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ABSTRACT. We study recursive parameter estimation in fractional diffusion processes. First, stability
and asymptotic properties of the global maximum likelihood estimator (MLE) of the drift parameter
are obtained under some reqularity conditions. Then we obtain an evolution equation for the MLE
of the drift parameter in nonhomogeneous fractional stochastic differential equation (fSDE) driven by
fractional Brownian motion. This equation is then modified to yield an algorithm which is consistent,
asymptotically efficient and converges to the MLE. The gradient and Newton type algorithm are first-
order approximations. Finally we study the Berry-Esseen inequality for stochastic gradient descent
in continuous time (SGDCT) algorithm for American option. We compare it with Longstaff-Schwartz

regression based method.

1. Introduction and Preliminaries

Online parameter estimation is a challenging problem that appear frequently in fields such as
robotics, neuroscience and finance in order to design adaptive filters and optimal controllers for
unknown or changing systems. The approach here is based on modification of the offline maximum
likelihood estimation.

First we introduce some basic tools from fractional stochastic calculus.
1.1 Fractional Brownian Motion

The fractional Brownian motion (fBm, in short), which provides a suitable generalization of the
Brownian motion, is one of the simplest stochastic processes exhibiting long range-dependence. It
was introduced by Kolmogorov (1940) in a Hilbert space framework and later on studied by Levy
(1948) and in detail by Mandelbrot and Van Ness (1968).
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Consider a probability space (2, F,P) on which all random variables and processes below are
defined.
A fractional Brownian motion {W/’, t > 0} with Hurst parameter H € (0,1) is a centered

Gaussian process with continuous sample paths whose covariance kernel is given by
HiHy _ YH 2H | 2H  (p o2H
E(WtWS)—Q(s +t |t —s]7"), s,t>0

where
1 1 0 1 112
Vi = varWHy = —— —|—/ H=2 _(u—1)"2 d}.
—e [F(H+%)]2{2H et -0
With Vg =1, IBm is called a normalized fBm.

Properties

(P1) It has stationary increments: E(W} — WH)? = |t —s]°H t, s > 0.

(P2) WY =0, E(WH) =0, EWy)? = [t]?H, t > 0.

(P3) When H = % Wt% is the standard Brownian motion. The increments are independent.

(P4) The process is self similar or scale invariant, i.e., Wk, t >0) =9 (a"W}F, t >0),a > 0.

H is also called the self similarity parameter.

(P5) The increments of the fBm are negatively correlated for H < % and positively correlated
for H > %

(P6) For H > % fBm is a long memory process since the covariance between far apart increments
decrease to zero as a power law: r(n) := E[WIH(W{'_’M — WM ~ Cyn?H=2and 32, r(n) = 0.

This property is also called long range dependence or long memory. The parameter H, measures
the intensity of the long range dependence. Note that the estimation of the parameter H based on
observation of fractional Brownian motion has already been paid some attention, see, e.g., Peltier
and Levy Vehel (1994) and the references there in. However we assume H to be known.

(P7) The sample paths of W' are almost surely Holder continuous of any order less than H, but
not Holder continuous of any order greater than H, hence continuous but nowhere differentiable.

(P8) For any H, it has a finite % variation, i.e.,

#
0<suE ) [‘Wtil —w! ] < o0,
t;iel

(P9) Law of the lterated Logarithm (Arcones (1995)):

H
P (“mt—>0+ Wi :\/VH) =1

tH(log log t*l)%

Self similarity of fBm leads to

wif

Pllimisoy————5 =Wy | =1
(loglog t—1)2
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. _ 1
Setting u = &

H
ID (|Imu_>oo WLI =V \/H == 1

ut(loglog u—l)%

Strong Law of Large Numbers:
H
lim —- =0 a.s.
u—oo U
(P10) fBm can be represented as a stochastic integral with respect to standard Brownian motion

B (Mandelbrot and van Ness (1968)). For H > %

wH — r(le {/:[(t — )% — (—s)H-3]dB, + lot(t _ s)H—%dBS} |

Standard Brownian motion can be written as a stochastic integral w.r.t W/ (see, Igloi and Terdik
(1999)):

= r(glw {/:[(t —s) Mtz — (—s) M2 dWH + /Ot(t - s)—H+§dWSH} .

(P11) With topological dimension n, the fractal dimension of fBm is n + 1 — H. Hausdorff

B¢

dimension of one dimensional fBm is 2 — H.

(P12) Existence of fBm:

(1) It can be defined by a stochastic integral w.r.t. Brownian motion.

(it) It can be constructed by Kolmogorov extension theorem ( see, Samorodnitsky and Taqqu
(1994)).

(iit) It can be defined as the weak limit of some random walks with strong correlations (see,
Taqqu (1975)).

(P13) For H # % the fBm is not a semimartingale and not a Markov process, but a Dirichlet
process.

(P14) Dirichlet Process: A process is called a Dirichlet process if it can be decomposed as
the sum of a local martingale and an adapted process of zero quadratic variation (zero energy).
Obviously is a larger class of processes than semimartingales.

(P15) For H < % the quadratic variation of W' is infinite. For H > % the quadratic variation
of WH is zero. Hence for H > % W*H is a Dirichlet process.

(P16) Fractional Brownian motion can be simulated using Cholesky decomposition method of

the covariance matrix.
1.2 Stochastic Integral w.r.t. fBm
For H # % the classical theory of stochastic integration with respect to semimartingales is not

applicable to stochastic integration with respect to fBm. However, since fBm is a Gaussian process,

stochastic integration with respect to Gaussian process is applicable.
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For integration questions related to fractional Brownian motion, see Pipiras and Taqqu (2000).
Now there exists several approaches to stochastic integration with respect to fBm:
(i) Classical Riemann sum approach : Lin (1995), Dat and Heyde (1996), Kleptsyna, Kloeden and
Anh (1998c);
(it) Malliavin calculus approach : Decreusefond and Ustunel (1998, 1999), Coutin and Decreusefond
(1999a), Alos, Mazet and Nualart (2000, 2001);
(iil) Wick calculus approach : Duncan, Hu and Pasik-Duncan (1999);
(iv) Pathwise calculus : Young (1936), Zahle (1998, 1999), Ruzmaikina (2000);
(v) Dirichlet calculus : Lyons and Zhang (1994);
(vi) Rough path analysis : Lyons (1998), Lyons and Victoir (2007).

Lin (1995) introduced the stochastic integral as follows: Let m: 0 < t; < tp <--- < t, =1 be
a partition of [0, 1]. Let ¢ be a left continuous bounded Lebesque measurable function with right

limits, called sure processes. Then

1
[ oo = timnoe T 0l = W),

tem

The indefinite integral is defined as

t 1
/w@mﬁ—/wmmmwf
0 0

This integral has a continuous version and a Gaussian process. However,

E (/(th(s)dWsH) £ 0.

To overcome this situation, Duncan, Hu and Pasik-Duncan (2000) introduced an integral using

E (/Ot f(s)dWsH) =0

They defined integrals of both It6 and Stratonovich type.

Wick calculus for which

We shall discuss the Wick calculus approach here. Wiener integral for deterministic kernel was
defined by Gripenberg and Norros (1996).
Let ¢ : Ry x R — R be a Borel measurable deterministic function. Let

L3(Ry) = {f |l = /OOO [OOO f(s)f(t)p(s, t)dsdt < oo} .

The inner product in the Hilbert space L% is denoted by (-, ).
If f,g € L3, then [J° fosdW! and [ gsdW!? are well defined zero mean, Gaussian random

variables with variances \f@ and |g@ respectively and covariance

E(/ fdeSH/ gdeSH):/ / fogsd(s, t)dsdt =: (f, 9)y.
0 0 0 0
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Let (Q, F, P) be the probability space on which W is defined. For f € L2, define ¢ : L(% —

Ll(Q,]:, P) as
o 1 (0] (o]
e(f) = exp{/ ftthH—/ / fsftqb(s,t)dsdt}
0 2Jo Jo

o 1 oo
- exp{/ ftdvvt”—zl |f|é}
0 0

which is called an exponential function.

Let £ be the linear span of exponentials, i.e.,

n
5:{Zake(fk):neN,akeR,fkeLé(RJF),k:l,Z ..... n.]»
k=1

The Wick product of two exponentials is defined as
e(f)oe(g) =€e(f + g).

For distinct f1,fo,--- , fy € Lq2>, the exponentials €(f1),e(f2),- -, €(f,) are independent. It can be
extended to define the Wick product of two functionals F and G in £.

An analogue of Malliavin Derivative: Wick Derivative

The ¢-derivative of a random variable F € LP in the direction of ®g where g € Lé is defined as
1 .
DogF(w) = lim < [F (w—i—éj (Cbg)(u)du) — F(w)]
500 0
if the limit exists in LP(S2, F, P).

If there is a process (D?Fs, s > 0) such that

DogF = / D®F.gsds a.s.

0

for all g € Lé, then F is said to be ¢-differentiable. Let F : [0, 7] x 2 — R be a stochastic
process. The process is said to be ¢-differentiable if for each t € [0, T], F(¢t, -) is ¢-differentiable

and D?F; is jointly measurable.

Chain Rule: If f : R — R is smooth and F : Q — R is ¢-differentiable, then f(F) is also
¢-differentiable and
Dogf(F) = f/(F)chgF

and
D2f(F) = f'(F)D¢(F).

() Ifge L3 Fel? F P)and DogF € L?(Q, F, P), then

Fo/ gsdW! = F/ gsdW! — Doy F.
0 0


https://doi.org/10.28924/ada/stat.2.13

Eur. J. Stat.

(2)Ifg,he Lé and F, G € &, then

E (Fo/ gsdWH G<>/ hdeSH) = E [DogFDonG + FG{g, h)g] .
0 0

Let m, : 0 < t§") < tén) <<t =T Let L[0, T] be the family of stochastic processes on
F on [0, T] such that E|F|i < 00, F is ¢-differentiable, the trace of (D2F;,0<s<T,0<t<T)
exists and EfOT(D?FS)QdS < oo and for each sequence of partitions {m,, n € N} such that as

|Tn| — 0
N

n—1 el 2
Y E {[(n) IDSFT, — Dst|ds} —0
i=0 b ’

and E|F”—F|é—>0as n— oo.
For F € L]0, T], define

T n—1
/ FodWH = 1Lim.r 50)  Feoo (W — W,
0 i=0
Proposition 1.1 Let F, G, € L[0, T]. Then
(i) E (fOT FdesH) —0.
2 2

(i) £ (Jy Foawt!)” =€ { (D¢ras)” + |/[O,T]F\;}.
(ill) [1(aFs+bGs)dW! = a 5 FedW! + b [y GedW! ass.
(iv) If E [supo<s<t Fs]° < o0 and supgcs<r E|DZFs[? < oo, then { [§ FsdW!H, 0 <t < T} has a
continuous version.

Here it is not assumed that (Fs,s € [0,7]) is adapted to the fBm. Assume that
D?F, = 0,5 € [0, T]. Then

T 2 2 T (T

() E (Jg FeadW')” = [lomFl5 = E f] Ji FuFud(u,v)dudv.

Fractional version of Stratonovich Integral is defined as

t t t
/ FsoWH = / FsdW! + [ D?Fds a.s.
0 0 0

1.3 Fractional It6 Formula

If f: R — R is a twice continuously differentiable function with bounded derivatives of order two,
then

T T
FWs) — Fwg') = /0 Fr(WHaw! + H/O 2= (wWiH)ds a.s.

For H = % it gives the classical 1td formula for standard Brownian motion.
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General It6 Formula

Let {F,,0<u<T}and {G,,0 < u < T} be stochastic processes in L[0, T]. Assume that there
exists an a > 1 — H such that
E|Fu - Fv|2 < C|U - V|2a’

lim E{|D¢(F, — F,)[*} =0

|u—v|—0
and
E sup |Gs| < 0.
0<s<T
Let
dX: = Gedt + FrdW[ Xo=¢ € R O<t<T,
Le.,

t t
Xt:£+/ Gsd5+/ FsdW!
0 0

let f : R — R be Cé in the first variable and Cg in the second variable and let
(9(s, Xs), s € [0, T]) € £[0, T]. Then

t tof

tof af y
f(t,xt)_f(o,g)+/o 6S(s,x5)ds+/0 8X(s,><5)<;5c/s+/0 5y (51 Xs) Fsd W,

t 82f
+/O @(S,XS)FSD_?XSds.

Ité formula for Stratonovich Type integral:

Let {F:, 0 < t < T} satisfy the above assumptions. Let
t

ne = / Fsow!
0

be the Stratonovich integral. Let g € C7 and (%(s,ns)Fs,s € [0, T]) € L[0, T].
Then for t € [0, T],

to Lo
g(tvnt) = 9(010) +/ ag(slns)ds +/ g(san)FSdWsHy
0 S 0 Ox

ie.,

dg(t,me) = ge(t, me)dt + gx(t, ne)dny:.

1.4 Fractional Girsanov Theorem

Decreusefond and Ustunel (1999) gave a Girsanov formula using stochastic calculus of variation.

Kleptsyna, Le Breton and Roubaud (1999) obtained the following Girsanov theorem.
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Proposition 1.2 Let h be a continuous function from [0, T] to R. Define for 0 < t < T, the function
ki = (ki(s),0<s<t) by
ki(s) = —p;ls%_H% /St dww = (w — s)%_H% /Ow dzz%_H(w - z)%_"’h(z)
where
oy =T2(3/2 = H)F(2H + 1) sinTH.
Define for0 <t < T,

NP = /tkﬁ(s)dWsH, (NIy, = /th(s)k,f(s)ds.
0 0

Then the process {N}',0 < t < T} is a Gaussian martingale with variance function {{N");, 0 <
t<T}
For h =1, the function kf is ki(s) := 7, (s(t —s))2~" where 11 := 2H[(3/2 — H)[ (H+1/2).
Then the corresponding Gaussian martingale and its quadratic variation are
DHI (3 — 2H)[(H +1/2)
r(3/2—H)

t t
NF = / ki (s)dW! and (N*); = / ki(s)ds = A t22" where Ay =
0 0

1.5 Anticipative Girsanov Theorem

The Carleman-Fredholm determinant is a complex-valued function which generalizes the determi-
nant of a finite dimensional linear operator. We recall that the Carleman-Fredholm determinant of

a Hilbert-Schmidt operator B from L2[0, T] into itself is defined by the product expansion

de(B) = ](1 = ) exp(N)
j=0

where {};,j > 0} are the nonzero eigenvalues of B counted as many times as its multiplicities,

see Simon (1979). In particular, if the operator B is nuclear, then
de(B) = det(/ — B) exp{trace B}.
Thus if DU is nuclear, then
de(—DU) = det(/ + DU) exp{trace (—DU)}.

The following is the nonadapted (anticipative) extension of the Girsanov theorem proved by
Kusuoka (1982, Theorem 6.4). See also Theorem 4.1.2 in Nualart (1995).

Proposition 1.3 Let V' : Q2 — Q2 be a mapping of the form

V(t,w) =w(t)+ /t U(s,w)ds,
0

where U is a measurable mapping from Q in to H = L?(0,T) and suppose that the following

conditions are satisfied:
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(i) V is bijective.
(ii) For all w € €, there exists a Hilbert-Schmidt operator DU(w) from H into itself such that:
(a) .
U+ | heds) = Uw) = DUG)AI = o(Al)

for all w € Q as ||h||y — 0,

(b) h— DU(w + fo. hsds) is continuous from H into L?([0, T]?) the space of Hilbert-Schmidt
operators for all w,

(c) | + DU(w) : H— H is invertible.

Then if Q is the measure on S, F such that F = QV ™1, Q is absolutely continuous with respect

to P and

dQ T 1 (",

% = lde(~ D)l exp (—/O U(t)th—Q/O U2dt
where d-.(—DU) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt operator
—DU and fOT U(t)dW(t) is the Skorohod integral.

2. MLE Evolution Equation: MLE Dirichlet Process

2.1 Large Deviations

Consider the ordinary SDE
dXt: f(@,Xt,t)dt+th (21)

where W is a standard Brownian motion.

We start with the uniform decay and equicontinuity results of parameter dependent stochastic
integrals for unbounded parameter space, see Levanony et al. (1993).

Let the collection of continuous time martingales {F(6,t), Ft,t > O}ger where for each
6,t), F(6,t) = fot (0, Xs,s)dWs is an It6 integral whose corresponding increasing process is
(F0, 1)) = [y F2(6, X, 5)ds.

Levanony et al. (1993) proved the following two results:

Proposition 2.1 Suppose F and (F): are jointly continuous in mean square in (0, t). Suppose
there exists a y > 0 such that for all tp > 0
F(o,-
lim inf 7< (9.)): =
6| »o0 t>to (t]6])7

Then

lim sup M =0
6] =00 t>1 (F(0,°))¢
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Remark In unbounded paramter space sufficiency and Rao-Blackwellization of Vasicek model was

studied in Bishwal (2011b). The optimal sampling problem was also solved.

Corollary 2.2 Suppose that there exists some § > 0 such that

s | .
i |9|IE>foo t'go t°(F(0,-))s > 0as. to > 0.

Then
F(o,t
lin sup | ( : )|

— =0 Vv >0.
ol o (O (F(. 1)),

Now consider the fractional Ornstein-Uhlenbeck (fO-U)model satisfying the fractional SDE
dX; = 0X,dt +dW! t > 0,6 <0.

We focus on the fundamental semimartingale behind the fO-U model. Define

Ky = 2HI(3/2—H)[(H+1/2),
ku(t,s) = kit(s(t— 5))%_H,
N 2HI(3 — 2H)T(H + 2)
A r(3/2 - H)
vi=v = b 22t

t
M= /kH(t,s)dWSH.
0

From Norros et al. (1999) it is well known that M} is a Gaussian martingale, called the funda-
mental martingale whose variance function (M"); is v/’. Moreover, the natural filtration of the

martingale M coincides with the natural filtration of the fBm W since
t
wl = / K(t,s)dMm?
0
holds for H € (0.5, 1) where

t
Ky(t,s) = H2H — 1)/ rH*%(r— s)H’%dr, 0<s<t
S

and for H = 0.5, the convention Ky, =1 is used.

Define
d t
~dve Jo

Qt kn(t, s)Xsds.

It is easy to see that

AH 2H—1 /t 2H—1
= —— 3t 4 dZs ¢t .
Qt 2(2 _ 2/_/) { t + 0 r S
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Define the process Z = (Z;,t € [0, T]) by

t
Z ::/ ky(t, 5)dXs.
0

The following facts are known from Kleptsyna and Le Breton (2002):

(i) Z is the fundamental semimartingale associated with the process X.

(i) Z is a (Ft) -semimartingale with the decomposition
t
Zp = 9/ Qsdvs + MY
0
(iit) X admits the representation

t
xt:/ Ky(t, s)dZs.
0

(iv) The natural filtration (Z¢) of Z and (X}) of X coincide.

Now consider the fractional SDE

dX; = (6, X¢, t)dt + dW/!

where W is the fractional Brownian motion with Hurst parameter H > 0.5.

(22)

Let Z is the fundamental semimartingale associated with the process X. Let the collection of con-
tinuous time martingales {G(0, t), G¢, t > 0}ger where for each (6, t), G(6,t) = fot £(6, Zs, s)dWs

is an Itd integral whose corresponding increasing process is (G(0, t)); = fot £2(6, Zs, s)ds.

From Theorem 3.4 in Buchman and Kluppelberg (2006), the fractional diffusion (2.2) can be

represented as a monotone and differentiable functional of the fO-U process using the state space

transform (SST) representation. Hence Z can be represented as a SST of semimartingale in terms

of Z.

Proposition 2.1 can be extended to the fractional SDE as follows:

Proposition 2.2 Suppose G and (G); are jointly continuous in mean square in (0, t). Suppose

there exists a v > 0 such that for all tyg > 0

o (G8))y
a0 ey >

Then

lim sup w =0
6] —00 t>10 (G(O,°))¢

Corollary 2.2 can be extended to the fractional SDE as follows:
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Corollary 2.3 Suppose that there exists some ¢ > 0 such that

lim inf inf t79(G(6,-)), >0 a.s. ty > 0.
im inf Jof GO e 0=

Then
G(o,t
li sup | ( : )|

——— =0 Vy>0.
[6]—00 t>t, |0]“Y<G(9, t)>t K

Recall that by Girsanov theorem, the likelthood function of 6 based on the observations {Xs, 0 <
s < t} is given by

L+(8) = exp {/Ot (6, Xs,s)dXs — H2H — 1) /Ot £2(6, Xs, s)(/os(s - r)2H2dr)ds]» . (2.3)

Let
(8) = log L(6). (2.4)
The MLE is defined as

0r = argsup It(6),
CIS

that is,
I¢(6¢) = sup I¢(6).
0eR
Let .
Iy = / f2(60, Xs, s)ds. (2.5)
0

We have the strong consistency and asymptotic normality of the MLE:

Theorem 2.1
a) 60— 0y as. ast— oo,
b) 132(6; — 60) =P N(0, 1) as t — 0.
Proof: Due to the fundamental semimartingale representation Z of fractional diffusions along with
state-space transform, main tools are Taylor expansion of the derivative of the log-likelihood U:(6)
along with martingale SLLN and martingale CLT and delta method. We omit the details. 0
Redefine the MLE as

0: = lim inf arg max/:(0),
n—oo " f|<n

that is
l¢(6¢) = sup l+(6)
6eR

An Fi-adapted MLE exists.
We derive the evolution equation for the trajectories of the MLE using the fractional I1t6 formula.

Assume that our candidate for the MLE is a continuous Dirichlet process of the form

d9t = at dt + bt dXt, t > 1. (26)
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The derivative (w.r.t. 6) of the log-likelihood U¢(6) is a continuous Dirichlet process. Also
Ut(-) € C? for all t > 0 a.s. and together with its derivatives is jointly (6, t) continuous. Hence

by fractional 1t6 formula

dUe(0r) = fo(0r, Xt, t)[dX¢ — (01, X¢, t)dt] + Re(6r)dO:

2.7
+H(2H — 1)Qu(8:)b2dt + fop(8¢, X, t)bedt, t > to 27

where R; and Q: are the second and the third derivative of the log-likelihood w.r.t. 8. Assuming
that R¢(0;) < 0 for all t > tg, the MLE which solves U;(8) = 0 Vt > 0, is a solution of the

equation

d@t - —Rgl(et){fg(gt, Xt, t)[dXt - f(@t, Xt, t)dt] (2 8)
+[HQ2H — 1)Q¢(68:)b? + fgo(6:, X¢, t)be]dt}, t> to '
which after equating with (2.6) yields the MLE equation
do; = —R;M(0:){fa(6r, Xz, 1)[dX: — F(6s, X¢, t)d1t]
+HH(QH — 1)Q:(8:)R; *(6:) 5 (61, X+, 1) (2.9)

—R;71(0:)f5(0r, Xt t)fae(8e, X¢, t)]dt}
with initial conditions: [0 < 0o, Ue(6t,) =0, R¢(6t,) <O.

The choice of the initial time ty > O is imposed by the fact that Ry(8) = O for all 0. Let ty > 0
be fixed. Define the stopping times

T =inf{t > tg: |0 =0}, o :=inf{t>ty:|R:(6:)] =0}.

In fact, 7 is the explosion time.
Existence and Uniqueness of the MLE Evolution Equation
Theorem 2.2 The MLE equation (2.9) has a unique strong solution 8;, to <t <TAoO.

Proof. Write (2.9) in the form
do; = A6, t)dt + B(6;, t)dw/} (2.10)

where the random functions A and B are obtained respectively by equating the drift and the
diffusion term in (2.9). If A and B are jointly (6, t) continuous and locally Lipschitz in 6 (a.s.), then
the proof follows from Kunita (1984, Theorem 3.4.5) and Mishura (2008). In our case since the
term R~! which appears in both A and B, may result in unbounded coefficients. Thus while in the
classical local Lipschitz case, only truncation of ; is applied, here additional truncation argument
is needed.

Fix n < oo and choose a C* function ¥, such that ¥,(0) = 1 if |0 < n, ¥,(0) € [0,1] if
n<16 <n+1, Pa() =0, 6] > n+1. Let ¢,(6,t) := ¥,(R;(0)). Define the truncated
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coefficients
A6.t) = AB. Yn(6)0n(0. 1) .
B"(6.t) = B(6,t)¥n(6)Pn(6. 1)
and consider the SDE
del = A"(67 t)dt + B"(67, t)dW/, (2.12)
05 = Ot ¥n(Bt,)Pn(B4,, to). (2.13)

With this truncation and since A" and B" are jointly continuous and continuously differentiable
w.r.t. 8 (with jointly continuous derivatives), A” and B" are globally Lipschitz with globally linear
growth a.s. Thus by Kunita (1984, Theorem 3.4.1), (2.12) possesses a unique strong solution
{67, tp <t <o0.}

Define S™ = inf{t > to : |07| > n or R:(67) > —1/n} and note that (2.12) coincides with (2.10)
for all t € [ty, S7). Let S = lim,—00 S” and define {6, to <t < S®} by 0 =67 if t < S".
With this definition, one has S® = o AT and {0, to <t < 0 A T}, a unique strong solution of
(2.10). 0

Theorem 2.3 If the MLE 8; has a.s. continuous trajectories, then (2.9) holds for 6; for sufficiently
large t. If in addition, P(R+(6:) < 0 ¥t > 0) = 1, the log-likelihood I(-) is strictly concave in
some small neighborhood of the MLE for all t > 0, then (2.9) is the MLE evolution equation on
[to, 00) a.s. for all ty > 0.

Proof: Fix some € > 0, choose tg such that P(typ > T) > 1 — € and consider equation (2.9) on
[to, T A o) with initial condition 0, = 9~t0. Applying the fractional 1t6 Velntzell formula together
with the initial condition U;(8s,) = Us(6y,) = 0 implies that Us(8;) = 0 for all t € [to, T A 0).
This and the fact that R:(6;) < 0 for all t € [to, T A o) indicate that 6; is a strict maximum of
Le(), t € [to, TNO).

We now show that 6; = 6; for all ¢t € [to, T A o). Let 0 < A, — O, define t, = tp, and

8:, = |0:, — 0:,|. Then since Uy(68;) = Us(6;) = 0 for all t € [t, T A o) it holds that 0 =
|Ut(8s,) — Ue(8:,)| = IRy, (8t,)|04, for some 8; € [6¢, B;] which, because &;, > 0, for all n, results in
R:,(0:,) = 0 for all n.
Therefore, since by definition t, — S and 4,05 (due to sample path continuity of 6; and ét), one
may utilize the joint continuity of R to conclude that Ry (6;) — Rs(6s) = Rs(fs) = 0 which
by definition results in S = 0. Since this contradicts the underlying assumption (that bifurcation
occurs before 7 A 0), it confirms the validity of (2.9) for the MLE on [tp, T A 0).

Now by the definition of T, P(R(6:) <0V t > ty) > 1 — €. This and the boundedness of 6;
imply that (2.9) holds for 6; on [0, c0) w.p. > 1 — €. The condition on T leads to second assertion
(where T =0 a.s.).

Remarks:
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1. R¢(6:) — —o0 ass.
2. The sample paths of MLE are continuous and bounded. The MLE process is stable, i.e., it

does not explode: sup;>y, |6t < oo a.s. This along with R¢(6;) — —oo shows that 7 A 0 = oo.
Newton-type Algorithm

Newton type algorithms are approximation of the MLE equation (2.9). However, (2.9) is not
suitable for recursive estimation, it is valid for large t, and moreover, it requires the knowledge of
exact MLE at the initial time.

Newton type algorithms are insensitive to initial conditions and implementable for all ty > 0. The
algorithm makes the estimator 6; follow the gradient when U # 0 until it enters the neighborhood
of a local maximum and then keeps 0; in this neighborhood as long as possible , i.e., as long
as singularity does not arise (where afterwards the process repeats itself). This switching policy
is needed in order to maintain the necessary flexibility which prevents the estimator for being
"trapped’ in a no solution situation (i.e, when R =0 in (2.9)).

Fix a > 0 and some small ¢, §, define the set
A(t) =10 : |Ue(6)] <6, Re(0) < —€}. (2.14)
A simplified version of the Newton Algorithm is

dor = _Rt_l(et){fe(gtv Xe, t)[dXe — F(0r, X¢, t)dt]
+HH2H = 1)Qe(0:) R (06) 73 (0r, Xz t)
—R M (66)fa(6r, Xt t)fop (62, X, 1)
o Ur(0n)]dt} gecayy +t77Ue(0:)dtlgegaceyy

(2.15)

with initial condition 0y, to > 0.

When 6; € A(t), the algorithm follows the likelihood equation (with a decay term), where as
when 6; € A°(t), it follows the gradient towards a local maximum. The main problem with (2.14) is
the fact that this scheme could result in infinitely many switchings in the bounded time intervals (or
even uncountably many switchings). This prevents (2.14) from being an implementable algorithm.

Choose continuous 0 < ¢ L 0 and 0 < ¢¢ | 0 where §; satisfies

/ Sedt = 0o, (s/t) < 6:/6: Vio < s < L. (2.15)
to

For example § = tP,0 < B8 < 1A v will do.
Redefine the set A(t),

A(t) =10 : U (0)] < 0¢tY, Re(0) < —€t}. (2.16)
Let

A(t) == {¢§ € C[0, t] : Is < t such that Rs(ps) < —2¢s and ¢, € A(r)Vr € [s, t]}}.  (2.17)
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A(t) sets for R the 'entrance level' —2¢; into A(t) and ’exit level! —e; (into and from A(t)
respectively).
The changes in (2.15) are in the definition of good event and the normalizing of the second term.

The proposed algorithm is given by

do: = —R;N(0:){fo(0s, Xe, t)[dXe — F(6:, X, t)dH]
+HH(H — 1)Qe(6:)R; *(61) 5 (61, Xt 1)
—Ry1(0:)fo(0¢, Xe, t)Toa (B¢, Xt £)
+ o Ur(0e)]dt} Igreacryy +t "Ue(0e)dt ligegaceyy

(2.18)

which holds in [tg, T) (where T is the explosion time), with any initial condition 0y, to > 0 (where
0 = GtOVt S [O, to])

Theorem 2.4 The equation (2.18) possesses unique strong solution in [to, T).

Notice the difference between algorithm (2.18) and the conventional Newton type algorithm

which is given by
d6: = —R7Y(0:)fy(6r, X, t) [dX¢ — F(B:, Xy, t)dt], Re(8,) <0 a.s. (2.19)

where R is an approximation of R which is computed in a recursive way.
(2.19) is a first order approximation to the optimal algorithm where the drift terms are added in
the Newton phase.

Using Corollary 2.3, we obtain

This in turn gives the boundedness of the MLE:

Theorem 2.5

sup |6:] < oo a.s.
t>ty

Define the Fisher information process
Iy = 1:(0) = /Ot f2(0, Xs, s)ds. (2.20)
Define the empirical Fisher information process
1:(8) = /Ot £2(8;, Xs, 5)ds. (2.21)

Theorem 2.6 If §t satisfies

/t_l/QUt(gt) — 0 a.s.and sup |6y < oo a.s.,
t>ty
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then we have

a) 6: — 6y a.s. ast— oo,
b) /g/z(gt—Qo) —P N(0, 1) ast — .

c) /5/2(§t—9t)—>0 a.s. as t— oo.

Proof. The consistency is based on the given conditions of the theorem. Asymptotic normality can
be shown same way as in Theorem 2.1. Expanding /t1/2(Ut(§t) — U¢(0¢)) around 6y and using part
of the theorem and Theorem 2.1, we obtain the result. We omit the details. 0O

Thus the Newton estimator and the MLE are asymptotically equivalent. In fact, one can obtain

higher speed of convergence as follows:

Theorem 2.7 For every 0 < o < o (where o is from (2.15)),

ea/tlt(gt —0:)—0 as as t— oo.

Proof. Since dU = —aUdt there exists some large enough T such that
Ue(0;) = Ur(67)e™ " T) = (8, — 6,)R¢(8:), O; € [6:,0;] YVt >T.

Since 6; — 0; — 6y and /7 R(6p) — —1 ass., then due to the equicontinuity of {/7 R (-)} >t
we have /[ TR:(8;) — —1 as. This implies that P(sup;> R¢(8¢) < 0) = 1 which enables us to
define Y; = —/t_lRt_l(ét), t > T. Hence

Ut (67)Yee ®T) = 1,(6; — 6y).

Choose some 0 < o < a, define V = U(67)e®". Multiplying both sides by e*'t, we have

VYee @t — 1,(6, — 6,)e™'t.
Since Y; — 1, this leads to
Ve (@Dt _1.(5, — 6,)e*t| - 0 a.s.

Since Ve~ (@=2)t 5 0 (due to the almost sure finiteness of V), the theorem follows. 0

Remarks

1. This shows much higher convergence speed than the classical result with rate /t1/2_

Fora=0, /16, —6; =0 as. as t— oo V¢ < 1.
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3. Stochastic Gradient Descent in Continuous Time

In standard discrete time version of stochastic gradient descent, data is usually considered to be
i.id. at every step. Thus it is natural to ask if one can discretize (2.1), for example by Euler-
Maruyama method and apply traditional stochastic gradient descent. This can result in loss of
accuracy, or may not even converge. For example, there is no guarantee that using a higher order
discretization scheme, for example the second order Milstein scheme, to discretize the dynamics
of the SDE (2.1) and then applying the traditional stochastic gradient descent will produce a
statistical learning scheme which is higher-order accurate in time. Hence it makes sense to first
develop the continuous-time statistical learning equation and then apply higher-order accurate
numerical scheme.

Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient
method for the statistical learning of continuous-time models. SGDCT algorithm follows a descent
direction along a continuous stream of data. The parameter updates occur in continuous time and
satisfy a stochastic differential equation (SDE). We analyze the asymptotic convergence rate by
proving a central limit theorem. An LP convergence rate is also proven.

Statistical estimation in SDEs have been studied using entire observed path of X, i.e. batch
optimization, see Bishwal (2008). The vast majority of statistical learning, machine learning and
stochastic gradient descent literature address discrete time algorithm. This paper analyzes statisti-
cal learning in continuous time (SGDCT). SGDCT can estimate unknown parameters and functions
in SDE models. It is related to online maximum likelihood filtering and identification.

SGDCT can be used to solve continuous-time optimization problem such as American options.
The value function is approximated by a parametric function and the parameter is estimated by
SGDCT algorithm. Recall that Longstaff-Schwartz estimated the parameter by least squares
method. One could discretize the dynamics and then use the Q-learning algorithm. The Q-learning
algorithm is biased while SGDCT algorithm is unbiased.

The structure of the algorithm indicates that well known gradient and Newton type algorithm
are first order approximations.

Consider the SDE

dXe = F*(Xe)dt + odW, (3.1)

where f*(x) is an unknown function. The goal is to estimate f(x, 8) from continuous observations
of (X¢)t>0. The function may be convex or non-convex.
The SGD update in continuous time for the parameter 6 € R satisfies the SDE

do: = %f’(Xt, 0:)d X — %f’(xt’ 0e)f (Xe, 0¢)dt (32)
where a is the learning rate. For example, o could be Cgit' We assume that 6 is initialized

according to some distribution with compact support.
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The parameter update can be used both for statistical estimation given previously observed data
as well as online learning, i.e, statistical estimation in real time as data becomes available.

Define the objective function

9(x,0) = 2117(x.0) ~ ()12 = 55 ((F(x,6) — £(x)))’ (33)

which measures the distance between the model f(x, 8) and true dynamics f*(x) for a specific x.
This is a minimum distance type estimator.
We assume that X; is ergodic and it has some well behaved 7m(dx) as its unique invariant

distribution. Let the average over m(dx) be denoted by

mwzijﬁwwm (3.4)

where m(dx) is the invariant measure of X; when it is ergodic, which is the natural objective
function for our analysis of the asymptotic behavior of the algorithm 6;. This is an weighted
average of the distance between f(x,0) and f*(x) where the weights are given by m(dx), which
is the distribution that X; tends to when t become large. The distance g(x,0) is decreased by

moving 6 in the descent direction —g’(x, 6) which motivates the algorithm

do: = —a:g'(Xe, 0:)dt
= T (Xe, 0)(F"(Xe) — F(Xe,0))dt
= —a:d(x, 0)dt + S5 (Xe, 0:)F (X, 0¢))odWy (3.5)
—a:J'(x,0r)dt — ar(g'(x, 0:) — F'(x, 0¢))dt + S5/ (X, 0:)F(Xe, 0¢))odWy
= h+h+1

where /1= Descent term, /> = fluctuation term, /3= Noise term.

If oy decays with time, e.qg., a; = % the descent term /1 will dominate the fluctuation term
and the noise term for large t. Then 6;, will converge to a local minimum of §(#). Sirignano
and Spiliopoulos (2017) proved that 8, converges to a critical point of the objective function g(6):
|3’ (6¢)| — O almost surely as t — oo.

Since lim¢_00 oy = 0, the descent term g’ (6;) — 0 as t — oo. Descent term converges to
zero as t — oo. Sirignano and Spiliopoulos (2018) proved the rate at which 8; converges to zero.
They obtained a central limit theorem (CLT) and an L” convergence rate.

When g(6) has a single critical pint 6%, let
J(6*) = C? /0 b e 25(Cad(O) =)%Y ds (3.6)
Define
w§{2 = exp(—pC /t aydu), p>1 (3.7)
and let ®f ; be the solution to the ODE S

do; o = —a:g(6")d; (dt, PL = 1. (3.8)


https://doi.org/10.28924/ada/stat.2.13

Eur. J. Stat.

We assume that the general learning rate oy, satisfies the following conditions:
(B1) [5° ardt = oo,
(B2) [o°afdt < oo,
(B3) [o° ladt]dt < oo,
(B4) There exists a p > 0 such that lim¢_ a2t =0,
(B5) [y aE/ng?_st < o(ay),
(B6) [y a2d*% ;ds = O(awr),
(B7)fy a2Wilds < o(a/?),
(B8) For all p>2, [f(a2 + |, )W) al/? Tds < o(a?),
(BY) For all p > 2, W) < O(a?/?)
(B10) WY < o(a;”?).

The LP convergence rate is given by
E|6; — 0*|P < KaP/? (3.9)
for p > 1. The CLT is given by
oy 20, — 0%) =P N(0, J(6%)). (3.10)

A standard choice of the learning rate a; which satisfies (B1)-(B10) is a; = Co(Co + t) 1.

Hence the L, convergence rate is given by

K
E[|6: — 6"|P] < ———F 3.11
10 =8P < ey 57 (3.11)
for p > 1 and the CLT for 6; is given by
Vi(0: — 6%) =P N(0, J(6")) as t — . (3.12)

Sirignano and Spiliopoulos (2020) derived a stochastic integral to represent the v/t(8;—8*) using
Duhamel’s principle and the fundamental solution of the random ODE dV; s = —a:g(6;) V¢ sdt
where 8; lies on a line connecting 6* and ;. The integrand of this stochastic integral includes the
fluctuation term and the noise term as well as W; and is anticipative. Hence standard approach
such as It6 isometry cannot be applied directly. Also since f(x, ) is allowed to grow with 6, hence
the fluctuations as well as other terms can grow with 8. Hence they prove an a priori stability
estimate for |0¢]. Proving central limit theorem for non-convex g(0) is not straightforward since the
convergence speed of 6; can arbitrarily slow in certain regions, and the gradient can even point
away from the global minimum 6*. To address this, we consider the stochastic integral after the time
Ts which is defined as the final time 0; enters a neighborhood of 6*. However, s is anticipative, i.e.,
is not a stopping time, therefore careful analysis is required to study the behavior of the stochastic
integral.

Let Y; := 0; — 6* be the error term. It satisfies

dY: = —OLtAS_J(@%)Ytdt + at(g’(et) - gl(Xt, 6:))dt + Oltf,(Xt, 0¢)dW. (3.13)
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ElV:? < Kt™Y, E[ViP < Kt P2 (3.14)

The stochastic integral \/fflt a’®; s¢(Xs, 8s)dWs — 0 in probability as t — oo where ¢(x, 6) is
a function that can grow at most polynomially in x and 6.

For the analysis of fluctuation term, the proofs use Poisson PDE for ergodicity, given below in
Proposition 3.1. The central limit theorem for non-convex g(0) is challenging since the convergence
speed of 8 can become arbitrarily slow in certain regions and the gradient can even point away from
the global minimum 6*. Interalia, they prove convergence to zero of multidimensional stochastic
integrals. The proof requires the analysis of stochastic integral with anticipative integrands, which
is challenging since standard approaches like 1t6 isometry can not be directly applied.

Sirignano and Spiliopoulos (2020) remark that t~1/2

is the fastest possible convergence rate
given that the noise is Brownian motion. This is due to the quadratic variation of Brownian motion
growing linearly in t. With other noises whose varianes grows sublinearly in time, one could

1/2

allow for faster rate of convergence than t=*/<. An example of a stochastic process whose variance

grows sublinearly in time is fractional Brownian motion with appropriately chosen Hurst parameter.

Proposition 3.1 (A Poisson Equation)
Let L, be the infinitesimal generator of the X process. Let G(x,0) € C*?(X,R") which satisfies

/ G (x, 0)m(dx) =
X

and for some positive constants M and q, and

G0+ |2 550 9)' ' G(x, 9)‘ < M(1+ |x]9).

062

Then the Poisson equation

Lyu(x,0) = G(x,6), [Xu(x.@)W(dX)Z

has a unique solution that satisfies u(x,-) € C? for every x € X,03u € C(X x R") and there exist
positive constants K and p such that

2

(x9]+‘ux0)‘ ':92

u(x, 9)' < K(1+ |x]P).

4. Stochastic Gradient Descent Algorithm for American Option

Machine learing in finance has received recent attention, see Dixon et al. (2020). We study the
SGDCT algorithm for American option. We compare it with Longstaff-Schwartz method. Longstaff-
Schwartz developed an algorithm for the solution of a discrete time version of the a class of free

boundary. Their algorithm, commonly called Longstaff-Schwartz Regression based method, uses
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dynamic programming and approximates the solution using a separate function approximator at
each discrete time, typically a linear combination of basis functions.

Given a continuous stream of data, stochastic gradient descent in continuous time (SGDCT)
can estimate unknown parameters or functions in stochastic differential equation (SDE) models
for stocks, bonds, interest rates, and financial derivatives. High dimensional American option has
been a long standing computational challenge in finance with traditional methods like the finite
difference. SGDCT can accurately solve American options even in 100 dimensions.

Batch optimization for statistical estimation of continuous-time models can be impractical for
large data sets where observations occur over a long time period. Batch optimization takes a
sequence of descent steps for the model error for the entire observed path.

SGDCT provides a computationally efficient method for statistical learning over long time periods
and for complex models. SGDCT continuously follows a descent direction along the path of the
observation. Parameters are updated in continuous time, with the parameter updates 6; satisfying
an SDE.

Numerical analysis of SGDCT in model estimation of the drift and volatility functions of two
common financial models like the O-U process and CIR process is studied. One has to simulate
using Euler scheme, a single path of X} for given 6* and simultaneously solve for the path of 6;.

Sirignano and Spiliopoulos (2018) studied deep learning algorithm or “Deep Galerkin Method"
(DGM) which is Galerkin method with neural network. Neural network is trained on the batches of
randomly sampled time and space points. Deep Galerkin method uses a deep neural network instead
of basis functions. The deep neural network is trained to satisfy the differential operator, initial
condition, and the boundary conditions using stochastic gradient descent at randomly sampled
spatial points. By randomly sampling spatial points, we avoid the need to form a mesh (which
is infeasible in higher dimensions) and instead convert the PDE problem to a machine learning
problem. DGM is natural merger of Galerkin methods and machine learning.

Sirignano and Spiliopoulos (2017) obtained central limit theorem for the SGDCT estimator.

An American option is a financial derivative which the owner can choose to exercise at any time
t € [0, T]. If the owner exercises the option, they receive the payoff g(X;) where X; is the prices of
the underlying stocks. If the owner does not choose to exercise the option, they receive the payoff
g(X7) at the final time T. The value (or price) of the American option at time t is u(t, X;) which
satisfies a free boundary PDE:

n 2
O 430+ B 2L 1) + 2 3 p1j0 () s (£,6) — ru(t, ) =0, (4.1)

Ox;0X;
ij=1 =7

V{(t,x) :u(t,x)>g(x)},
u(t,x) > g(x) V(t,x),
u(t,x) € CHRL x RY), V{(t. x): u(t,x)=g(x)},

u(T,x) =g(x), Vx.
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The free boundary set is F = {(t, x) : u(t, x) = g(x)}. The value function u(t, x) satisfies a PDE
"above" the free boundary set F and u(t, x) equals the function g(x) "below" the free boundary set

F. The free boundary set F is approximated using the current parameter estimate 6.
The SGDCT Algorithm

First, we recall the Q-learning algorithm: The Q-learning algorithm uses stochastic gradient de-
scent to minimize an approximation to the discrete time HJB equation. Consider the Q-learning

algorithm to estimate the value function
V(x)=E [/ e 'r(Xy)dt | Xo= X] , Xe=x+W; (4.2)
0

where v > 0 is a discount factor and r(x) is a reward function. The function Q(x,6) is an
approximation for the value function V/(x). The traditional approach is to discretize the dynamics

of V(x) and apply a stochastic gradient descent update to the objective function:

_ 2
E [(r(Xt)A + e LE[Q(Xeya: 0)|Xe] — QX1 6)) ] . (4.3)
The result is the stochastic gradient descent algorithm:
o
O =00 — - (e TTE[Qs(Xerai 00)1Xe] — Qo(Xe:61))

x (F(Xe)A + e "2E[Q(Xesa; 0:)| Xe] — Q(Xe;6)) . (4.4)

The learning rate is A~L. The Q-learning algorithm has a major computational issue. The expec-
tation E[Qg(X¢4n;0:)|X¢] is challenging to calculate if the process X; is high dimensional. To

circumvent this situation, Q-learning algorithm ignores the inner expectation leading to
ar, _ _
Orrn = 0 — Kt(e Y2Qo(Xea:6t) — Qo(Xe: 0:)(r(Xe) A+ e "2Q(Xe1a: 6:) — Q(X¢: 6)). (4.4)

Although computationally efficient, the Q-learning algorithm is biased. The SGDCT algorithm
can be directly derived by letting A — 0 and using It6 formula:

1 1
db: = —a; EQGXX(XL‘; 0:) — YQa(Xe; 9t)) (r(Xt) + §Qxx(Xt? 0¢) —YQ(Xe; 0¢) | dt.  (4.5)

Furthermore, when A — 0, the Q-learning algorithm blows up.
SGDCT Algorithm for American Option

Let X; € RY be the prices of d stocks. The maturity time is T and the payoff function is g(x) :

RY — R. The stock price dynamics and the value functions are given by
dX! = w(XDdt +o(XDdwW!, i=1,2,..., d (4.6)

Vt,x = sup E[eir(T/\T)g(X’r/\TNXt = X] (4-7)
T>t
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where W; € RY is a Brownian motion. The distribution of W, is specified by Var(W/) =t, i=
1,2,..., d and Corr(W{, W{) = p;jdt for i # j. The price of the American option is V{ x.
SGDCT for American option is given by

TAT
0
01 =65 — [O o]t (atoe(t,xt:wl) + L Qa(t, Xe; 6771 — rcae(t,xt;e:;“))

x (;tQ(t,Xt;@?H) + LQ(t, Xe: 77 — rQ(t’Xt;Q?H)) o

+al T Qo (T AT, Xear: 02/7) (9(XenT) = QT AT, Xear:02/7)) (4.8)
To=inf{t > 0:Q(t, X¢;07) < g(Xp)},  Xo ~ v(dx). (4.9)

The function Q(x,8) is an approximation of the value function. The parameter 6 must be es-
timated. Here Ly is the infinitesimal generator of the X process. The algorithm is run for many
iterations n =10, 1,2, ... until convergence.

The Longstaff-Schwarz algorithm works well in low dimension, but in high dimension the con-
vergence is slow. In high dimension, SGD algorithm works very well.

Sirignano and Spiliopoulos (2017) implemented the American option in 100 dimensions and

showed the accuracy of the SGD algorithm for Bachelier model and Black-Scholes model.

5. Berry-Esseen Inequality of Stochastic Gradient Descent Algorithm
for American Option

We study the Berry-Esseen inequality for SGDCT algorithm for American option. We compare it
with Longstaff-Schwartz method. We will use anticipative stochastic integral, Duhamel’s principle
for the stochastic gradient descent algorithm.

Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient
method for the statistical learning of continuous-time models. SGDCT can estimate unknown
parameters and functions in SDE models. SGDCT algorithm follows a descent direction along a
continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic
differential equation (SDE). The authors analyze the asymptotic convergence rate by proving a
central limit theorem. An LP convergence rate is also proven.

The vast majority of statistical learning, machine learning and stochastic gradient descent lit-
erature address discrete time algorithm. This section analyzes statistical learning in continuous
time.

Statistical estimation in SDEs have been studied using entire observed path of X, i.e., batch
optimization. MLE can be calculated via batch optimization. Maximum likelihood based on the
entire observation path of X has been extensively studied, see Bishwal (2008).

SGDCT can be used to solve continuous-time optimization problem such as American options.

The value function is approximated by a parametric function and the parameter is estimated by
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SGDCT algorithm. Recall that Longstaff-Schwartz estimated the parameter by least squares
method. One could discretize the dynamics and then use the Q-learning algorithm. The Q-learning
algorithm is biased while SGDCT algorithm is unbiased.
Consider the SDE
dX¢ = *(X¢)dt+o0dWe, t >0

where f*(x) is an unknown function. The goal is to estimate f(x, 8) from continuous observations
of (X¢)r>0. The function may be convex or non-convex.
The SGD update satisfies

a a
d@t - ?;f,(xt, G)dXt - ?;f/(xt, Gt)f(Xt, Gt)dt, t Z O

Ca
C0+f'

where a: is the learning rate. For example, oy could be Assume that 6y is initialized
according to some distribution with compact support.

The parameter update can be used both for statistical estimation given previously observed data
as well as online learning, i.e, statistical estimation in real time as data becomes available.

Define the objective function

9(x,6) = 3 1F(x,6) ~ ()2 = 55 ((F(x.8) ~ ()Y

which measures the distance between the model f(x, 8) and true dynamics f*(x) for a specific x.
This is a minimum distance type estimator.
We assume that X; is ergodic and it has some well behaved 7m(dx) as its unique invariant

distribution. Let the average be denoted by

mmzijﬁwww

where (dx) is the invariant measure of X; when it is ergodic which is the natural objective
function. This is an weighted average of the distance between f(x, 8) and f*(x) where the weights
are given by m(dx), which is the distribution that X; tends to when t become large. The distance

g(x, 0) is decreased by moving 6 in the descent direction —g’(x, 8) which motivates the algorithm

df: = —a:g' (X 0r)dt
= S Xe, 0)(F*(Xe) — F(Xe,0))dt
= —ag'(x,0:)dt + (Xt 00)F(Xe, 0¢))odWy
= —og'(x,0e)dt — ar(g'(x, 0:) — G'(x,0¢))dt
+55F'(Xe, 00)F (Xe, 0r))odW,e
= hh+lh+1

where /1= Descent term, /> = fluctuation term, /3= Noise term.

If a+ decays with time, e.g., ar = % the descent term /; will dominate the fluctuation term
and the noise term for large t. Then 6:, will converge to a local minimum of g(6). Sirignano
and Spiliopoulos(2017) proved that 6; converges to a critical point of the objective function g(6):
|3’ (6¢)| — O almost surely as t — oc.
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Since limio at = 0, the descent term a3’ (6:) — 0. Descent term converges to zero as
t — oo. Sirignano and Spiliopoulos (2018) proved the rate at which 6; converges to zero. They
obtained a central limit theorem (CLT) and an L” convergence rate.

Sirignano and Spiliopoulos (2018) derived a stochastic integral to represent the \/t(8; — 6*)
using Duhamel’s principle and the fundamental solution of the random ODE dW; s = —a+g'(0¢)
V: sdt where g; lies on a line connecting 6* and 6;. The integrand of this stochastic integral
includes the fluctuation term and the noise term as well as W; and is anticipative. Also since
f(x,0) is allowed to grow with 6, hence the fluctuations as well as other terms can grow with 6.
Hence they prove an a priori stability estimate for |0¢|. Proving central limit theorem for non-convex
g(0) since the convergence speed of 6; can arbitrarily slow in certain regions, and the gradient can
even point away from the global minimum 8*. To address this, we consider the stochastic integral
after the time 75 which is defined as the final time 6; enters a neighborhood of 6*. However, 75 is
anticipative, i.e., is not a stopping time, therefore careful analysis is required to study the behavior
of the stochastic integral.

Let Y; := 0; — 6* be the error term. It satisfies
dYr = —a:AG(0;:)Yedt + ar(g'(6:) — o' (X, 0:))dt + arf'(Xe, 6:)dW.
EIYi|> < Kt™Y E|V:|P < Kt=P/2.
The stochastic integral
\/f/:agfbt,sC(Xs, 0s)dWs — 0

in probability as t — oo where ((x, ) is a function that can grow at most polynomially in x and 6.

For the analysis of fluctuation term, the proofs use Poisson PDE for ergodicity, see Section
6. The central limit theorem for non-convex g(6) is challenging since the convergence speed of
0: can become arbitrarily slow in certain regions and the gradient can even point away from the
global minimum 6*. Interalia, Sirignano and Spiliopoulos (2018) prove convergence to zero of
multidimensional stochastic integrals. The proof requires the analysis of stochastic integral with
anticipative integrands, which is challenging since standard approaches like 1t6 isometry can not
be directly applied. It is related to online maximum likelihood filtering and identification.

We remark that t~1/2 is the fastest possible convergence rate given that the noise is Brownian
motion. This is due to the quadratic variation of Brownian motion growing linearly in t. With other
noises whose variances grow sublinearly in time, one could allow for faster rate of convergence
than t71/2. An example of a stochastic process whose variance grows sublinearly in time is

fractional Brownian motion with appropriately chosen Hurst parameter discussed in section 1.

In this section we investigate the rate of weak convergence to normality of the update 6;.
We assume the following conditions:

(A1) The diffusion is nondegenerate and limj, |, F*(x) - x = —o0.

(A2) d'(x,-) € C?(R) for all x.
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(A3) The function 7*(x) € C>T*(X), that is, it has two derivatives in x, with all partial derivatives
being Holder continuous, with exponent «, with respect to x.

(A4) SGD-SDE equation is well-posed.

(A5) There exists a constant R < oo and almost everywhere positive function k(x) such that
(=4'(x.0),0/16) < —k(x)[6] for [6] > R.

(A6) Consider the function 7(x,8) = (f’?(x,8),6/|6]). Then there exists a function A(x) grow-
ing not faster than polynomially in |x| such that for any x,61,6, € R, |7(x,61) — T(X 62)] <
IX(x)|p(]01—62]) where p(u) is an increasing function on [0, co) with p(0) = 0 and f,_, p~2(u)du =

[0 ON

(A7) The learning rate is C 27 where Cq > 0 and Cp are constants.

(A8) f(i)(x, 6) < K(1+ |x|94 |6]@=Dv0), j=0,1,2 for some finite constants K, g < co.

(A9) g(0) is strongly convex with constant C.

(A10) CCq > 1.

(A11) §(6) € C3 and |30 (9)] < K(14|68]*~") for i = 0,1,2, 3 and some finite constant K < co.

The following theorem gives the rate of convergence to normal distribution of the SGDCT

estimator:

Theorem 5.1 Under (A1) — (A11) and (B1) — (B10), we have as t —
t
- —_0*) < —
P (W/J(e*)(et 6%) _X) d(x)

Jwﬂ:C;/ma%“wWW4Mwww,Ewy3/mewm@,
0

sup < ct /2

xeR

where

1 _ >,
h(x,0) = (027"(x, 0) — v(x, 9)) o
and v(x, 0) is the solution to the Poisson equation with

H(x,0) = d'(x,0) — g'(6).

Proof: Using second order Taylor expansion

_ _ ik . 103
G(0:) =3 (6:) +3"(6")(6: — 6%) + 55639 g(03)(6; — 6%)?
The error term satisfies the SDE
* —1/pl ar 6% _ 1 - / !
d(6r — %) = —a:g'(6;)dt — 7%9(9t)dt +ae(g'(0r) — g (Xt, 0r))dt + arf' (X, 0r) dWr.
Let Y; := 0; — 6*. Then Y; satisfies the SDE
Q¢ 63

dY: = —a:g'(6;)Yedt — (6)YFdt + ar(g'(6:) — ' (X, 0:))dt + af'(Xe, 6:)dWs.

2 5639
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Let @+ s be the fundamental solution satisfying
dqjt's - _atgl(g*)th’Sc/t, q)s’s - 1

Y: can be written in terms of ® ¢:
1 [t ) t B t
V= 0uviog [ Grsag®@v2dst [ 00g(0)-g (X 0)ds+ [ @rsas (X, 6)W,
1 1 1

rlor2.r3 .4
=l +Ts+T74+T7.
The problem is the weak convergence of anticipative stochastic integral which has not been studied
much in the literature since standard approach such as Itd isometry can not be directly applied.

We use Malliavin calculus approach as in Bishwal (2010b).

We show the rate at which the stochastic integral converges to the normal distribution A/,
t
\/E/ s Py s (Xs, 0s)dWs — N
1

in distribution as t — co. By using large deviations, we show the rate at which v/t(F1 +T3+13) —

0. By using large deviations, we show the rate at which
t
t / a2®? (%(Xs, 05)ds — J(6%)
1

in probability as t — oo. Combining all these in Y; and the using squeezing technique in
Chapter-1 in Bishwal (2008), we obtain the result.

Remark Bishwal (2011c) studied parameter estimation in interacting diffusions based on contin-
uous and discrete sampling. The idea was used in Giesecke et al. (2020) for inference in large

financial systems.

Next we focus on Monte Carlo method. Let @n,t be the Monte Carlo estimate of 6; based on n

independent replications of the sample path, i.e.,

1 n
Ot = ;e,;t.
1=

Theorem 5.2 Under (A1) — (A11) and (B1) — (B10), we have as n — oo
n ~
- — 6% < —
P (WIJ(Q*)(G,,I 6 )_X) d(x)

J(6") =C2 / - e 25(Cad' (@)D p(9*)ds, h(0) = / h(x, 6)7(dx),
0

sup < Cn~1/2

xeR

where

h(x, 8) = (012f’(x, 6) — v(x, 9))202
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and v(x, 0) is the solution to the Poisson equation with

H(x,0) = d'(x,0) — g'(6).

Proof: Berry-Esseen theorem for independent random variables (see Petov (1995)) along with

anticipative Girsanov theorem (Proposition 1.3) gives the result. Details are omitted. 0O
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