 0 as n →∞.For F ∈ L[0, T ], define∫ T

0

FsdW
H
s = l .i .m.|πn|→0

n−1∑
i=0

Fti � (WH
ti+1
−WH

ti
).

Proposition 1.1 Let F,G,∈ L[0, T ]. Then(i) E (∫ T0 FsdW
H
s

)
= 0.

(ii) E (∫ T0 FsdW
H
s

)2
= E

{(
Dφs Fsds

)2
+
∣∣I[0,T ]F

∣∣2
φ

}.(iii) ∫ to (aFs + bGs)dW
H
s = a

∫ t
0 FsdW

H
s + b

∫ t
0 GsdW

H
s a.s.(iv) If E [sup0≤s≤T Fs

]2
< ∞ and sup0≤s≤T E|Dφs Fs |2 < ∞, then {∫ t0 FsdWH

s , 0 ≤ t ≤ T} has acontinuous version.Here it is not assumed that (Fs , s ∈ [0, T ]) is adapted to the fBm. Assume that
Dφs Fs = 0, s ∈ [0, T ]. Then(v) E (∫ T0 FsdW

H
s

)2
=
∣∣I[0,T ]F

∣∣2
φ

= E
∫ T

0

∫ T
0 FuFvφ(u, v)dudv.

Fractional version of Stratonovich Integral is defined as∫ t

0

FsδW
H
s :=

∫ t

0

FsdW
H
s +

∫ t

0

Dφs Fsds a.s.

1.3 Fractional Itô Formula

If f : R→ R is a twice continuously differentiable function with bounded derivatives of order two,then
f (WH

T )− f (WH
0 ) =

∫ T

0

f ′(WH
s )dWH

s +H

∫ T

0

s2H−1f ′′(WH
s )ds a.s.

For H = 1
2 , it gives the classical Itô formula for standard Brownian motion.
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General Itô Formula

Let {Fu, 0 ≤ u ≤ T} and {Gu, 0 ≤ u ≤ T} be stochastic processes in L[0, T ]. Assume that thereexists an α > 1−H such that
E|Fu − Fv |2 ≤ C|u − v |2α,

lim
|u−v |→0

E{|Dφu (Fu − Fv )|2} = 0

and
E sup

0≤s≤T
|Gs | <∞.

Let
dXt = Gtdt + FtdW

H
t , X0 = ξ ∈ R, 0 ≤ t ≤ T,i.e.,

Xt = ξ +

∫ t

0

Gsds +

∫ t

0

FsdW
H
s .Let f : R → R be C1

b in the first variable and C2
b in the second variable and let(

∂f
∂x (s, Xs), s ∈ [0, T ]

)
∈ L[0, T ]. Then

f (t, Xt) = f (0, ξ) +

∫ t

0

∂f

∂s
(s, Xs)ds +

∫ t

0

∂f

∂x
(s, Xs)Gsds +

∫ t

0

∂f

∂x
(s, Xs)FsdW

H
s

+

∫ t

0

∂2f

∂x2
(s, Xs)FsD

φ
s Xsds.

Itô formula for Stratonovich Type integral:
Let {Ft , 0 ≤ t ≤ T} satisfy the above assumptions. Let

ηt =

∫ t

0

FsδW
H
s

be the Stratonovich integral. Let g ∈ C2
b and (∂g∂x (s, ηs)Fs , s ∈ [0, T ]

)
∈ L[0, T ].Then for t ∈ [0, T ],

g(t, ηt) = g(0, 0) +

∫ t

0

∂g

∂s
(s, ηs)ds +

∫ t

0

∂g

∂x
(s, ηs)FsdW

H
s ,

i.e.,
δg(t, ηt) = gt(t, ηt)dt + gx(t, ηt)dηt .

1.4 Fractional Girsanov Theorem

Decreusefond and Ustunel (1999) gave a Girsanov formula using stochastic calculus of variation.Kleptsyna, Le Breton and Roubaud (1999) obtained the following Girsanov theorem.

https://doi.org/10.28924/ada/stat.2.13
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Proposition 1.2 Let h be a continuous function from [0, T ] to R. Define for 0 < t ≤ T , the function
k th = (k th(s), 0 < s < t) by

k th(s) := −ρ−1
H s

1
2
−H d

ds

∫ t

s

dωω2H−1(ω − s)
1
2
−H d

dω

∫ ω

0

dzz
1
2
−H(ω − z)

1
2
−Hh(z)

where
ρH = Γ2(3/2−H)Γ(2H + 1) sinπH.

Define for 0 ≤ t ≤ T ,

Nht :=

∫ t

0

k th(s)dWH
s , 〈Nh〉t :=

∫ t

0

h(s)k th(s)ds.

Then the process {Nht , 0 ≤ t ≤ T} is a Gaussian martingale with variance function {〈Nh〉t , 0 ≤
t ≤ T}.

For h = 1, the function k th is k t∗(s) := τ−1
H (s(t− s))

1
2
−H where τH := 2HΓ(3/2−H)Γ(H+ 1/2).

Then the corresponding Gaussian martingale and its quadratic variation are

N∗t =

∫ t

0

k t∗(s)dWH
s and 〈N∗〉t =

∫ t

0

k t∗(s)ds = λ−1
H t2−2H where λH =

2HΓ(3− 2H)Γ(H + 1/2)

Γ(3/2−H)
.

1.5 Anticipative Girsanov Theorem

The Carleman-Fredholm determinant is a complex-valued function which generalizes the determi-nant of a finite dimensional linear operator. We recall that the Carleman-Fredholm determinant ofa Hilbert-Schmidt operator B from L2[0, T ] into itself is defined by the product expansion
dc(B) =

∞∏
j=0

(1− λj) exp(λj)

where {λj , j ≥ 0} are the nonzero eigenvalues of B counted as many times as its multiplicities,see Simon (1979). In particular, if the operator B is nuclear, then
dc(B) = det(I − B) exp{trace B}.

Thus if DU is nuclear, then
dc(−DU) = det(I +DU) exp{trace (−DU)}.

The following is the nonadapted (anticipative) extension of the Girsanov theorem proved byKusuoka (1982, Theorem 6.4). See also Theorem 4.1.2 in Nualart (1995).
Proposition 1.3 Let V : Ω→ Ω be a mapping of the form

V (t, ω) = ω(t) +

∫ t

0

U(s, ω)ds,

where U is a measurable mapping from Ω in to H = L2(0, T ) and suppose that the following
conditions are satisfied:

https://doi.org/10.28924/ada/stat.2.13
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(i) V is bijective.
(ii) For all ω ∈ Ω, there exists a Hilbert-Schmidt operator DU(ω) from H into itself such that:

(a)

‖U(ω +

∫ •
0

hsds)− U(ω)−DU(ω)h‖H = o(‖h‖H)

for all ω ∈ Ω as ‖h‖H → 0,
(b) h → DU(ω +

∫ •
0 hsds) is continuous from H into L2([0, T ]2) the space of Hilbert-Schmidt

operators for all ω,
(c) I +DU(ω) : H → H is invertible.
Then if Q is the measure on Ω,F such that F = QV −1, Q is absolutely continuous with respect

to P and
dQ

dP
= |dc(−DU)| exp

(
−
∫ T

0

U(t)dWt −
1

2

∫ T

0

U2
t dt

)
where dc(−DU) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt operator
−DU and

∫ T
0 U(t)dW (t) is the Skorohod integral.

2. MLE Evolution Equation: MLE Dirichlet Process

2.1 Large Deviations

Consider the ordinary SDE
dXt = f (θ,Xt , t)dt + dWt (2.1)

where W is a standard Brownian motion.We start with the uniform decay and equicontinuity results of parameter dependent stochasticintegrals for unbounded parameter space, see Levanony et al. (1993).Let the collection of continuous time martingales {F (θ, t),Ft , t ≥ 0}θ∈R where for each
(θ, t), F (θ, t) =

∫ t
0 f (θ,Xs , s)dWs is an Itô integral whose corresponding increasing process is

〈F (θ, t)〉t =
∫ t

0 f
2(θ,Xs , s)ds.Levanony et al. (1993) proved the following two results:

Proposition 2.1 Suppose F and 〈F 〉t are jointly continuous in mean square in (θ, t). Suppose
there exists a γ > 0 such that for all t0 ≥ 0

lim
|θ|→∞

inf
t≥t0

〈F (θ, ·)〉t
(t|θ|)γ =∞.

Then

lim
|θ|→∞

sup
t≥t0

|F (θ, t)|
〈F (θ, ·)〉t

= 0.

https://doi.org/10.28924/ada/stat.2.13
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Remark In unbounded paramter space sufficiency and Rao-Blackwellization of Vasicek model wasstudied in Bishwal (2011b). The optimal sampling problem was also solved.
Corollary 2.2 Suppose that there exists some δ > 0 such that

lim inf
|θ|→∞

inf
t≥t0

t−δ〈F (θ, ·)〉t > 0 a.s. t0 ≥ 0.

Then
lim
|θ|→∞

sup
t≥t0

|F (θ, t)|
|θ|γ〈F (θ, t)〉t

= 0 ∀γ > 0.

Now consider the fractional Ornstein-Uhlenbeck (fO-U)model satisfying the fractional SDE
dXt = θXtdt + dWH

t , t ≥ 0, θ < 0.

We focus on the fundamental semimartingale behind the fO-U model. Define
κH := 2HΓ(3/2−H)Γ(H + 1/2),

kH(t, s) := κ−1
H (s(t − s))

1
2
−H,

λH :=
2HΓ(3− 2H)Γ(H + 1

2 )

Γ(3/2−H)
,

vt ≡ vHt := λ−1
H t2−2H

MH
t :=

∫ t

0

kH(t, s)dWH
s .

From Norros et al. (1999) it is well known that MH
t is a Gaussian martingale, called the funda-mental martingale whose variance function 〈MH〉t is vHt . Moreover, the natural filtration of themartingale MH coincides with the natural filtration of the fBm WH since

WH
t :=

∫ t

0

K(t, s)dMH
s

holds for H ∈ (0.5, 1) where
KH(t, s) := H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H−

3
2 dr, 0 ≤ s ≤ t

and for H = 0.5, the convention K1/2 ≡ 1 is used.
Define

Qt :=
d

dvt

∫ t

0

kH(t, s)Xsds.

It is easy to see that
Qt =

λH
2(2− 2H)

{
t2H−1Zt +

∫ t

0

r2H−1dZs

}
.

https://doi.org/10.28924/ada/stat.2.13


Eur. J. Stat. 10.28924/ada/stat.2.13 11Define the process Z = (Zt , t ∈ [0, T ]) by
Zt :=

∫ t

0

kH(t, s)dXs .

The following facts are known from Kleptsyna and Le Breton (2002):
(i) Z is the fundamental semimartingale associated with the process X .(ii) Z is a (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0

Qsdvs +MH
t .

(iii) X admits the representation
Xt =

∫ t

0

KH(t, s)dZs .

(iv) The natural filtration (Zt) of Z and (Xt) of X coincide.
Now consider the fractional SDE

dXt = f (θ,Xt , t)dt + dWH
t (2.2)

where WH is the fractional Brownian motion with Hurst parameter H > 0.5.Let Z̃ is the fundamental semimartingale associated with the process X . Let the collection of con-tinuous time martingales {G(θ, t),Gt , t ≥ 0}θ∈R where for each (θ, t), G(θ, t) =
∫ t

0 f (θ, Z̃s , s)dWsis an Itô integral whose corresponding increasing process is 〈G(θ, t)〉t =
∫ t

0 f
2(θ, Z̃s , s)ds.From Theorem 3.4 in Buchman and Kluppelberg (2006), the fractional diffusion (2.2) can berepresented as a monotone and differentiable functional of the fO-U process using the state spacetransform (SST) representation. Hence Z̃ can be represented as a SST of semimartingale in termsof Z.

Proposition 2.1 can be extended to the fractional SDE as follows:
Proposition 2.2 Suppose G and 〈G〉t are jointly continuous in mean square in (θ, t). Suppose
there exists a γ > 0 such that for all t0 ≥ 0

lim
|θ|→∞

inf
t≥t0

〈G(θ, ·)〉t
(t|θ|)γ =∞.

Then

lim
|θ|→∞

sup
t≥t0

|G(θ, t)|
〈G(θ, ·)〉t

= 0.

Corollary 2.2 can be extended to the fractional SDE as follows:
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Corollary 2.3 Suppose that there exists some δ > 0 such that
lim inf
|θ|→∞

inf
t≥t0

t−δ〈G(θ, ·)〉t > 0 a.s. t0 ≥ 0.

Then
lim
|θ|→∞

sup
t≥t0

|G(θ, t)|
|θ|γ〈G(θ, t)〉t

= 0 ∀γ > 0.

Recall that by Girsanov theorem, the likelihood function of θ based on the observations {Xs , 0 ≤
s ≤ t} is given by
Lt(θ) = exp

{∫ t

0

f (θ,Xs , s)dXs −H(2H − 1)

∫ t

0

f 2(θ,Xs , s)(

∫ s

0

(s − r)2H−2dr)ds

}
. (2.3)

Let
lT (θ) = logLt(θ). (2.4)The MLE is defined as
θt = arg sup

θ∈R
lt(θ),

that is,
lt(θt) = sup

θ∈R
lt(θ).

Let
It =

∫ t

0

f 2
θ (θ0, Xs , s)ds. (2.5)

We have the strong consistency and asymptotic normality of the MLE:
Theorem 2.1

a) θt → θ0 a.s. as t →∞,
b) I

1/2
t (θt − θ0)→D N (0, 1) as t →∞.

Proof: Due to the fundamental semimartingale representation Z̃ of fractional diffusions along withstate-space transform, main tools are Taylor expansion of the derivative of the log-likelihood Ut(θ)along with martingale SLLN and martingale CLT and delta method. We omit the details.Redefine the MLE as
θt = lim inf

n→∞
arg max
|θ|≤n

lt(θ),

that is
lt(θt) = sup

θ∈R
lt(θ)

An Ft-adapted MLE exists.We derive the evolution equation for the trajectories of the MLE using the fractional Itô formula.Assume that our candidate for the MLE is a continuous Dirichlet process of the form
dθt = at dt + bt dXt , t ≥ t0. (2.6)
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Ut(·) ∈ C2 for all t ≥ 0 a.s. and together with its derivatives is jointly (θ, t) continuous. Henceby fractional Itô formula

dUt(θt) = fθ(θt , Xt , t)[dXt − f (θt , Xt , t)dt] + Rt(θt)dθt

+H(2H − 1)Qt(θt)b
2
t dt + fθθ(θt , Xt , t)btdt, t ≥ t0

(2.7)

where Rt and Qt are the second and the third derivative of the log-likelihood w.r.t. θ. Assumingthat Rt(θt) < 0 for all t ≥ t0, the MLE which solves Ut(θ) = 0 ∀t > 0, is a solution of theequation
dθt = −R−1

t (θt){fθ(θt , Xt , t)[dXt − f (θt , Xt , t)dt]

+[H(2H − 1)Qt(θt)b
2
t + fθθ(θt , Xt , t)bt ]dt}, t ≥ t0

(2.8)

which after equating with (2.6) yields the MLE equation
dθt = −R−1

t (θt){fθ(θt , Xt , t)[dXt − f (θt , Xt , t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt , Xt , t)

−R−1
t (θt)fθ(θt , Xt , t)fθθ(θt , Xt , t)]dt}

(2.9)

with initial conditions: |θt0 | <∞, Ut(θt0 ) = 0, Rt(θt0 ) < 0.

The choice of the initial time t0 > 0 is imposed by the fact that R0(θ) = 0 for all θ. Let t0 > 0be fixed. Define the stopping times
τ := inf{t ≥ t0 : |θt | =∞}, σ := inf{t ≥ t0 : |Rt(θt)| = 0}.

In fact, τ is the explosion time.
Existence and Uniqueness of the MLE Evolution Equation

Theorem 2.2 The MLE equation (2.9) has a unique strong solution θt , t0 ≤ t < τ ∧ σ.

Proof. Write (2.9) in the form
dθt = A(θt , t)dt + B(θt , t)dW

H
t (2.10)

where the random functions A and B are obtained respectively by equating the drift and thediffusion term in (2.9). If A and B are jointly (θ, t) continuous and locally Lipschitz in θ (a.s.), thenthe proof follows from Kunita (1984, Theorem 3.4.5) and Mishura (2008). In our case since theterm R−1 which appears in both A and B, may result in unbounded coefficients. Thus while in theclassical local Lipschitz case, only truncation of θt is applied, here additional truncation argumentis needed.Fix n < ∞ and choose a C∞ function ψn such that ψn(θ) = 1 if |θ| ≤ n, ψn(θ) ∈ [0, 1] if
n ≤ |θ| ≤ n + 1, ψn(θ) = 0, |θ| > n + 1. Let φn(θ, t) := ψn(R−1

t (θ)). Define the truncated
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An(θ, t) = A(θ, t)ψn(θ)φn(θ, t)

Bn(θ, t) = B(θ, t)ψn(θ)φn(θ, t)
(2.11)

and consider the SDE
dθnt = An(θnt , t)dt + Bn(θnt , t)dW

H
t , (2.12)

θnt0 = θt0ψn(θt0 )φn(θt0 , t0). (2.13)With this truncation and since An and Bn are jointly continuous and continuously differentiablew.r.t. θ (with jointly continuous derivatives), An and Bn are globally Lipschitz with globally lineargrowth a.s. Thus by Kunita (1984, Theorem 3.4.1), (2.12) possesses a unique strong solution
{θnt , t0 ≤ t <∞.}Define Sn = inf{t ≥ t0 : |θnt | > n or Rt(θnt ) > −1/n} and note that (2.12) coincides with (2.10)for all t ∈ [t0, S

n). Let S∞ = limn→∞ S
n and define {θt , t0 ≤ t < S∞} by θt = θnt if t < Sn.With this definition, one has S∞ = σ ∧ τ and {θt , t0 ≤ t < σ ∧ τ}, a unique strong solution of(2.10).

Theorem 2.3 If the MLE θt has a.s. continuous trajectories, then (2.9) holds for θt for sufficiently
large t . If in addition, P (Rt(θt) < 0 ∀t > 0) = 1, the log-likelihood lt(·) is strictly concave in
some small neighborhood of the MLE for all t > 0, then (2.9) is the MLE evolution equation on
[t0,∞) a.s. for all t0 > 0.

Proof: Fix some ε > 0, choose t0 such that P (t0 > T ) > 1 − ε and consider equation (2.9) on
[t0, τ ∧ σ) with initial condition θt0 = θ̃t0 . Applying the fractional Itô Velntzell formula togetherwith the initial condition Ut(θt0 ) = Ut(θ̃t0 ) = 0 implies that Ut(θ̃t) = 0 for all t ∈ [t0, τ ∧ σ).This and the fact that Rt(θ̃t) < 0 for all t ∈ [t0, τ ∧ σ) indicate that θ̃t is a strict maximum of
Lt(·), t ∈ [t0, τ ∧ σ).We now show that θt = θ̃t for all t ∈ [t0, τ ∧ σ). Let 0 < ∆n → 0, define tn = t∆n and
δtn = |θtn − θ̃tn |. Then since Ut(θt) = Ut(θ̃t) = 0 for all t ∈ [t0, τ ∧ σ) it holds that 0 =

|Ut(θtn)− Ut(θ̃tn)| = |Rtn(θ̄tn)|δtn for some θ̄t ∈ [θt , θ̃t ] which, because δtn > 0, for all n, results in
Rtn(θ̄tn) = 0 for all n.Therefore, since by definition tn → S and δtnδs (due to sample path continuity of θt and θ̃t ), onemay utilize the joint continuity of R to conclude that Rtn(θ̄tn) → Rs(θs) = Rs(θ̃s) = 0 whichby definition results in S = σ. Since this contradicts the underlying assumption (that bifurcationoccurs before τ ∧ σ), it confirms the validity of (2.9) for the MLE on [t0, τ ∧ σ).Now by the definition of T , P (R(θt) < 0 ∀ t ≥ t0) > 1 − ε. This and the boundedness of θtimply that (2.9) holds for θt on [0,∞) w.p. > 1− ε. The condition on T leads to second assertion(where T = 0 a.s.).
Remarks:
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Newton-type Algorithm

Newton type algorithms are approximation of the MLE equation (2.9). However, (2.9) is notsuitable for recursive estimation, it is valid for large t , and moreover, it requires the knowledge ofexact MLE at the initial time.Newton type algorithms are insensitive to initial conditions and implementable for all t0 > 0. Thealgorithm makes the estimator θt follow the gradient when U 6= 0 until it enters the neighborhoodof a local maximum and then keeps θt in this neighborhood as long as possible , i.e., as longas singularity does not arise (where afterwards the process repeats itself). This switching policyis needed in order to maintain the necessary flexibility which prevents the estimator for being’trapped’ in a no solution situation (i.e, when R = 0 in (2.9)).Fix α > 0 and some small ε, δ, define the set
A(t) = {θ : |Ut(θ)| ≤ δ, Rt(θ) ≤ −ε}. (2.14)

A simplified version of the Newton Algorithm is
dθt = −R−1

t (θt){fθ(θt , Xt , t)[dXt − f (θt , Xt , t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt , Xt , t)

−R−1
t (θt)fθ(θt , Xt , t)fθθ(θt , Xt , t)

+α Ut(θt)]dt}I{θt0∈A(t)} + t−νUt(θt)dtI{θt0 /∈A(t)}

(2.15)

with initial condition θt0 , t0 > 0.When θt ∈ A(t), the algorithm follows the likelihood equation (with a decay term), where aswhen θt ∈ Ac(t), it follows the gradient towards a local maximum. The main problem with (2.14) isthe fact that this scheme could result in infinitely many switchings in the bounded time intervals (oreven uncountably many switchings). This prevents (2.14) from being an implementable algorithm.Choose continuous 0 < δt ↓ 0 and 0 < εt ↓ 0 where δt satisfies∫ ∞
t0

δtdt =∞, (s/t)ν < δt/δs ∀t0 ≤ s < t. (2.15)

For example δ = t−β, 0 < β < 1 ∧ ν will do.Redefine the set A(t),
A(t) := {θ : |Ut(θ)| ≤ δttν , Rt(θ) ≤ −εt}. (2.16)

Let
A(t) := {φt0 ∈ C[0, t] : ∃s ≤ t such that Rs(φs) ≤ −2εs and φr ∈ A(r)∀r ∈ [s, t]}}. (2.17)
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A(t) sets for R the ’entrance level’ −2εt into A(t) and ’exit level’ −εt (into and from A(t)respectively).The changes in (2.15) are in the definition of good event and the normalizing of the second term.The proposed algorithm is given by
dθt = −R−1

t (θt){fθ(θt , Xt , t)[dXt − f (θt , Xt , t)dt]

+[H(2H − 1)Qt(θt)R
−2
t (θt)f

2
θ (θt , Xt , t)

−R−1
t (θt)fθ(θt , Xt , t)fθθ(θt , Xt , t)

+α Ut(θt)]dt} I{θt0∈A(t)} + t−νUt(θt)dt I{θt0 /∈A(t)}

(2.18)

which holds in [t0, τ) (where τ is the explosion time), with any initial condition θt0 , t0 > 0 (where
θt = θt0∀t ∈ [0, t0]).
Theorem 2.4 The equation (2.18) possesses unique strong solution in [t0, τ).

Notice the difference between algorithm (2.18) and the conventional Newton type algorithmwhich is given by
dθ̃t = −R̄−1

t (θt)fθ(θ̃t , Xt , t) [dXt − f (θ̃t , Xt , t)dt], R̄t(θ̃t0 ) < 0 a.s. (2.19)

where R̄ is an approximation of R which is computed in a recursive way.(2.19) is a first order approximation to the optimal algorithm where the drift terms are added inthe Newton phase.Using Corollary 2.3, we obtain
lim
|θ|→∞

sup
t≥t0

|Ut(θ)|
It

=∞ a.s. ∀ t0 > 0.

This in turn gives the boundedness of the MLE:
Theorem 2.5

sup
t≥t0
|θt | <∞ a.s.

Define the Fisher information process
It = It(θ) =

∫ t

0

f 2
θ (θ,Xs , s)ds. (2.20)

Define the empirical Fisher information process
Ît(θ) =

∫ t

0

f 2
θ (θt , Xs , s)ds. (2.21)

Theorem 2.6 If θ̃t satisfies

I
−1/2
t Ut(θ̃t)→ 0 a.s. and sup

t≥t0
|θ̃t | <∞ a.s.,
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then we have
a) θ̃t → θ0 a.s. as t →∞,

b) I
1/2
t (θ̃t − θ0)→D N (0, 1) as t →∞.

c) I
1/2
t (θ̃t − θt)→ 0 a.s. as t →∞.

Proof. The consistency is based on the given conditions of the theorem. Asymptotic normality canbe shown same way as in Theorem 2.1. Expanding I1/2
t (Ut(θ̃t)−Ut(θt)) around θ0 and using partof the theorem and Theorem 2.1, we obtain the result. We omit the details.Thus the Newton estimator and the MLE are asymptotically equivalent. In fact, one can obtainhigher speed of convergence as follows:

Theorem 2.7 For every 0 < α′ < α (where α is from (2.15)),

eα
′t It(θ̃t − θt)→ 0 a.s. as t →∞.

Proof. Since dU = −αUdt there exists some large enough T such that
Ut(θt) = UT (θT )e−α(t−T ) = (θ̃t − θt)Rt(θ̄t), θ̄t ∈ [θ̃t , θt ] ∀t ≥ T.

Since θt → θ̃t → θ0 and I−1
t Rt(θ0) → −1 a.s., then due to the equicontinuity of {I−1

t Rt(·)}t≥t0we have I−1
t Rt(θ̄t) → −1 a.s. This implies that P (supt≥T Rt(θ̄t) < 0) = 1 which enables us todefine Yt = −I−1

t R−1
t (θ̄t), t ≥ T . Hence

UT (θT )Yte
−α(t−T ) = It(θ̃t − θt).

Choose some 0 < α′ < α, define V = UT (θT )eαT . Multiplying both sides by eα′t , we have
V Yte

−(α−α′)t = It(θ̃t − θt)eα
′t .Since Yt → 1, this leads to

|V e−(α−α′)t − It(θ̃t − θt)eα
′t | → 0 a.s.

Since V e−(α−α′)t → 0 (due to the almost sure finiteness of V ), the theorem follows.
Remarks

1. This shows much higher convergence speed than the classical result with rate I1/2
t .For α = 0, Iφt |θ̃t − θt | → 0 a.s. as t →∞ ∀φ < 1.
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3. Stochastic Gradient Descent in Continuous Time

In standard discrete time version of stochastic gradient descent, data is usually considered to bei.i.d. at every step. Thus it is natural to ask if one can discretize (2.1), for example by Euler-Maruyama method and apply traditional stochastic gradient descent. This can result in loss ofaccuracy, or may not even converge. For example, there is no guarantee that using a higher orderdiscretization scheme, for example the second order Milstein scheme, to discretize the dynamicsof the SDE (2.1) and then applying the traditional stochastic gradient descent will produce astatistical learning scheme which is higher-order accurate in time. Hence it makes sense to firstdevelop the continuous-time statistical learning equation and then apply higher-order accuratenumerical scheme.Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficientmethod for the statistical learning of continuous-time models. SGDCT algorithm follows a descentdirection along a continuous stream of data. The parameter updates occur in continuous time andsatisfy a stochastic differential equation (SDE). We analyze the asymptotic convergence rate byproving a central limit theorem. An Lp convergence rate is also proven.Statistical estimation in SDEs have been studied using entire observed path of X , i.e. batchoptimization, see Bishwal (2008). The vast majority of statistical learning, machine learning andstochastic gradient descent literature address discrete time algorithm. This paper analyzes statisti-cal learning in continuous time (SGDCT). SGDCT can estimate unknown parameters and functionsin SDE models. It is related to online maximum likelihood filtering and identification.SGDCT can be used to solve continuous-time optimization problem such as American options.The value function is approximated by a parametric function and the parameter is estimated bySGDCT algorithm. Recall that Longstaff-Schwartz estimated the parameter by least squaresmethod. One could discretize the dynamics and then use the Q-learning algorithm. The Q-learningalgorithm is biased while SGDCT algorithm is unbiased.The structure of the algorithm indicates that well known gradient and Newton type algorithmare first order approximations.Consider the SDE
dXt = f ∗(Xt)dt + σdWt (3.1)

where f ∗(x) is an unknown function. The goal is to estimate f (x, θ) from continuous observationsof (Xt)t≥0. The function may be convex or non-convex.The SGD update in continuous time for the parameter θ ∈ R satisfies the SDE
dθt =

αt
σ2
f ′(Xt , θt)dXt −

αt
σ2
f ′(Xt , θt)f (Xt , θt)dt (3.2)

where αt is the learning rate. For example, αt could be Cα
C0+t . We assume that θ0 is initializedaccording to some distribution with compact support.
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g(x, θ) =

1

2
‖f (x, θ)− f ∗(x)‖2

σ2 =
1

2σ2
〈(f (x, θ)− f ∗(x))〉2 (3.3)

which measures the distance between the model f (x, θ) and true dynamics f ∗(x) for a specific x .This is a minimum distance type estimator.We assume that Xt is ergodic and it has some well behaved π(dx) as its unique invariantdistribution. Let the average over π(dx) be denoted by
ḡ(θ) =

∫
g(x, θ)π(dx) (3.4)

where π(dx) is the invariant measure of Xt when it is ergodic, which is the natural objectivefunction for our analysis of the asymptotic behavior of the algorithm θt . This is an weightedaverage of the distance between f (x, θ) and f ∗(x) where the weights are given by π(dx), whichis the distribution that Xt tends to when t become large. The distance g(x, θ) is decreased bymoving θ in the descent direction −g′(x, θ) which motivates the algorithm
dθt = −αtg′(Xt , θt)dt

= αt
σ2 f
′(Xt , θt)(f ∗(Xt)− f (Xt , θ))dt

= −αtg′(x, θt)dt + αt
σ2 f
′(Xt , θt)f (Xt , θt))σdWt

= −αt ḡ′(x, θt)dt − αt(g′(x, θt)− ḡ′(x, θt))dt + αt
σ2 f
′(Xt , θt)f (Xt , θt))σdWt

=: I1 + I2 + I3

(3.5)

where I1= Descent term, I2 = fluctuation term, I3= Noise term.If αt decays with time, e.g., αt = Cα
C0+t , the descent term I1 will dominate the fluctuation termand the noise term for large t . Then θt , will converge to a local minimum of ḡ(θ). Sirignanoand Spiliopoulos (2017) proved that θt converges to a critical point of the objective function ḡ(θ):

|ḡ′(θt)| → 0 almost surely as t →∞.Since limt→∞ αt = 0, the descent term αt ḡ
′(θt) → 0 as t → ∞. Descent term converges tozero as t →∞. Sirignano and Spiliopoulos (2018) proved the rate at which θt converges to zero.They obtained a central limit theorem (CLT) and an Lp convergence rate.When ḡ(θ) has a single critical pint θ∗, let

J(θ∗) := C2
α

∫ ∞
0

e−2s(Cαḡ(θ∗)−1)h̄(θ∗)ds (3.6)

Define
Ψ

(p)
t,s := exp(−pC

∫ t

s

αudu), p ≥ 1 (3.7)

and let Φ∗t,s be the solution to the ODE
dΦ∗t,s = −αt ḡ(θ∗)Φ∗t,sdt, Φ∗s,s = 1. (3.8)
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t dt <∞,(B3) ∫∞0 |α′t |dt <∞,(B4) There exists a p > 0 such that limt→∞ α

2
t t
p = 0,(B5) ∫ t0 α5/2

s Ψ
(2)
t,s ds ≤ o(αt),(B6) ∫ t0 α2

sΦ∗2
t,sds = O(αt),(B7)∫ t0 α2

sΨ
(1)
t,s ds ≤ o(α

1/2
t ),(B8) For all p ≥ 2, ∫ t0 (α2
s + |α′s |)Ψ

(p)
t,s α

p/2−1
s ds ≤ o(α

p/2
t ),(B9) For all p ≥ 2, Ψ

(p)
t,0 ≤ O(α

p/2
t )(B10) Ψ

(1)
t,0 ≤ o(α

1/2
t ).

The Lp convergence rate is given by
E|θt − θ∗|p ≤ Kαp/2

t (3.9)

for p ≥ 1. The CLT is given by
α
−1/2
t (θt − θ∗)→D N (0, J(θ∗)). (3.10)

A standard choice of the learning rate αt which satisfies (B1)–(B10) is αt = Cα(C0 + t)−1.Hence the Lp convergence rate is given by
E[|θt − θ∗|p] ≤

K

(C0 + t)p/2
(3.11)

for p ≥ 1 and the CLT for θt is given by
√
t(θt − θ∗)→D N (0, J(θ∗)) as t →∞. (3.12)

Sirignano and Spiliopoulos (2020) derived a stochastic integral to represent the√t(θt−θ∗) usingDuhamel’s principle and the fundamental solution of the random ODE dΨt,s = −αt ḡ(θ̃t)Ψt,sdtwhere θ̃t lies on a line connecting θ∗ and θt . The integrand of this stochastic integral includes thefluctuation term and the noise term as well as Ψt and is anticipative. Hence standard approachsuch as Itô isometry cannot be applied directly. Also since f (x, θ) is allowed to grow with θ, hencethe fluctuations as well as other terms can grow with θ. Hence they prove an a priori stabilityestimate for |θt |. Proving central limit theorem for non-convex ḡ(θ) is not straightforward since theconvergence speed of θt can arbitrarily slow in certain regions, and the gradient can even pointaway from the global minimum θ∗. To address this, we consider the stochastic integral after the time
τδ which is defined as the final time θt enters a neighborhood of θ∗. However, τδ is anticipative, i.e.,is not a stopping time, therefore careful analysis is required to study the behavior of the stochasticintegral.Let Yt := θt − θ∗ be the error term. It satisfies

d Yt = −αt∆ḡ(θ1
t )Ytdt + αt(ḡ

′(θt)− g′(Xt , θt))dt + αt f
′(Xt , θt)dWt . (3.13)
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E|Yt |2 ≤ Kt−1, E|Yt |p ≤ Kt−p/2. (3.14)

The stochastic integral √t ∫ t1 α2
sΦt,sζ(Xs , θs)dWs → 0 in probability as t → ∞ where ζ(x, θ) isa function that can grow at most polynomially in x and θ.For the analysis of fluctuation term, the proofs use Poisson PDE for ergodicity, given below inProposition 3.1. The central limit theorem for non-convex ḡ(θ) is challenging since the convergencespeed of θt can become arbitrarily slow in certain regions and the gradient can even point away fromthe global minimum θ∗. Interalia, they prove convergence to zero of multidimensional stochasticintegrals. The proof requires the analysis of stochastic integral with anticipative integrands, whichis challenging since standard approaches like Itô isometry can not be directly applied.Sirignano and Spiliopoulos (2020) remark that t−1/2 is the fastest possible convergence rategiven that the noise is Brownian motion. This is due to the quadratic variation of Brownian motiongrowing linearly in t . With other noises whose varianes grows sublinearly in time, one couldallow for faster rate of convergence than t−1/2. An example of a stochastic process whose variancegrows sublinearly in time is fractional Brownian motion with appropriately chosen Hurst parameter.

Proposition 3.1 (A Poisson Equation)
Let Lx be the infinitesimal generator of the X process. Let G(x, θ) ∈ Cα,2(X ,Rn) which satisfies∫

X
G(x, θ)π(dx) = 0.

and for some positive constants M and q, and

|G(x, θ)|+
∣∣∣∣ ∂∂θG(x, θ)

∣∣∣∣+

∣∣∣∣ ∂2

∂θ2
G(x, θ)

∣∣∣∣ ≤ M(1 + |x |q).

Then the Poisson equation

Lxu(x, θ) = G(x, θ),

∫
X
u(x, θ)π(dx) = 0

has a unique solution that satisfies u(x, ·) ∈ C2 for every x ∈ X , ∂2
θu ∈ C(X ×Rn) and there exist

positive constants K and p such that

|u(x, θ)|+
∣∣∣∣ ∂∂θu(x, θ)

∣∣∣∣+

∣∣∣∣ ∂2

∂θ2
u(x, θ)

∣∣∣∣ ≤ K(1 + |x |p).

4. Stochastic Gradient Descent Algorithm for American Option

Machine learing in finance has received recent attention, see Dixon et al. (2020). We study theSGDCT algorithm for American option. We compare it with Longstaff-Schwartz method. Longstaff-Schwartz developed an algorithm for the solution of a discrete time version of the a class of freeboundary. Their algorithm, commonly called Longstaff-Schwartz Regression based method, uses
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Eur. J. Stat. 10.28924/ada/stat.2.13 22dynamic programming and approximates the solution using a separate function approximator ateach discrete time, typically a linear combination of basis functions.Given a continuous stream of data, stochastic gradient descent in continuous time (SGDCT)can estimate unknown parameters or functions in stochastic differential equation (SDE) modelsfor stocks, bonds, interest rates, and financial derivatives. High dimensional American option hasbeen a long standing computational challenge in finance with traditional methods like the finitedifference. SGDCT can accurately solve American options even in 100 dimensions.Batch optimization for statistical estimation of continuous-time models can be impractical forlarge data sets where observations occur over a long time period. Batch optimization takes asequence of descent steps for the model error for the entire observed path.SGDCT provides a computationally efficient method for statistical learning over long time periodsand for complex models. SGDCT continuously follows a descent direction along the path of theobservation. Parameters are updated in continuous time, with the parameter updates θt satisfyingan SDE.Numerical analysis of SGDCT in model estimation of the drift and volatility functions of twocommon financial models like the O-U process and CIR process is studied. One has to simulateusing Euler scheme, a single path of Xt for given θ∗ and simultaneously solve for the path of θt .Sirignano and Spiliopoulos (2018) studied deep learning algorithm or “Deep Galerkin Method"(DGM) which is Galerkin method with neural network. Neural network is trained on the batches ofrandomly sampled time and space points. Deep Galerkin method uses a deep neural network insteadof basis functions. The deep neural network is trained to satisfy the differential operator, initialcondition, and the boundary conditions using stochastic gradient descent at randomly sampledspatial points. By randomly sampling spatial points, we avoid the need to form a mesh (whichis infeasible in higher dimensions) and instead convert the PDE problem to a machine learningproblem. DGM is natural merger of Galerkin methods and machine learning.Sirignano and Spiliopoulos (2017) obtained central limit theorem for the SGDCT estimator.An American option is a financial derivative which the owner can choose to exercise at any time
t ∈ [0, T ]. If the owner exercises the option, they receive the payoff g(Xt) where Xt is the prices ofthe underlying stocks. If the owner does not choose to exercise the option, they receive the payoff
g(XT ) at the final time T . The value (or price) of the American option at time t is u(t, Xt) whichsatisfies a free boundary PDE:

∂u

∂t
(t, x) + µ(x)

∂u

∂x
(t, x) +

1

2

n∑
i ,j=1

ρi ,jσ(xj)
∂2u

∂xi∂xj
(t, x)− ru(t, x) = 0, (4.1)

∀{(t, x) : u(t, x) > g(x)},

u(t, x) ≥ g(x) ∀(t, x),

u(t, x) ∈ C1(R+ × Rd), ∀{(t, x) : u(t, x) = g(x)},

u(T, x) = g(x), ∀x.
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Eur. J. Stat. 10.28924/ada/stat.2.13 23The free boundary set is F = {(t, x) : u(t, x) = g(x)}. The value function u(t, x) satisfies a PDE"above" the free boundary set F and u(t, x) equals the function g(x) "below" the free boundary set
F . The free boundary set F is approximated using the current parameter estimate θn.
The SGDCT Algorithm

First, we recall the Q-learning algorithm: The Q-learning algorithm uses stochastic gradient de-scent to minimize an approximation to the discrete time HJB equation. Consider the Q-learningalgorithm to estimate the value function
V (x) = E

[∫ ∞
0

e−γtr(Xt)dt
∣∣ X0 = x

]
, Xt = x +Wt (4.2)

where γ > 0 is a discount factor and r(x) is a reward function. The function Q(x, θ) is anapproximation for the value function V (x). The traditional approach is to discretize the dynamicsof V (x) and apply a stochastic gradient descent update to the objective function:
E
[(
r(Xt)∆ + e−γ∆E[Q(Xt+∆; θ)|Xt ]−Q(Xt ; θ)

)2
]
. (4.3)The result is the stochastic gradient descent algorithm:

θt+∆ = θt −
αt
∆

(
e−γ∆E[Qθ(Xt+∆; θt)|Xt ]−Qθ(Xt ; θt))

)
×
(
r(Xt)∆ + e−γ∆E[Q(Xt+∆; θt)|Xt ]−Q(Xt ; θt)

)
. (4.4)The learning rate is ∆−1. The Q-learning algorithm has a major computational issue. The expec-tation E[Qθ(Xt+∆; θt)|Xt ] is challenging to calculate if the process Xt is high dimensional. Tocircumvent this situation, Q-learning algorithm ignores the inner expectation leading to

θt+∆ = θt −
αt
∆

(e−γ∆Qθ(Xt+∆; θt)−Qθ(Xt ; θt)(r(Xt)∆ + e−γ∆Q(Xt+∆; θt)−Q(Xt ; θt)). (4.4)

Although computationally efficient, the Q-learning algorithm is biased. The SGDCT algorithmcan be directly derived by letting ∆→ 0 and using Itô formula:
dθt = −αt

(
1

2
Qθxx(Xt ; θt)− γQθ(Xt ; θt)

)(
r(Xt) +

1

2
Qxx(Xt ; θt)− γQ(Xt ; θt)

)
dt. (4.5)

Furthermore, when ∆→ 0, the Q-learning algorithm blows up.
SGDCT Algorithm for American Option

Let Xt ∈ Rd be the prices of d stocks. The maturity time is T and the payoff function is g(x) :

Rd → R. The stock price dynamics and the value functions are given by
dX it = µ(X it)dt + σ(X it)dW

i
t , i = 1, 2, . . . , d (4.6)

Vt,x = sup
τ≥t

E[e−r(τ∧T )g(Xτ∧T )|Xt = x ] (4.7)
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Eur. J. Stat. 10.28924/ada/stat.2.13 24where Wt ∈ Rd is a Brownian motion. The distribution of Wt is specified by V ar(W i
t ) = t, i =

1, 2, . . . , d and Corr(W i
t ,W

j
t ) = ρi ,jdt for i 6= j . The price of the American option is V0,x .SGDCT for American option is given by

θn+1
t∧T = θn0 −

∫ τ∧T

0

αn+1
t

(
∂

∂t
Qθ(t, Xt ; θ

n+1
t ) + LxQθ(t, Xt ; θ

n+1
t )− rQθ(t, Xt ; θ

n+1
n )

)
×
(
∂

∂t
Q(t, Xt ; θ

n+1
t ) + LxQ(t, Xt ; θ

n+1
t )− rQ(t, Xt ; θ

n+1
t )

)
dt

+αn+1
τ∧T Qθ

(
τ ∧ T,Xτ∧T ; θn+1

τ∧T ) (g(Xτ∧T )−Q(τ ∧ T,Xτ∧T ; θn+1
τ∧T )

)
, (4.8)

τ := inf{t ≥ 0 : Q(t, Xt ; θ
n+1
t ) < g(Xt)}, X0 ∼ ν(dx). (4.9)The function Q(x, θ) is an approximation of the value function. The parameter θ must be es-timated. Here Lx is the infinitesimal generator of the X process. The algorithm is run for manyiterations n = 0, 1, 2, . . . until convergence.The Longstaff-Schwarz algorithm works well in low dimension, but in high dimension the con-vergence is slow. In high dimension, SGD algorithm works very well.Sirignano and Spiliopoulos (2017) implemented the American option in 100 dimensions andshowed the accuracy of the SGD algorithm for Bachelier model and Black-Scholes model.

5. Berry-Esseen Inequality of Stochastic Gradient Descent Algorithm
for American Option

We study the Berry-Esseen inequality for SGDCT algorithm for American option. We compare itwith Longstaff-Schwartz method. We will use anticipative stochastic integral, Duhamel’s principlefor the stochastic gradient descent algorithm.Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficientmethod for the statistical learning of continuous-time models. SGDCT can estimate unknownparameters and functions in SDE models. SGDCT algorithm follows a descent direction along acontinuous stream of data. The parameter updates occur in continuous time and satisfy a stochasticdifferential equation (SDE). The authors analyze the asymptotic convergence rate by proving acentral limit theorem. An Lp convergence rate is also proven.The vast majority of statistical learning, machine learning and stochastic gradient descent lit-erature address discrete time algorithm. This section analyzes statistical learning in continuoustime.Statistical estimation in SDEs have been studied using entire observed path of X , i.e., batchoptimization. MLE can be calculated via batch optimization. Maximum likelihood based on theentire observation path of X has been extensively studied, see Bishwal (2008).SGDCT can be used to solve continuous-time optimization problem such as American options.The value function is approximated by a parametric function and the parameter is estimated by
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Eur. J. Stat. 10.28924/ada/stat.2.13 25SGDCT algorithm. Recall that Longstaff-Schwartz estimated the parameter by least squaresmethod. One could discretize the dynamics and then use the Q-learning algorithm. The Q-learningalgorithm is biased while SGDCT algorithm is unbiased.Consider the SDE
dXt = f ∗(Xt)dt + σdWt , t ≥ 0where f ∗(x) is an unknown function. The goal is to estimate f (x, θ) from continuous observationsof (Xt)t≥0. The function may be convex or non-convex.The SGD update satisfies

dθt =
αt
σ2
f ′(Xt , θ)dXt −

αt
σ2
f ′(Xt , θt)f (Xt , θt)dt, t ≥ 0

where αt is the learning rate. For example, αt could be Cα
C0+t . Assume that θ0 is initializedaccording to some distribution with compact support.The parameter update can be used both for statistical estimation given previously observed dataas well as online learning, i.e, statistical estimation in real time as data becomes available.Define the objective function

g(x, θ) =
1

2
‖f (x, θ)− f ∗(x)‖2 =

1

2σ2
〈(f (x, θ)− f ∗(x)〉)2

which measures the distance between the model f (x, θ) and true dynamics f ∗(x) for a specific x .This is a minimum distance type estimator.We assume that Xt is ergodic and it has some well behaved π(dx) as its unique invariantdistribution. Let the average be denoted by
ḡ(θ) =

∫
g(x, θ)π(dx)

where π(dx) is the invariant measure of Xt when it is ergodic which is the natural objectivefunction. This is an weighted average of the distance between f (x, θ) and f ∗(x) where the weightsare given by π(dx), which is the distribution that Xt tends to when t become large. The distance
g(x, θ) is decreased by moving θ in the descent direction −g′(x, θ) which motivates the algorithm

dθt = −αtg′(Xt , θt)dt
= αt

σ2 f
′(Xt , θt)(f ∗(Xt)− f (Xt , θ))dt

= −αtg′(x, θt)dt + αt
σ2 f
′(Xt , θt)f (Xt , θt))σdWt

= −αt ḡ′(x, θt)dt − αt(g′(x, θt)− ḡ′(x, θt))dt

+αt
σ2 f
′(Xt , θt)f (Xt , θt))σdWt

=: I1 + I2 + I3where I1= Descent term, I2 = fluctuation term, I3= Noise term.If αt decays with time, e.g., αt = Cα
C0+t , the descent term I1 will dominate the fluctuation termand the noise term for large t . Then θt , will converge to a local minimum of ḡ(θ). Sirignanoand Spiliopoulos(2017) proved that θt converges to a critical point of the objective function ḡ(θ):

|ḡ′(θt)| → 0 almost surely as t →∞.
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Eur. J. Stat. 10.28924/ada/stat.2.13 26Since limt→∞ αt = 0, the descent term αt ḡ
′(θt) → 0. Descent term converges to zero as

t → ∞. Sirignano and Spiliopoulos (2018) proved the rate at which θt converges to zero. Theyobtained a central limit theorem (CLT) and an Lp convergence rate.Sirignano and Spiliopoulos (2018) derived a stochastic integral to represent the √t(θt − θ∗)using Duhamel’s principle and the fundamental solution of the random ODE dΨt,s = −αt ḡ′(θt)
Ψt,sdt where θ̃t lies on a line connecting θ∗ and θt . The integrand of this stochastic integralincludes the fluctuation term and the noise term as well as Ψt and is anticipative. Also since
f (x, θ) is allowed to grow with θ, hence the fluctuations as well as other terms can grow with θ.Hence they prove an a priori stability estimate for |θt |. Proving central limit theorem for non-convex
ḡ(θ) since the convergence speed of θt can arbitrarily slow in certain regions, and the gradient caneven point away from the global minimum θ∗. To address this, we consider the stochastic integralafter the time τδ which is defined as the final time θt enters a neighborhood of θ∗. However, τδ isanticipative, i.e., is not a stopping time, therefore careful analysis is required to study the behaviorof the stochastic integral.Let Yt := θt − θ∗ be the error term. It satisfies

d Yt = −αt∆ḡ(θ1
t )Ytdt + αt(ḡ

′(θt)− g′(Xt , θt))dt + αt f
′(Xt , θt)dWt .

E|Yt |2 ≤ Kt−1, E|Yt |p ≤ Kt−p/2.The stochastic integral
√
t

∫ t

1

α2
sΦt,sζ(Xs , θs)dWs → 0

in probability as t →∞ where ζ(x, θ) is a function that can grow at most polynomially in x and θ.For the analysis of fluctuation term, the proofs use Poisson PDE for ergodicity, see Section6. The central limit theorem for non-convex ḡ(θ) is challenging since the convergence speed of
θt can become arbitrarily slow in certain regions and the gradient can even point away from theglobal minimum θ∗. Interalia, Sirignano and Spiliopoulos (2018) prove convergence to zero ofmultidimensional stochastic integrals. The proof requires the analysis of stochastic integral withanticipative integrands, which is challenging since standard approaches like Itô isometry can notbe directly applied. It is related to online maximum likelihood filtering and identification.We remark that t−1/2 is the fastest possible convergence rate given that the noise is Brownianmotion. This is due to the quadratic variation of Brownian motion growing linearly in t . With othernoises whose variances grow sublinearly in time, one could allow for faster rate of convergencethan t−1/2. An example of a stochastic process whose variance grows sublinearly in time isfractional Brownian motion with appropriately chosen Hurst parameter discussed in section 1.

In this section we investigate the rate of weak convergence to normality of the update θt .We assume the following conditions:(A1) The diffusion is nondegenerate and lim|x |→∞ f
∗(x) · x = −∞.(A2) g′(x, ·) ∈ C2(R) for all x .
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Eur. J. Stat. 10.28924/ada/stat.2.13 27(A3) The function f ∗(x) ∈ C2+α(X ), that is, it has two derivatives in x , with all partial derivativesbeing Hölder continuous, with exponent α, with respect to x .(A4) SGD-SDE equation is well-posed.(A5) There exists a constant R <∞ and almost everywhere positive function κ(x) such that
〈−g′(x, θ), θ/|θ|〉 ≤ −κ(x)|θ| for |θ| ≥ R.(A6) Consider the function τ(x, θ) = 〈f ′2(x, θ), θ/|θ|〉. Then there exists a function λ(x) grow-ing not faster than polynomially in |x | such that for any x, θ1, θ2 ∈ R, |τ(x, θ1) − τ(x, θ2)| ≤
|λ(x)|ρ(|θ1−θ2|) where ρ(u) is an increasing function on [0,∞) with ρ(0) = 0 and ∫u>0 ρ

−2(u)du =

∞.(A7) The learning rate is Cα
C0+t where Cα > 0 and C0 are constants.(A8) f (i)

θ (x, θ) ≤ K(1 + |x |q + |θ|(2−i)∨0), i = 0, 1, 2 for some finite constants K, q <∞.(A9) ḡ(θ) is strongly convex with constant C.(A10) CCα > 1.(A11) ḡ(θ) ∈ C3 and |ḡ(i)(θ)| ≤ K(1 + |θ|4−i) for i = 0, 1, 2, 3 and some finite constant K <∞.
The following theorem gives the rate of convergence to normal distribution of the SGDCTestimator:

Theorem 5.1 Under (A1) – (A11) and (B1) – (B10), we have as t →∞

sup
x∈R

∣∣∣∣P (√ t

J(θ∗)
(θt − θ∗) ≤ x

)
−Φ(x)

∣∣∣∣ ≤ Ct−1/2

where
J(θ∗) = C2

α

∫ ∞
0

e−2s(Cαg′(θ∗)−1)h̄(θ∗)ds, h̄(θ) =

∫
h(x, θ)π(dx),

h(x, θ) =

(
1

σ2
f ′(x, θ)− v̇(x, θ)

)2

σ2

and v(x, θ) is the solution to the Poisson equation with

H(x, θ) = g′(x, θ)− ḡ′(θ).

Proof: Using second order Taylor expansion
ḡ′(θt) = ḡ′(θt) + ḡ′′(θ∗)(θt − θ∗) +

1

2

∂3

∂θ3
ḡ(θ1

t )(θt − θ∗)2.

The error term satisfies the SDE
d(θt − θ∗) = −αt ḡ′(θ1

t )dt −
αt
2

∂3

∂θ3
ḡ(θ1

t )dt + αt(ḡ
′(θt)− g′(Xt , θt))dt + αt f

′(Xt , θt)dWt .

Let Yt := θt − θ∗. Then Yt satisfies the SDE
d Yt = −αt ḡ′(θ1

t )Ytdt −
αt
2

∂3

∂θ3
ḡ(θ1

t )Y 2
t dt + αt(ḡ

′(θt)− g′(Xt , θt))dt + αt f
′(Xt , θt)dWt .
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Eur. J. Stat. 10.28924/ada/stat.2.13 28Let Φt,s be the fundamental solution satisfying
dΦt,s = −αt ḡ′(θ∗)Φt,sdt,Φs,s = 1

Yt can be written in terms of Φt,s :
Yt = Φt,1Y1−

1

2

∫ t

1

Φt,sαs ḡ
(3)(θs)Y

2
s ds+

∫ t

1

Φt,s(ḡ
′(θs)−g′(Xs , θs))ds+

∫ t

1

Φt,sαs f
′(Xs , θs)dWs

=: Γ1
t + Γ2

t + Γ3
t + Γ4

t .The problem is the weak convergence of anticipative stochastic integral which has not been studiedmuch in the literature since standard approach such as Itô isometry can not be directly applied.We use Malliavin calculus approach as in Bishwal (2010b).We show the rate at which the stochastic integral converges to the normal distribution N ,
√
t

∫ t

1

αsΦt,sζ(Xs , θs)dWs → N

in distribution as t →∞. By using large deviations, we show the rate at which √t(Γ1
t +Γ2

t +Γ3
t )→

0. By using large deviations, we show the rate at which
t

∫ t

1

α2
sΦ2

t,sζ
2(Xs , θs)ds → J(θ∗)

in probability as t → ∞. Combining all these in Yt and the using squeezing technique inChapter-1 in Bishwal (2008), we obtain the result.
Remark Bishwal (2011c) studied parameter estimation in interacting diffusions based on contin-uous and discrete sampling. The idea was used in Giesecke et al. (2020) for inference in largefinancial systems.

Next we focus on Monte Carlo method. Let θ̂n,t be the Monte Carlo estimate of θt based on nindependent replications of the sample path, i.e.,
θ̂n,t =

1

n

n∑
i=1

θi ,t .

Theorem 5.2 Under (A1) – (A11) and (B1) – (B10), we have as n →∞

sup
x∈R

∣∣∣∣P (√ n

J(θ∗)
(θ̂n,t − θ∗) ≤ x

)
−Φ(x)

∣∣∣∣ ≤ Cn−1/2

where
J(θ∗) = C2

α

∫ ∞
0

e−2s(Cαg′(θ∗)−1)h̄(θ∗)ds, h̄(θ) =

∫
h(x, θ)π(dx),

h(x, θ) =

(
1

σ2
f ′(x, θ)− v̇(x, θ)

)2

σ2
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and v(x, θ) is the solution to the Poisson equation with

H(x, θ) = g′(x, θ)− ḡ′(θ).

Proof: Berry-Esseen theorem for independent random variables (see Petov (1995)) along withanticipative Girsanov theorem (Proposition 1.3) gives the result. Details are omitted.
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